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ABSTRACT 

Failure detection has always been a demanding task in the electrical machines community; it has 

become more challenging in wind energy conversion systems because sustainability and viability of wind 

farms are highly dependent on the reduction of the operational and maintenance costs. Indeed the most 

efficient way of reducing these costs would be to continuously monitor the condition of these systems. 

This allows for early detection of the generator health degeneration, facilitating a proactive response, 

minimizing downtime, and maximizing productivity. This paper provides then an assessment of a failure 

detection techniques based on the homopolar component of the generator stator current and attempts to 

highlight the use of the ensemble empirical mode decomposition as a tool for failure detection in wind 

turbine generators for stationary and non stationary cases. 

 

Keyword: Wind turbine, induction generator, bearing failure, ensemble empirical mode decomposition, 

stator current, homopolar current. 

 

Nomenclature 

 

WECS = Wind Energy Conversion Systems; 

FFT  = Fast Fourier Transform; 

PSD  = Power Spectral Density; 

TFR  = Time Frequency Representation; 

TKEO = Teager-Kaiser Energy Operator; 

HT  = Hilbert Transform; 

CT  = Concordia Transform; 

PCA  = Principal Component Analysis; 

EMD  = Empirical Mode Decomposition; 

EEMD = Ensemble Empirical Mode Decomposition; 

IMF  = Intrinsic Mode Function; 
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1. Introduction 

 

Wind energy conversion systems are the fastest-growing sources of new electric generation in the 

world and it is expected to remain so for some time, and those sources are becoming a reliable competitor 

of classical power generation systems, which are facing to constantly changing operating parameters, such 

as fuel cost, multiple fuel tradeoffs and maintaining older systems becomes more costly. WECS offer an 

alternative and emerging solution by deploying wind farms offshore or onshore, where there are 

substantial wind resources, leading to a best electricity generating opportunities. However, the offshore or 

onshore environments impose a high demand for reliability on the installed equipment because they are 

hardly accessible or even inaccessible [1]. 

 

1.1. Wind turbine failure detection context 

 

Many techniques and tools have been developed for wind turbine electric generator condition 

monitoring in order to prolong their life span as reviewed in [2]. Some of these techniques used the 

existing and pre-installed sensors, which may measure speed, output torque, vibrations, temperature, flux 

densities, etc. These sensors are managed together in different architectures and coupled with algorithms 

to allow an efficient monitoring of the system condition [3]. Those methods have shown their 

effectiveness in electric motor condition monitoring. From the theoretical and experimental point of view, 

the well-established methods are: electrical quantities signature analysis (current, power, etc.), vibration 

monitoring, temperature monitoring and oil monitoring. 

In the case of wind turbines, it has been shown that failures in the drive train could be diagnosed from 

the generator electrical quantities [1]. The advantage of signature analysis of the generator electrical 

quantities is that those quantities are easily accessible during operation (i.e. the current can be acquired by 

current transformer or Hall effect device, the voltage via a voltage transformer, and the power by 

computation). For steady-state operations, the FFT, the PSD, and other techniques based upon them, are 

widely used in the literature [4]. However, in the case of variable speed wind turbines, FFT is difficult to 

interpret and it is difficult to extract the variation features in time-domain, since the operation is 

predominately non stationary due the stochastic behavior of the wind speed. To overcome this problem, 

failure detection procedures based on time-frequency representation (Spectrogram, Quadratic TFR, etc...) 

or time-scale analysis (wavelet) have been proposed [5-9]. Nevertheless, these techniques have drawbacks 

such as high complexity, poor resolution or may suffer from artifacts (cross-terms, etc). Moreover, failure 

frequencies tracking is not an easy task [10]. 



1.2. Bearing failures importance 

 

Since induction machine rotors are under high stresses, including thermal stresses, mechanical stresses, 

and electrical stresses, they are statistically more vulnerable compared to the stator. Particularly, bearings 

are the most frequently failed component [11]. Moreover, in the wind power industry context, bearing 

failures have been a persistent problem which account for a significant proportion of all failures in wind 

turbines [1]. Bearing failure of WECS generators is the most common failure mode associated with a long 

downtime. 

