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ENVELOPING OPERADS

AND

BICOLOURED NONCROSSING CONFIGURATIONS

FRÉDÉRIC CHAPOTON AND SAMUELE GIRAUDO

Abstract. An operad structure on certain bicoloured noncrossing configurations in regular
polygons is studied. Motivated by this study, a general functorial construction of enveloping
operad, with input a coloured operad and output an operad, is presented. The operad of
noncrossing configurations is shown to be the enveloping operad of a coloured operad of bubbles.
Several suboperads are also investigated, and described by generators and relations.
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Introduction

This article is concerned with some operads in a context of algebraic combinatorics. The
theory of operads started as a device to organize the complicated structures appearing in algebraic
topology, and in particular the many operations arising on loop spaces and their homology [BV73].
Since then, it has been more and more clear that operads can be used with profit in various
other settings, see [Kap98, LV12] and the references therein. One striking example is the study
of the moduli spaces of complex curves, where the compactification naturally involves gluing
operations [GK95].

In algebraic combinatorics, there is on the one hand a long tradition of using associative
algebras, words and languages to describe combinatorial objects and to decompose them into
more elementary pieces. On the other hand, the theory of operads is closely related to various
kinds of trees, and provides a way to create new objects by gluing smaller ones [Cha08]. One
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2 FRÉDÉRIC CHAPOTON AND SAMUELE GIRAUDO

can therefore hope that algebraic combinatorics can benefit from a larger use of the theory of
operads, and maybe there can be also fruitful interaction in the other way.

In this article, these ideas will get illustrated by some examples of operads with a combinatorial
flavour, and by a general operadic construction inspired by these examples.

Let us describe our motivation for this work. In a previous article [Cha07], the first named
author has considered an operad structure on the objects called noncrossing trees and noncrossing
plants. These objects can be depicted as simple graphs inside regular polygons, and are some
kind of noncrossing configurations that are well-known combinatorial objects [FN99,FS09]. The
composition of these operads has a very simple graphical description and it is tempting and easy
to generalize this composition as much as possible, by removing some constraints on the objects.
This leads to a very big operad of noncrossing configurations. This research initially started as a
study of this operad, with possible aim the description of its suboperads.

This study has led us to the following results. First, we introduce a general functorial con-
struction from coloured operads to operads, which is called the enveloping operad. This can be
compared to the amalgamated product of groups, in the sense that it takes a compound object
to build a unified object in the simplest possible way, by imposing as few relations as possible.
The main interest of this construction relies on the fact that a lot of properties of an enveloping
operad (as e.g., its Hilbert series and a presentation by generators and relations) can be obtained
from its underlying coloured operad.

Next, we consider the operad BNC of bicoloured noncrossing configurations, defined by a simple
graphical composition, and show that it admits a description as the enveloping operad of a very
simple coloured operad on two colours called Bubble. We also obtain a presentation by generators
and relations of the coloured operad Bubble.

Then this understanding of the operad BNC is used to describe in details some of its suboperads,
namely those generated by two chosen generators among the binary generators of BNC. This
already gives an interesting family of operads, where one can recognize some known ones: the
operad of noncrossing trees [Cha07], the operad of noncrossing plants [Cha07], the dipterous
operad [LR03, Zin12], and the 2-associative operad [LR06, Zin12]. Our main results here are a
presentation by generators and relations for all these suboperads but one, and also the description
of all the generating series. It should be noted that the presentations are obtained in a case-by-
case fashion, using similar rewriting techniques.

This article is organized as follows. In Section 1, the general construction of enveloping operads
is given and its properties described. Next, in Section 2, we introduce the operad BNC and prove
that this operad is isomorphic to an enveloping operad. Finally, in Section 3, several suboperads
of BNC are considered, in a more or less detailed way.

Acknowledgments. This research has been done using the open-source software Sage [S+13]
and the algebraic combinatorics code developed by the Sage-combinat community [SCc08]. The
first named author has been supported by the ANR program CARMA (ANR-12-BS01-0017-02).

1. Enveloping operads of coloured operads

The aim of this Section is threefold. We begin by recalling some basic notions about coloured
operads and free coloured operads. Then, we introduce the main object of this paper: the
construction which associates an operad with a coloured one, namely its enveloping operad. We
finally justify the benefits of seeing an operad P as an enveloping operad of a coloured one C by
reviewing some properties of P that can be deduced from the ones of C.
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1.1. Free coloured operads. Let k be a positive integer. We shall consider in this work non-
symmetric k-coloured operads in the category of sets; notice that through a slight translation,
all next notions and results remain valid in the category of vector spaces. Coloured operads are
operads where a composition x ◦i y is defined between two elements x and y of C if and only if
the output colour out(y) of y is the same as the ith input colour ini(x) of x; the set of allowed
colours being [k] := {1, . . . , k}. In the sequel, we only consider k-coloured operads C such that
C(1) = {1c : c ∈ [k]} where 1c is a unit with c as input and output colour, and such that there
are finitely many elements of arity n for any n > 1. Since (noncoloured) operads are 1-coloured
operads, the following notions and notations also work for operads.

1.1.1. Coloured syntax trees. A k-coloured collection is a graded set C = ⊎n>2C(n) together with
two maps out, ini : C → [k] which respectively associate with an element x of C(n) the colour
of its output and the colour of its ith input, where i lies between 1 and the arity |x| := n of x.

For any k-coloured collection C, we denote by Free(C) the set of k-coloured syntax trees on
C, that are planar rooted trees such that

(1) internal nodes of arity ℓ are labeled by elements of C(ℓ);
(2) for any internal nodes r and s such that s is the ith child of r, we have ini(x) = out(y)

where x (resp. y) is the label of r (resp. s).