Bearing failure is typically caused by some misalignment in the drive train, which gives rise to 

abnormal loading and accelerates bearing wear. Because of their construction, rolling element bearings 

generate precisely identifiable signature on vibration with characteristic frequencies. Those frequencies 

present an effective route for monitoring progressive bearing degradation. It is therefore possible to detect 

on the stator side the frequencies associated with the bearings using accelerometers mounted directly on 

the bearing housing, which is not often easily accessible [12]. Nonintrusive condition monitoring 

techniques, which monitor the bearing condition using only the generator currents or voltages, are 

preferred due to their nonintrusiveness and also low cost. To tackle this problem, numerous failure 

detection techniques have proposed by analyzing the stator side electrical quantities; such as the current 

[13] or the instantaneous power factor [14]. 

In this important and particular context, this paper will focus on bearing failure detection. As this 

failure leads to stator current modulation [15], it is therefore proposed to assess the efficiency of the 

EEMD using the homopolar current as a failure detection tool. 

 

2. Failure detection using advanced signal processing techniques 

 

2.1. Why monitoring the homopolar current? 

 

In theory the homopolar current occurs only for unbalanced three-phase machines. However, in real 

world industry applications, this component is present regardless the machine condition (healthy or 

faulty). This study suggests then the use of this current as the variable to be monitored for failure 

detection. Indeed, majority of failures lead to an obvious unbalance behavior of a three-phase machine. 

This will give rise to a homopolar component of the current. This component could be very useful if the 

neutral point is connected allowing the use of one current sensors. In a wind turbine application, no 

homopolar current is produced by the generator (i.e. doubly-fed induction generator) since the neutral 

point is disconnected. However, the component could be computed and therefore monitored. 



The homopolar current I0 is computed through the Clarke transform and is given by 
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where Ia,b,c are the three-phase currents. Hence 
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2.2. Current modulation vs failure detection technique 

 

Most of electric machine failures lead to current modulation (amplitude and/or phase) [12]. This is the 

particular case of bearing failures [16]. Indeed, a bearing failure is assumed to produce and air gap 

eccentricity and hence producing an unbalanced magnetic pull that leads to stator current modulation [17]. 

In this context, a demodulation technique is a well-suited tool for failure detection. 

For modulated signals, the most popular techniques are TKEO [18], HT, and it has been recently 

shown that the CT can be used for demodulation [19-20]. Those techniques were investigated in many 

research works for failure detection tasks. However, TKEO and HT do not exploit the stator current 

multidimensional nature, while CT is reliable only for balanced three-phase system. To go besides those 

constraints, innovative techniques are investigated for tracking the fault component, such as PCA [21]. 

However, all of these techniques assume mono-component signals and they are unable to demodulate 

multi-component signals. 

Unfortunately, in typical electric machines, stator current dominant components are the supply 

fundamental, eccentricity harmonics, slot harmonics, saturation harmonics, and other components from 

unknown sources including environmental noise. These components could be considered as noise in the 

context of bearing failure detection [22]. 

Under these considerations and in order to track the dominant component introduced by the bearing 

failure in the homopolar current, it is proposed to investigate an emerging signal decomposition technique 

known as the EMD. 



2.3. The EMD briefly 

 

The EMD method has recently focused considerable attention and been widely indexed to rotating 

machinery fault detection [23-25]. The EMD technique is an adaptive time-frequency data analysis 

method for multi-component, nonlinear and non-stationary signals. It decomposes the signal into a 

number of IMFs, each of which is a mono-component function. The multi-components signal (the current 

i in our case) is then decomposed into M intrinsic modes and a residue RM [25-27]. 
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The procedure for extracting the IMFs from a signal is illustrated in Fig. 1. 
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Fig. 1. Flow chart of the EMD process for signal decomposition. 



In addition, the implementation of EMD is a data-driven process, not requiring any pre-knowledge of 

the signal or the machine [28]. This particular advantage in wind turbines context drive the EMD to be a 

promising tool for delivering improved condition monitoring [29]. The EMD method has however several 

drawbacks. Choice of a relevant stopping criterion and mode-mixing problem are the most important 

topics that need to be addressed in order to improve the EMD algorithm [30]. In particular, mode-mixing 

is the major drawback. Indeed, a detail related to one scale can appear in two different intrinsic modes. 

This makes an individual IMF devoid of physical meanings. 

To illustrate the EMD concept let us assume the synthesized signal x(t) 
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x(t) decomposition leads to IMFs and residue illustrated by Fig. 2. It clearly shows that equation (4) 

two components (
1 1

sina t  and 
2 2

sina t ) are present in the 1
st
 and 2

nd
 IMFs. Unfortunately, real signals 

are always corrupted by noises. Let us now consider the x(t) signal corrupted by a white Gaussian noise 

(AWGN) 
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The corresponding IMFs and residue are given by Fig. 3. It should be firstly noted Component 1 

occurrence into at least two consecutive IMFs (4
th

 and 5
th

). 
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Fig. 2. EMD synthetic signal. 
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Fig. 3. EMD for an AWGN corrupted synthetic signal. 

 

This is the above-mentioned phenomenon known as mode-mixing or intermittency. While Component 2 

IMF is shifted from the 2
nd

 to the 7
th

 rank. Moreover, due to the added noise, high frequency oscillations 

are introduced at the 1
st
, 2

nd
, and 3

rd
 IMFs. 

To overcome the mode-mixing problem, the Ensemble EMD (EEMD) was introduced [31-32]. 

 

2.4. The EEMD versus the EMD 

 

The EEMD is a noise-assisted data analysis method. It defines true IMFs as the mean of an ensemble of 

trials. Each trial consists of the decomposition results of the signal adding a finite amplitude white noise. 

In this context, it is demonstrated that noise could help data analysis in the EMD method and therefore 

automatically mitigates mode-mixing [33]. The EEMD procedure for extracting the IMFs from a signal is 

illustrated in Fig. 4. 

The EEMD reliability depends on the choice of the ensemble number N and the noise amplitude a. 

Those two parameters are linked by [33] 
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where en is the standard deviation error and is defined as the discrepancy between the input signal and the 

corresponding imf. 
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Fig. 4. Flow chart of the EEMD process for signal decomposition. 

 

Let us apply the EEMD to the signals respectively defined by (4) and (5). Then results are depicted in 

Figs. 5 and 6. In this case, it is clearly shown that the noise does not affect the time-scale decomposition. 

Moreover, it should be mentioned the obvious mode-mixing removal. 
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Fig. 5. EEMD synthetic signal. 
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Fig. 6. EEMD for an AWGN corrupted synthetic signal. 

 

2.5. What is specifically proposed? 

 

For failure detection several fault detectors based on amplitude demodulation have been proposed in 

the available literature. However, most of them assume that a training database is available. This can be 

very difficult to obtain for WECS. Indeed, it has been mentioned in a number of previously published 

paper, that one of the main difficulties in real word testing of developed condition monitoring technique, 

is the lack of collaboration needed with wind turbine operators and manufacturers, due to data 

confidentiality, particularly when failures are present [3]. 

In this paper, the authors propose a low complexity failure detector which does not require any training 

sequence. Indeed, the proposed detector is based on the dominant imf variance. 

 

3. Experimental evaluation of the EEMD-based failure detection approach 

 

3.1. Test facility description 

 

A conventional 0.75-kW induction machine drive test bed is used in order to test the proposed EEMD-

based fault detection approach (Fig. 7). The test bed mechanical part is composed by a synchronous and 

an induction machines. The induction machine is fed by the synchronous generator. 

The induction machine (0.75-kW, 220/380 V, 1.95/3.4 A, 2780 rpm, 50 Hz, 2 poles, Y-connected) has 

two 6204.2ZR type bearings (single row and deep groove ball bearings) with the following parameters: 

outside diameter is 47 mm, inside diameter is 20 mm, and pitch diameter D is 31.85 mm. A bearing has 8 

balls with an approximate diameter d of 12 mm and a contact angle  of 0°. 

Bearing faults are obtained by simply drilling holes in different parts (Fig. 8). 
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Fig. 7. Experimental setup. 
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Fig. 8. Artificially deteriorated bearings: (a) outer race deterioration, 

(b) inner race deterioration, (c) cage deterioration, (d) ball deterioration. 



3.2. Experimental results 

 

Figures 9 and 10 show the three-phase and the homopolar currents, for healthy and faulty bearings 

(failure c), respectively. 

After adjusting the EEMD parameters respectively the noise amplitude a and the ensemble number N 

according to [33]; the decomposition is applied to the homopolar current computed through (2), for 

several loads during the induction machine operation with healthy and faulty bearing. 

 

 

 

Fig. 9. The healthy case currents (the homopolar current is multiplied by 20). 

 

 

 

Fig. 10. The faulty case (failure c) currents (the homopolar current is multiplied by 20). 



For illustration, Fig. 11 shows EEMD sequential extraction-based of homopolar current local 

oscillations. Those local oscillations are represented by the first 5 IMFs and the residue when the 

induction machine is loaded by 40% of the nominal load. 