Let T be a coloured syntax tree on C. The arity |T | of T is its number of leaves and the degree
deg(T ) of T is its number of internal nodes. The leaves of T are numbered from left to right. By
a slight abuse of notation, for any internal node r of T , out(r) (resp. ini(r)) denotes the colour
out(x) (resp. ini(x)) where x is the label of r. Continuing the same abuse, out(T ) is the output
colour of the root of T and ini(T ) is the colour of the input of the internal node on which the
ith leaf of T is attached. A corolla labeled by x ∈ C(ℓ) is the coloured syntax tree c(x) on C
consisting in one internal node labeled by x with ℓ leaves as children. Figure 1 shows an example
of a 2-coloured syntax tree.
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Figure 1. A 2-coloured syntax tree on the 2-coloured collectionC := C(2)⊎C(3)
defined by C(2) := {a, b}, C(3) := {c}, out(a) := 1, out(b) := 2, out(c) := 2,
in1(a) := 1, in2(a) := 2, in1(b) := 2, in2(b) := 1, in1(c) := 2, in2(c) := 2,
in3(c) := 1. Its arity is 9, its degree is 7, its output colour is 1 and its second
input colour is 2.

We say that a coloured syntax tree S is a subtree of T if it is possible to fit S at a certain place
of T , by possibly superimposing leaves of S and internal nodes of T . Figure 2 shows a coloured
syntax tree an one of its subtrees.

In what follows, specifically to deal with presentations of coloured operads, with shall make
use of rewrite rules on coloured syntax trees. A rewrite rule is a binary relation 7→ on coloured
syntax trees where S 7→ T only if the trees S and T have the same arity. Let S′ and T ′ be two
coloured syntax trees. We say that S′ can be rewritten by 7→ into T ′ if there exist two coloured
syntax trees S and T satisfying S 7→ T and S′ has a subtree S such that, by replacing S by T in
S′, we obtain T ′. By a slight abuse of notation, we denote by S′ 7→ T ′ this property. We shall
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Figure 2. A coloured syntax tree T on the coloured collection defined in Figure
1 and S, one of its subtrees.

use the standard terminology (confluent, terminating, normal form, etc.) about rewrite rules (see
for instance [BN98]).

1.1.2. Free coloured operads. The set Free(C), together with the units {1c : c ∈ [k]}, is endowed
with a k-coloured operad structure defined as follows. For any coloured syntax trees S and T
on C, the composition S ◦i T , defined when the output colour of T is the same as the ith input
of S, is the coloured syntax tree obtained by grafting the root of T on the ith leaf of S. Figure
3 shows an example of such a composition. This forms the free coloured operad generated by C,
denoted by Free(C).
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Figure 3. An example of a composition in the free coloured operad generated
by the coloured collection defined in Figure 1.

1.2. The construction. Let us now introduce the construction associating a (noncoloured) op-
erad with a coloured one. We begin by giving the formal definition of what enveloping operads of
coloured operads are, and then, give a combinatorial interpretation of the construction in terms
of anticoloured syntax trees.

1.2.1. Enveloping operads. Let C be a k-coloured operad. We denote by C+ the k-coloured collec-
tion C \ C(1) and by C̄ the 1-coloured collection consisting in the elements of C+ with 1 as output
and input colours. The enveloping operad Hull(C) of C is the smallest (noncoloured) operad
containing C+. In other terms,

(1.2.1) Hull(C) := Free
(

C̄
)

/≡,

where ≡ is the smallest operadic congruence of Free
(

C̄
)

satisfying

(1.2.2) c(x) ◦i c(y) ≡ c(x ◦i y),

for all x, y ∈ C̄ such that x ◦i y is well-defined in C.
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1.2.2. Reductions. Let T be a 1-coloured syntax tree of Free
(

C̄
)

and e be an edge of T connecting
two internal nodes r and s respectively labeled by x and y, such that s is the ith child of r and,
as elements of C, ini(x) = out(y). Then, the reduction of T with respect to e is the tree obtained
by replacing r and s by an internal node labeled by x ◦i y (see Figure 4). This is another element
of Free

(

C̄
)

.

x

y

i

. . . . . .

. . .

r

s −→
x ◦i y

. . . . . .. . .

Figure 4. The reduction of 1-coloured syntax trees.

1.2.3. Anticoloured syntax trees. For any k-coloured collection C, we denote by Anti(C) the set
of k-anticoloured syntax trees on C, that are planar rooted trees such that

(1) internal nodes of arity ℓ are labeled by elements of C(ℓ);
(2) for any internal nodes r and s such that s is the ith child of r, we have ini(x) 6= out(y)

where x (resp. y) is the label of r (resp. s).

The same terminology as the one introduced in Section 1.1.1 for coloured syntax trees remains
valid for anticoloured syntax trees.

1.2.4. The operad of anticoloured syntax trees. If C is a coloured operad, the set Anti(C+), to-
gether with the unit 1, is endowed with an operad structure for the composition defined as follows.
Let S and T be two anticoloured syntax trees on C+. If out(T ) 6= ini(S), S ◦i T is the anti-
coloured syntax tree obtained by grafting the root of T on the ith leaf of S. Otherwise, when
out(T ) = ini(S), S ◦i T is the anticoloured syntax tree obtained by grafting the root of T on
the ith leaf of S and then, by reducing the obtained tree with respect to the edge connecting the
nodes r and s, where r is the parent of the ith leaf of S and s is the root of T . (see Figure 5).
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x
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j

. . . . . .
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r

s

(c) S ◦i T if out(T ) 6= ini(S)

x ◦j y

. . . . . .. . .

(d) S ◦i T if out(T ) = ini(S)

Figure 5. The two cases for the composition of two anticoloured trees S and T .

Proposition 1.1. For any coloured operad C, the operads Hull(C) and Anti(C+) are isomorphic.

Proof. Let φ : Hull(C) → Anti(C+) be the map associating with any ≡-equivalence class of
1-coloured syntax trees on C̄, the only anticoloured syntax tree on C+ belonging to it. To prove
the statement, let us show that φ is a well-defined operad isomorphism.

For that, consider the rewrite rule 7→ on the 1-coloured syntax trees on C̄ by setting S 7→ T
if T can be obtained from S by a reduction. Operadic axioms ensure that 7→ is confluent, and
since any rewriting decreases the number of internal nodes, 7→ is terminating. The normal forms
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of 7→ are the trees that cannot be reduced, and thus, are anticoloured syntax trees on C+. Since
by definition of ≡, S 7→ T implies S ≡ T , the application φ is well-defined and is a bijection.