 

 

 

(a) Healthy bearings. 

 

 

 

(b) Faulty bearings (failure c). 

 

Fig. 11. Homopolar current EEMD decomposition. 



It seems therefore that in presence of a bearing failure the 4
th

 and the 5
th

 IMFs are more energized. 

Since two different IMFs are influenced by the bearing fault presence, it seems wise to investigate each 

IMF separately. 

 

3.3. 4
th

 IMF investigation 

 

Figure 12 clearly illustrates strong oscillations of the 4
th

 IMF. In order to quantify those oscillations, 

the statistical variance 
2
 of this IMF is computed for all the failures for several loads using the following 

equation 
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where imf4 is the mean of imf4(n). 

The obtained results are summarized by Table 1 and Fig. 13. It should be first mentioned that the 

variance is not strictly equal to zero for healthy bearings. This could be simply explained by the induction 

machine natural unbalances in one hand and in another hand by the fact that stator current could contain 

unknown noises. However when a bearing failure occurs, this criteria is multiplied by about 5. These 

results clearly demonstrate that the 4
th

 IMF can be used an effective indicator for bearing health 

monitoring. The exception is failure (a), which needs further investigations in regard to artificially created 

failures. Table 2 confirms the achieved tendencies. 

 

 
 

Fig. 12. Homopolar current 4
th

 IMF for healthy and faulty bearings. 



Table 1. Homopolar current 4
th

 IMF variance. 

 

 
2
 

Load Healthy bearing Failure (a) Failure (b) Failure (c) Failure (d) 

00.00% 2.20E-05 1.30E-05 7.02E-05 7.04E-05 7.48E-05 

26.66% 1.58E-05 1.46E-05 7.53E-05 7.55E-05 7.22E-05 

40.00% 1.77E-05 1.59E-05 9.05E-05 8.83E-05 8.82E-05 

53.33% 2.45E-05 2.21E-05 1.07E-04 1.10E-04 1.14E-04 

 

 

 

Fig. 13. Homopolar current 4
th

 IMF variance for healthy and faulty bearings. 

 

Table 2. Homopolar current 4
th

 IMF variance error. 
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Load Failure (a) Failure (b) Failure (c) Failure (d) 

00.00% 41% 218% 219% 239% 

26.66% 8% 375% 377% 356% 

40.00% 10% 413% 400% 400% 

53.33% 10% 337% 351% 366% 



3.4. 5
th

 IMF investigation 

 

Figures 14 and 15 show that the 5
th

 IMF is evolving at the stator current frequency and is more 

energized at the fault occurrence. This is clearly illustrated by Fig. 16. These impacts could be explained 

by the fact that a bearing failure will cause a mechanical vibration, essential equivalent to a dynamic 

eccentricity [34]. This will lead to an unbalanced magnetic pull that gives rise to unbalanced three-phase 

currents. 

 

 

 

Fig. 14. Homopolar current and its 5
th

 IMF for healthy bearings. 

 

 

 

Fig. 15. Homopolar current and its 5
th

 IMF for faulty bearings. 
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Fig. 16. Homopolar current 5
th

 IMFs for healthy and faulty bearings. 

 

3.5. Discussion 

 

At this stage and according to the achieved results for the 4
th

 and 5
th

 IMFs, it seems that the 4
th

 IMF, as 

a high-frequency component, is a quite sufficient and efficient fault indicator that could be used with quite 

confidence. Indeed, the 5
th

 IMF that is also impacted by bearing failures could however lead to misleading 

results in a fault diagnosis procedure as an eccentricity failure could be erroneously diagnosed as a bearing 

one. Therefore for failure diagnosis purposes further investigations must be carried-out. 

 

4. Conclusion 

 

This paper dealt with induction machine bearing failures detection using the homopolar current. This 

component is first decomposed into intrinsic mode functions through the EEMD which is the EMD free 

mixed mode version. It was then found that the 4
th

 and 5
th

 IMFs are the most energized modes when a 

bearing failure occurs. The 4
th

 IMF mode was then analyzed using a statistical criterion on experimental 

data. The achieved results clearly demonstrate that the 4
th

 IMF can be used an effective indicator for 

bearing health monitoring. 

The obtained results seem very promising for wind turbines monitoring using the generator current. 

Indeed, the proposed EEMD-based and low complexity failure detector does not require any training 

database. However further investigations must be done towards the detection of other type of faults. 
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