Finally, let [S]≡, [T ]≡ ∈ Hull(C), S := φ([S]≡), and T := φ([T ]≡). The only anticoloured
syntax tree in [S ◦i T ]≡ is obtained by grafting S and T together and performing, if possible, a
reduction with respect to the edge linking these. Since the obtained tree is also the anticoloured
syntax tree S ◦i T of Anti(C+), φ is an operad morphism. �

Proposition 1.1 implies that the elements of Hull(C) can be regarded as anticoloured trees,
endowed with their composition defined above. We shall maintain this point of view in the rest
of this paper by setting Hull(C) := Anti(C+).

1.2.5. Functoriality. Let C1 and C2 be two k-coloured operads. Recall that a map φ : C1 → C2

is a coloured operad morphism if it preserves the arities, commutes with compositions maps and,
for any x, y ∈ C1 and i ∈ [|x|], if the composition x ◦i y is defined in C1, then the composition
φ(x) ◦i φ(y) is defined in C2.

Given φ : C1 → C2 a coloured operad morphism, let the map Hull(φ) : Hull(C1) → Hull(C2)
be the unique operad morphism satisfying

(1.2.3) Hull(φ)(c(x)) := c(φ(x))

for any x ∈ C1.

Theorem 1.2. The construction Hull is a functor from the category of coloured operads to the
category of operads that preserves injections and surjections.

Proof. For any coloured operad C, Hull(C) is by definition an operad on anticoloured syntax trees
on C+. Moreover, by induction on the number of internal nodes of the anticoloured syntax trees,
it follows that for any coloured operad morphism φ, Hull(φ) is a well-defined operad morphism.

Since Hull is compatible with map composition and sends the identity coloured operad mor-
phism to the identity operad morphism, Hull is a functor. It is moreover plain that if φ is
an injective (resp. surjective) coloured operad morphism, then Hull(φ) is an injective (resp.
surjective) operad morphism. �

Theorem 1.2 is rich in consequences: Propositions 1.4, 1.5, 1.7, 1.6 of next Section directly
rely on it.

Notice that Hull is a surjective functor. Indeed, since an anticoloured syntax tree on a 1-
coloured collection is necessarily a corolla, for any operad P , Hull(P) contains only corollas
labeled on P+ and it is therefore isomorphic to P .

Notice also that Hull is not an injective functor. Let us exhibit two 2-coloured operads not
themselves isomorphic that produce by Hull two isomorphic operads. Let C1 be the 2-coloured
operad where C1(2) := {α2} with out(α2) := 1 and in1(α2) := in2(α2) := 2. and for all n > 3,
C1(n) := ∅. Due to the output and input colours of α2, there are not nontrivial compositions
in C1. On the other hand, let C2 be the 2-coloured operad where, for all n > 2, C2(n) := {βn}
with out(βn) := 1, in1(βn) := 1, and ini(βn) := 2 for all 2 6 i 6 n. Nontrivial compositions
of C2 are only defined for the first position by βn ◦1 βm := βn+m−1, for any n,m > 2. One
observes that Hull(C1) and Hull(C2) are both the free operad generated by one element of arity
2 with no nontrivial relations, and hence, are isomorphic. The isomorphism between Hull(C1)
and Hull(C2) can be described by a left-child right-sibling bijection [CLRS09] between binary
trees and planar rooted trees.
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1.3. Bubble decompositions of operads and consequences. Let P be an operad. We say
that C is a k-bubble decomposition of P if C is a k-coloured operad such that Hull(C) and P are
isomorphic. In this case, we say that the elements of C are bubbles. As we shall show, since a
bubble decomposition C of an operad P contains a lot of information about P , the study of P
can be confined to the study of C.

1.3.1. Hilbert series. The coloured Hilbert series of C are the commutative series Bc(z1, . . . , zk),
c ∈ [k], defined by

(1.3.1) Bc(z1, . . . , zk) :=
∑

x∈C+

out(x)=c

∏

16i6|x|

zini(x).

The coefficient of zα1

1 . . . zαk

k in Bc(z1, . . . , zk) counts the nontrivial elements of C having c as
input colour and αd inputs of colour d for all d ∈ [k].

As a side remark, note that one could also define as well non-commutative analogues of these
Hilbert series, where one would remember the order of the input colors.

When C is an operad (or equivalently, a 1-coloured operad), its Hilbert series is

(1.3.2) F(t) := t+ B1(t) =
∑

n>1

#C(n) tn.

Proposition 1.3. Let C be a k-coloured operad. Then, the Hilbert series F(t) of the enveloping
operad of C satisfies

(1.3.3) F(t) = t+ F1(t) + · · · + Fk(t),

where for all c ∈ [k], the series Fc(t) satisfy

Fc(t) = Bc(F(t) − F1(t), . . . ,F(t) − Fk(t)).

Proof. Since the elements of the enveloping operad of C are the anticoloured syntax trees on C+,
for all c ∈ [k], the series Fc(t) are the series counting the anticoloured syntax trees on C+ having
c as output colour. The Hilbert series of the enveloping operad of C is the sum of the Fc(t) plus
t in order to count the unit. �

Note that Proposition 1.3 implies that, if the coloured Hilbert series of C are algebraic, the
Hilbert series of Hull(C) also is. Nevertheless, as we shall see, rationality is not preserved.

1.3.2. Suboperads and quotients. A k-coloured operad C′ is a coloured suboperad of C if for all
n > 1, C′(n) is a subset of C(n) and the units of C′ are the same as those of C.

Proposition 1.4. Let C a coloured operad and C′ be one of its coloured suboperads (resp. quo-
tients). Then, the enveloping operad of C′ is a suboperad (resp. quotient) of the enveloping operad
of C.
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1.3.3. Generating sets. A set G of elements of C is a generating set of C if the smallest coloured
suboperad of C containing G is C itself and if moreover G is minimal with respect to inclusion
for this property. Notice that the generating set of C is unique, given by elements that cannot
be written as a non-trivial composition. Any element x of C can be (non necessarily uniquely)
written as x = y ◦i g where y ∈ C, i ∈ [|y|], and g ∈ G.

Proposition 1.5. Let C be a coloured operad generated by G. Then, the enveloping operad of C
is generated by

(1.3.4) Hull(G) := {c(g) : g ∈ G}.

1.3.4. Symmetries. A symmetry of C is either a coloured operad automorphism or a coloured
operad antiautomorphism. A coloured operad antiautomorphism is a bijective map preserving the
arities and, for any x, y ∈ C and i ∈ [|x|], if the composition x◦i y is defined, then the composition
φ(x) ◦|x|−i+1 φ(y) also is, and φ(x ◦i y) = φ(x) ◦|x|−i+1 φ(y). The symmetries of C form a group
for the composition, called the group of symmetries of C.

Proposition 1.6. Let C be a coloured operad and G its group of symmetries. Then, the group
of symmetries of the enveloping operad of C is Hull(G) where

(1.3.5) Hull(G) := {Hull(φ) : φ ∈ G}.

1.3.5. Presentations by generators and relations. A presentation by generators and relations of C
is a pair (G,↔) where G is a k-coloured collection and ↔ is the finest equivalence relation on
Free(G) such that C is isomorphic to Free(G)/≡, ≡ being the finest coloured operadic congruence
containing ↔.

Proposition 1.7. Let C be a coloured operad admitting the presentation (G,↔). Then, the
enveloping operad of C admits the presentation (Hull(G),↔′), where

(1.3.6) S′ ↔′ T ′ if and only if S ↔ T,

where S′ (resp. T ′) is the coloured syntax tree on Hull(G) obtained by replacing any node labeled
by x of S (resp. T ) by c(x).

2. The operad of bicoloured noncrossing configurations

In this Section, we shall define an operad over a new kind of noncrossing configurations. To
study it and apply the results of Section 1, we shall see it as an enveloping operad of a coloured
one.

2.1. Bicoloured noncrossing configurations. Let us start by introducing our new combina-
torial object, some of its properties, and its operadic structure.

2.1.1. Regular polygons. Let C be a regular polygon with n + 1 vertices. The vertices of C

are numbered in the clockwise direction from 1 to n + 1. An arc of C is a tuple (i, j) with
1 6 i < j 6 n + 1. We call diagonal any arc (i, j) different from (i, i + 1) and (1, n + 1), and
edge any arc of the form (i, i+ 1) or (i, n+ 1). The ith edge of C is the edge (i, i+ 1). The edge
(1, n+ 1) is the base of C (drawn at bottommost).



ENVELOPING OPERADS 9

2.1.2. Bicoloured noncrossing configurations. A bicoloured noncrossing configuration (abbrevi-
ated as BNC) of size n is a regular polygon C with n+ 1 vertices, together with two sets of arcs:
a set Cb of blue arcs (drawn as thick lines) and a set Cr of red arcs (drawn as dotted lines). If
(i, j) ∈ Cb (resp. (i, j) ∈ Cr), we say that (i, j) is blue (resp. red). Otherwise, when (i, j) /∈ Cb∪Cr,
we say that (i, j) is uncoloured. These two sets have to satisfy the three following properties:

(1) any arc is either blue, red, or uncoloured;
(2) no blue or red arc crosses another blue or red arc;
(3) all red arcs are diagonals.

We say that C is based if its base is blue and nonbased otherwise. Besides, we impose by definition
that there is only one BNC of size 1: the segment consisting in one blue arc. Figure 6 shows a
BNC.

1 9

2 8

3 7

4 6
5

Figure 6. A nonbased BNC of size 9. Its blue arcs are (1, 2), (2, 8), (4, 6), (7, 8),
and (9, 10), and its red arcs are (2, 6), (2, 10). The edges, different from the basis,
are numbered.

2.1.3. Borders. When the size of C is not smaller than 2, the border of C is the word b(C) of
length n such that, for any i ∈ [n], b(C)i := 1 if the ith edge of C is uncoloured and b(C)i := 2
otherwise. For instance, the border of the BNC of Figure 6 is 211111212.

2.1.4. Operad structure. From now, the arity |C| of a BNC C is its size. Let C and D be two
BNCs of respective arities n and m, and i ∈ [n]. The composition C ◦i D =: E is obtained by
gluing the base of D onto the ith edge of C, and then,

(1) if the base of D and the ith edge of C are both uncoloured, the arc (i, i+m) of E becomes
red;

(2) if the base of D and the ith edge of C are both blue, the arc (i, i+m) of E becomes blue;
(3) otherwise, the base of D and the ith edge of C have different colours; in this case, the arc

(i, i+m) of E is uncoloured.

For aesthetic reasons, the resulting shape is reshaped to form a regular polygon. Figure 7 shows
examples of composition of BNCs.

Proposition 2.1. The set of the BNCs, together with the composition map ◦i and the BNC of
arity 1 as unit form an operad, denoted by BNC.

2.2. The coloured operad of bubbles. We now define a coloured operad involving particular
BNCs and perform a complete study of it.

2.2.1. Bubbles. A bubble is a BNC of size no smaller than 2 with no diagonal (hence the name).
Figure 8 shows an example of a bubble.
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◦3 =

(a) Uncoloured edge over an uncoloured edge.

◦5 =

(b) Blue edge over a blue edge.

◦2 =

(c) Uncoloured edge over a blue edge.

◦2 =

(d) Blue edge over an uncoloured edge.

Figure 7. Four examples of composition in the operad BNC.

Figure 8. A based bubble of size 6. Its border is 111221.

2.2.2. Coloured operad structure. Let B be a bubble of arity n. Let us assign input an output
colours to B in the following way. The output colour out(B) of B is 1 if B is based and 2
otherwise, and the colour ini(B) of the ith input of B is the ith letter of the border of B.

Let us denote by 11 and 12 two virtual bubbles of arity 1 such that out(11) := in1(11) := 1
and out(12) := ini(12) := 2.

Proposition 2.2. The set of bubbles, together with the composition map ◦i of BNC and the units
11 and 12 form a 2-coloured operad, denoted by Bubble.

Proof. Since, as sets, Bubble ⊆ BNC we only have to prove that, when defined, the composition
B1 ◦i B2 of two bubbles B1 and B2 is a bubble. Since this composition is defined only if
out(B2) = ini(B1), there are two possibilities: either the base of B2 is blue and the ith edge of
B1 is uncoloured, or the base of B2 is uncoloured and the ith edge of B2 is blue. In both cases,
no diagonal is added, and hence, B1 ◦i B2 is a bubble. �

Notice that any bubble B is wholly encoded by the pair (out(B), (ini(B))i∈|B|). Therefore,
Bubble is a very simple operad: for any n, the set of elements of arity n is [2] × [2]n and the
composition, when defined, is a substitution in words. Figure 9 shows a composition in Bubble.

◦3 =

(a) A composition of two bubbles.

(1, 22211) ◦3 (2, 2112) = (1, 22211211)
(b) The output and input colours of the bubbles.

Figure 9. A composition in the 2-coloured operad Bubble.
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2.2.3. Coloured Hilbert series. Since Bubble contains by definition all the bubbles, the coloured
Hilbert series of Bubble satisfy

(2.2.1) B1(z1, z2) = B2(z1, z2) =
∑

n>2

(z1 + z2)n =
(z1 + z2)2

1 − z1 − z2
.

2.2.4. Generating set.

Proposition 2.3. The set

(2.2.2) GBubble := { , , , , , , , }

of bubbles of arity 2 is the generating set of Bubble.

Proof. Let us proceed by induction on the arity n of the bubble B we want to generate. If n = 2,
since the set of of bubbles of arity 2 is GBubble, B is generated by GBubble. If n > 3, let B

′ be the
bubble obtained from B by removing its last edge. Now, B′ is a bubble of arity n− 1, and, by
induction hypothesis, B′ is generated by GBubble. Since, for an appropriate bubble g of GBubble,
B = B

′ ◦n−1 g, B is generated by GBubble. �

2.2.5. Symmetries. The complementary cpl(B) of a bubble B is the bubble obtained by swapping
the colours of the edges of B. The returned ret(B) of B is the bubble obtained by applying on
B the reflection through the vertical line passing by its base. Figure 10 shows examples of these
symmetries.

cpl
−−→

(a) Complementary.

ret
−−→

(b) Returned.

Figure 10. The complementary and the returned of a bubble.

Proposition 2.4. The group of symmetries of Bubble is generated by cpl and ret and satisfies
the relations

(2.2.3) ret = ret−1, cpl = cpl−1, ret cpl = cpl ret .

Proof. Since, by Proposition 2.3, Bubble is generated by GBubble, any symmetry of Bubble is a
fortiori a bijection on GBubble. By computer exploration, let us consider the 8! bijections and
keep only the ones that are still well-defined as coloured operad morphisms or coloured operad
antimorphisms in arity three.

There are exactly two bijections that are operad morphisms up to arity three: the trivial one
and the bijection α sending any x ∈ GBubble to cpl(x). By induction on the arity, it follows that
there is a unique coloured operad morphism coinciding with α in arity two and it is cpl. Then,
since cpl is a bijection, cpl is an automorphism of Bubble.

There are exactly two bijections that are operad antimorphisms up to arity three: the bijection
β sending any x ∈ GBubble to ret(x) and the bijection γ sending any x ∈ GBubble to ret(cpl(x)).
Again by induction on the arity, it follows that there is a unique coloured operad antimorphism
coinciding with β (resp. γ) in arity two and it is ret (resp. ret cpl). Then, since ret and ret cpl
are bijections, ret and ret cpl are antiautomorphisms of Bubble.
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We have shown that the identity, cpl, ret and ret cpl are the only elements of the group of
symmetries of Bubble. Relations (2.2.3) between these are obvious. �

2.2.6. Presentation by generators and relations.

Theorem 2.5. The 2-coloured operad Bubble admits the presentation (GBubble,↔) where ↔ is
the equivalence relation satisfying

(2.2.4) c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(2.2.5) c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(2.2.6) c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ),

(2.2.7) c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ),

(2.2.8) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(2.2.9) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(2.2.10) c( ) ◦2 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦1 c( ),

(2.2.11) c( ) ◦2 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦1 c( ),

(2.2.12) c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(2.2.13) c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(2.2.14) c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ),

(2.2.15) c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ),

(2.2.16) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(2.2.17) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(2.2.18) c( ) ◦2 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦1 c( ),

(2.2.19) c( ) ◦2 c( ) ↔ c( ) ◦2 c( ) ↔ c( ) ◦1 c( ) ↔ c( ) ◦1 c( ).

Proof. To prove the presentation of the statement, we shall show that there exists an operad
isomorphism φ : Free(GBubble)/≡ → Bubble.

Let us set φ ([c(g)]≡) := g for any g of GBubble. We observe that for any relation c(x) ◦i c(y) ↔
c(z)◦j c(t) of the statement, we have x◦iy = z◦j t. It then follows that φ can be uniquely extended
into a coloured operad morphism. Moreover, since the image of φ contains all the generators of
Bubble, φ is surjective.

Let us now prove that φ is a bijection. For that, let us orient the relation ↔ by means of the
rewrite rule 7→ on the coloured syntax trees on GBubble satisfying S 7→ T if S ↔ T and T is one
of the following sixteen target trees

c( ) ◦1 c( ), c( ) ◦1 c( ), c( ) ◦1 c( ), c( ) ◦1 c( ),

c( ) ◦1 c( ), c( ) ◦1 c( ), c( ) ◦1 c( ), c( ) ◦1 c( ),

c( ) ◦1 c( ), c( ) ◦1 c( ), c( ) ◦1 c( ), c( ) ◦1 c( ),

c( ) ◦1 c( ), c( ) ◦1 c( ), c( ) ◦1 c( ), c( ) ◦1 c( ).

(2.2.20)
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The target trees of 7→ are the only left comb trees appearing in each ↔-equivalence class of the
statement such that the colour of the first input of the root is the same as the colour of the first
input of its child.

Let us prove that 7→ is terminating. Let ψ be the map associating the pair (a(T ), b(T )) with
a coloured syntax tree T , where a(T ) is the sum, for each internal node x of T , of the number of
internal nodes in the tree rooted at the right child of x, and b(t) is the number of internal nodes
x of T having an internal node y as left child such that in1(x) 6= in1(y). We observe that, for
any trees T0 and T1 such that T0 7→ T1, ψ(T1) is lexicographically smaller that ψ(T0). Hence, 7→
is terminating.

The normal forms of 7→ are the coloured syntax trees on GBubble that have no subtrees S where
the S are the trees appearing as a left members of 7→. These are left comb trees T such that for
all internal nodes x and y of T , in1(x) = in1(y). Pictorially, T is of the form

T =

xn−1

x1

c

d1

d1 d2

dn ,(2.2.21)

where c ∈ [2], di ∈ [2] for all i ∈ [n], and xj ∈ GBubble for all j ∈ [n − 1]. Since T is a
coloured syntax tree, given c and the di, there is exactly one possibility for all the xj . Therefore,
there are fc(n) := 2n normal forms of 7→ of arity n with c as output colour. This imply that
Free(GBubble)/≡ contains at most fc(n) elements of arity n and c as output colour. Then, since
fc(n) is also the number of elements of Bubble with arity n and c as output colour (see Section
2.2.3), φ is a bijection. �

2.3. Properties of the operad of bicoloured noncrossing configurations. Let us come
back on the study of the operad BNC. We show here that BNC is the enveloping operad of Bubble

and then, by using the results of Section 2.2 together with the ones of Section 1.3, give some of
its properties.

2.3.1. Bubble decomposition. Let C be a BNC. An area of C is a maximal component of C without
coloured diagonals and bounded by coloured arcs or by uncoloured edges. Any area a of C defines
a bubble B consisting in the edges of a. The base of B is the only edge of a that splits C in two
parts where one contains the base of C and the other contains a. Blue edges of a remain blue
edges in B and red edges of a become uncoloured edges in B.

The dual tree of C is the planar rooted tree labeled by bubbles defined as follows. If C is of
size 1, its dual tree is the leaf. Otherwise, put an internal node in each area of C and connect any
pair of nodes that are in adjacent areas. Put also leaves outside C, one for each edge, except the
base, and connect these with the internal nodes of their adjacent areas. This forms a tree rooted
at the node of the area containing the base of C. Finally, label each internal node of the tree by
the bubble associated with the area containing it. Figure 11 shows an example of a BNC and its
dual tree.

Lemma 2.6. Let C be a BNC. The dual tree of C is an anticoloured syntax tree on Bubble
+.

Proof. This follows from the definition of dual trees and the fact that a blue (resp. uncoloured)
edge of a bubble B is, by definition, of colour 1 (resp. 2) if it is the base of B and of colour 2
(resp. 1) otherwise. �
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(a) C (b) The dual tree of C.

Figure 11. A bicoloured noncrossing configuration and its dual tree.

Lemma 2.7. The map between the BNCs of arity n and the anticoloured syntax trees on Bubble
+

or arity n sending a BNC to its dual tree is a bijection.

Proof. By Lemma 2.6, this map is well-defined. Let T be an anticoloured syntax tree on Bubble
+.

By seeing T as a 1-coloured syntax tree, one can perform reductions in T up to obtain a corolla
labeled by a BNC x. The fact that BNC is an operad ensures that the reductions can be made
in any order. Thanks to the definition of the composition of BNC together with the definition of
dual trees, the application sending T to x is the inverse of the map of the statement. �

Theorem 2.8. The 2-coloured operad Bubble is a 2-bubble decomposition of the operad BNC.

Proof. This is a consequence of Lemmas 2.6 and 2.7: the elements of BNC are anticoloured
syntax trees on Bubble

+ and the composition of BNC translates faithfully into the composition
of Hull(Bubble). �

2.3.2. Enumeration of the bicoloured noncrossing configurations. By using the fact that, by The-
orem 2.8, Bubble is a 2-bubble decomposition of BNC, together with Proposition 1.3 and the
coloured Hilbert series (2.2.1) of Bubble, we obtain the following algebraic equation for the gen-
erating series of the BNCs.

Proposition 2.9. The Hilbert series F of BNC satisfies

(2.3.1) − t− t2 + (1 − 4t) F −3 F2 = 0.

First numbers of BNCs by size are

(2.3.2) 1, 8, 80, 992, 13760, 204416, 3180800, 51176960, 844467200.
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One can refine the above enumeration of BNCs in the following way. Let us add two variables
y1 and y2 in the system of the statement of Proposition 1.3 for BNC to obtain

F = t+ F1 + F2

F1 = y1
(2 F − F1 − F2)2

1 − 2 F + F1 + F2

F2 = y2
(2 F − F1 − F2)2

1 − 2 F + F1 + F2
.

(2.3.3)

By solving this system, we find that the generating series F(t, y1, y2) satisfies

(2.3.4) − t+ t2 − y1t
2 − y2t

2 + (1 − 2y1t− 2y2t) F +(−1 − y1 − y2) F2 = 0.

The parameter y1 (resp. y2) counts the internal nodes of anticoloured trees on Bubble
+ that are

labeled by based (resp. nonbased) bubbles. By a direct translation on the BNCs themselves, y1

counts the blue diagonals (where a blue base counts as a blue diagonal) and y2 counts the red
diagonals (where an uncoloured base counts as a red diagonal). We obtain

(2.3.5) F(t, y1, y2) = t+ 4(y1 + y2)t2 + 8(y1 + 2y2
1 + 4y1y2 + 2y2

2 + y2)t3

+ 16(y1 + 5y2
1 + 5y3

1 + 15y2
1y2 + 10y1y2 + 15y1y

2
2 + 5y3

2 + 5y2
2 + y2)t4 + · · · .

Since, by definition of the dual trees, there is a correspondence between the areas of a BNC and
the internal nodes of its dual tree, the specialization F(t, y) := F(t, y, y) satisfying

(2.3.6) − t+ (1 − 2y)t2 + (1 − 4yt) F +(−1 − 2y) F2 = 0

counts the BNCs by their areas. We have

(2.3.7)

F(t, y) = t+ 8yt2 + 16(y + 4y2)t3 + 32(y + 10y2 + 20y3)t4 + 64(y + 18y2 + 84y3 + 112y4)t5

+ 128(y + 28y2 + 224y3 + 672y4 + 672y5)t6

+ 256(y + 40y2 + 480y3 + 2400y4 + 5280y5 + 4224y6)t7 + · · · .

2.3.3. Others consequences. Since Bubble is, by Theorem 2.8, a 2-bubble decomposition of BNC,
we can use the results of Section 1.3 to obtain the generating set, the group of symmetries, and
the presentation by generators and relations of BNC.

Thus, by Propositions 1.5 and 2.3, the generating set of BNC is the set of the eight BNCs of
arity 2.

By Propositions 1.6 and 2.4, the group of symmetries of BNC is generated by the maps cpl′ :=
Hull(cpl) and ret′ := Hull(ret). For any BNC C, cpl′(C) is the BNC obtained by swapping
the colours of the red and blue diagonals of C, and by swapping the colours of the edges of C.
Moreover, for any BNC C, ret′(C) is the BNC obtained by applying on C the reflection through
the vertical line passing by its base.

Finally, by Proposition 1.7 and Theorem 2.5, BNC admits the presentation by generators and
relations of the statement of Theorem 2.5.

3. Suboperads of the operad of bicoloured noncrossing configurations

We now study some of the suboperads of BNC generated by various sets of BNCs. We shall
mainly focus on the suboperads generated by sets of two BNCs of arity 2.
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3.1. Overview of the obtained suboperads. In what follows, we denote by 〈G〉 the suboperad
of BNC generated by a set G of BNCs and, when G is a set of bubbles, by 〈〈G〉〉 the coloured
suboperad of Bubble generated by G.

3.1.1. Orbits of suboperads. There are 28 = 256 suboperads of BNC generated by elements of arity
2. The symmetries provided by the group of symmetries of BNC allow to gather some of these.
Indeed, if G1 and G2 are two sets of BNCs and φ is a map of the group of symmetries of BNC

such that φ(G1) = G2, the suboperads 〈G1〉 and 〈G2〉 would be isomorphic or antiisomorphic.
We say in this case that these two operads are equivalent. There are in this way only 88 orbits of
suboperads that are pairwise nonequivalent.

3.1.2. Suboperads on one generator. There are three orbits of suboperads of BNC generated by
one generator of arity 2. The first contains 〈 〉. By induction on the arity, one can show that
this operad contains all the triangulations and that it is free. The second one contains 〈 〉. By
using similar arguments, one can show that this operad is also free and isomorphic to the latter.
The third orbit contains 〈 〉. This operad contains exactly one element of any arity, and hence,
is the associative operad.

3.1.3. Operads of noncrossing trees and plants. The first named author defined in [Cha07] an
operad involving noncrossing trees and an operad involving noncrossing plants. These operads are,
directly from the definition, respectively the suboperads 〈 , 〉 and 〈 , , 〉 of BNC. The
operad of noncrossing trees governs L-algebras, a sort of algebras introduced by Leroux [Ler11].

3.1.4. Suboperads on two generators. The
(8

2

)

= 28 suboperads of BNC generated by two BNCs
of arity 2 form eleven orbits. Table 1 summarizes some information about these. Some of these

Operad Dimensions Presentation

〈 , 〉 1, 2, 8, 40, 224, 1344, 8448, 54912 free

〈 , 〉 1, 2, 8, 40, 216, 1246, 7516, 46838 quartic or more

〈 , 〉
1, 2, 8, 38, 200, 1124, 6608, 40142 cubic〈 , 〉

〈 , 〉
〈 , 〉 1, 2, 7, 31, 154, 820, 4575, 26398 quadratic

〈 , 〉 1, 2, 7, 30, 143, 728, 3876, 21318 quadratic

〈 , 〉

1, 2, 6, 22, 90, 394, 1806, 8558 quadratic
〈 , 〉
〈 , 〉
〈 , 〉

Table 1. The eleven orbits of suboperads of BNC generated by two generators
of arity 2, their dimensions and the degrees of nontrivial relations between their
generators.

operads are well-known operads: the free operad 〈 , 〉 on two generators of arity 2, the operad
of noncrossing trees [Cha07, Ler11] 〈 , 〉, the dipterous operad [LR03, Zin12] 〈 , 〉, and
the 2-associative operad [LR06, Zin12] 〈 , 〉. All the Hilbert series of the eleven operads are
algebraic, with the genus of the associated algebraic curve being 0. For some of these series,
the coefficients form known sequences of [Slo]. The first one of Table 1 is Sequence A052701,

http://oeis.org/A052701
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the fourth is Sequence A007863, the fifth is Sequence A006013, and the sixth is Sequence
A006318.

3.1.5. Suboperads on more than two generators. Some suboperads of BNC generated by more
than two generators are very complicated to study. For instance, the operad 〈 , , 〉 has two
equivalence classes of nontrivial relations in degree 2, three in degree 3, ten in degree 4 and seems
to have no nontrivial relations in higher degree (this has been checked until degree 6). The operad
〈 , , , 〉 is also complicated since it has four equivalence classes of nontrivial relations in
degree 2, sixteen in degree 3 and seems to have no nontrivial relations in higher degree (this has
been checked until degree 6).

3.2. Suboperads generated by two elements of arity 2. For any of the eleven nonequivalent
suboperads of BNC generated by two elements of arity 2, we compute its dimensions and provide
a presentation by generators and relations by passing through a bubble decomposition of it.

3.2.1. Outline of the study. Let 〈G〉 be one of these operads. Since, by Theorem 2.8, Bubble is a
bubble decomposition of BNC and 〈G〉 is generated by bubbles, 〈〈G〉〉 is a bubble decomposition of
〈G〉. We shall compute the dimensions and establish the presentation by generators and relations
of 〈〈G〉〉 to obtain in return, by Propositions 1.3 and 1.7, the dimensions and the presentation by
generators and relations of 〈G〉.

To compute the dimensions of 〈〈G〉〉, we shall furnish a description of its elements and then
deduce from the description its coloured Hilbert series. In what follows, we will only detail this
for the first orbit. The computations for the other orbits are analogous. Table 2 shows the first
coefficients of the coloured Hilbert series of the eleven coloured suboperads. All of these series
are rational.

Coloured operad Based bubbles Nonbased bubbles

〈〈 , 〉〉 2, 2, 2, 2, 2, 2, 2 0, 0, 0, 0, 0, 0, 0

〈〈 , 〉〉 1, 2, 5, 10, 21, 42, 85 1, 2, 5, 10, 21, 42, 85

〈〈 , 〉〉
1, 2, 4, 8, 16, 32, 64 1, 2, 4, 8, 16, 32, 64〈〈 , 〉〉

〈〈 , 〉〉
〈〈 , 〉〉 2, 3, 5, 8, 13, 21, 34 0, 0, 0, 0, 0, 0, 0

〈〈 , 〉〉 2, 3, 4, 5, 6, 7, 8 0, 0, 0, 0, 0, 0, 0

〈〈 , 〉〉 2, 4, 8, 16, 32, 64, 128 0, 0, 0, 0, 0, 0, 0

〈〈 , 〉〉
1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1〈〈 , 〉〉

〈〈 , 〉〉

Table 2. The eleven orbits of 2-coloured suboperads of Bubble generated by
two generators of arity 2 and the number of their bubbles, based and nonbased.

To establish the presentation of 〈〈G〉〉, we shall use the same strategy as the one used for the
proof of the presentation of Bubble (see the proof of Theorem 2.5). Recall that this consists in
exhibiting an orientation 7→ of the presentation we want to prove such that 7→ is a terminating
rewrite rule on coloured syntax trees and its normal forms are in bijection with the elements of
〈〈G〉〉. We call these rewrite rules good orientations. In what follows, we will exhibit a good
orientation for any of the studied operads, except the first and the third ones.

http://oeis.org/A007863
http://oeis.org/A006013
http://oeis.org/A006318
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3.2.2. First orbit. This orbit consists in the operads 〈 , 〉, 〈 , 〉, 〈 , 〉, and 〈 , 〉.
We choose 〈 , 〉 as representative of the orbit.

Proposition 3.1. The set of bubbles of 〈〈 , 〉〉 is the set of based bubbles whose all edges of
the border except possibly the last are blue. Moreover, the coloured Hilbert series of 〈〈 , 〉〉
satisfy

(3.2.1) B1(z1, z2) =
z1z2 + z2

2

1 − z2
and B2(z1, z2) = 0.

Proof. Let us prove by induction on the arity that any bubble of 〈〈 , 〉〉 satisfies the statement
of the Proposition. The two bubbles and of arity 2 satisfy the statement. Let B be a
bubble of arity n > 3 satisfying the statement, i ∈ [n], and B

′ := B ◦i g where g ∈ { , }.
Then, since the composition B ◦i g is well-defined, we have i = n and the last edge of B is
uncoloured. Thus, B′ is obtained from B by replacing its last uncoloured edge by two blue edges
of by a blue edge followed by an uncoloured edge, whether the colour of the last edge of g. This
shows that any bubble of 〈〈 , 〉〉 satisfies the statement.

Conversely, let us prove by induction on the arity that any bubble satisfying the statement
of the Proposition belongs to 〈〈 , 〉〉. This is true for the bubbles and since they are
generators of 〈〈 , 〉〉. Let B be a bubble of arity n > 3 satisfying the statement and B

′ be
the bubble of arity n − 1 obtained by replacing the two last edges of B by an uncoloured edge.
If the last edge of B is blue, we have B = B

′ ◦n−1 and otherwise, B = B
′ ◦n−1 . Since B

′

satisfies the statement, it is by induction hypothesis, an element of 〈〈 , 〉〉. Thus, B also is.

Finally, the expressions for the coloured Hilbert series of 〈〈 , 〉〉 follow directly from the
above description of its elements. �

Proposition 3.2. The Hilbert series F of 〈 , 〉 satisfies

(3.2.2) t− F +2 F2 = 0.

Theorem 3.3. The operad 〈 , 〉 is the free operad generated by two generators of arity 2.

Proof. The elements of arity n of the free operad P generated by two generators of arity 2 are
binary trees with n leaves and such that internal nodes can be labeled in two different ways.
Hence, the Hilbert series F of P satisfies (3.2.2) and by Proposition 3.2, 〈 , 〉 and P have the
same Hilbert series. Thus, since there is no nontrivial relation relation between the generators of
〈 , 〉 in degree 2, there is no nontrivial relation in 〈 , 〉 of higher degree. Then, 〈 , 〉
and P are isomorphic. �

3.2.3. Second orbit. This orbit consists in the operad 〈 , 〉.

Proposition 3.4. The set of based (resp. nonbased) bubbles of 〈〈 , 〉〉 of arity n is the set
of based (resp. nonbased) bubbles having at least two consecutive edges of the border of a same
colour and the number of blue (resp. uncoloured) edges of the border is congruent to 1−n modulo
3. Moreover, the coloured Hilbert series of 〈〈 , 〉〉 satisfy

(3.2.3) B1(z1, z2) =
z1 + z2

2

1 − 3z1z2 − z3
1 − z3

2
−

z2

1 − z1z2

and

(3.2.4) B2(z1, z2) =
z2 + z2

1

1 − 3z1z2 − z3
1 − z3

2
−

z1

1 − z1z2
.
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Proposition 3.5. The Hilbert series F of 〈 , 〉 satisfies

(3.2.5) 4t− 2t2 − t3 + t4 + (−4 + 4t− t2 + 2t3) F +(6 + t) F2 +(1 − 2t) F3 − F4 = 0.

Proposition 3.6. The operad 〈 , 〉 does not admit nontrivial relations between its genera-
tors in degree two, three, five and six. It admits the following non trivial relations between its
generators in degree four:

(3.2.6) (( ◦2 ) ◦3 ) ◦3 = (( ◦1 ) ◦1 ) ◦2 ,

(3.2.7) (( ◦2 ) ◦2 ) ◦4 = (( ◦1 ) ◦1 ) ◦3 ,

(3.2.8) (( ◦2 ) ◦2 ) ◦3 = (( ◦1 ) ◦1 ) ◦4 ,

(3.2.9) (( ◦1 ) ◦3 ) ◦4 = (( ◦1 ) ◦2 ) ◦2 ,

(3.2.10) (( ◦2 ) ◦3 ) ◦3 = (( ◦1 ) ◦1 ) ◦2 ,

(3.2.11) (( ◦2 ) ◦2 ) ◦4 = (( ◦1 ) ◦1 ) ◦3 ,

(3.2.12) (( ◦2 ) ◦2 ) ◦3 = (( ◦1 ) ◦1 ) ◦4 ,

(3.2.13) (( ◦1 ) ◦3 ) ◦4 = (( ◦1 ) ◦2 ) ◦2 .

Proof. This statement is proven with the help of the computer. All compositions between the
generators and are computed up to degree six and relations thus established. �

Proposition 3.6 does not provide a presentation by generators and relations of 〈 , 〉. The
methods employed in this article fail to establish the presentation of 〈〈 , 〉〉 because it is not
possible to define a good orientation of the relations of the statement of Proposition 3.6. Indeed,
in degree six, all the orientations have no less than 7518 normal forms whereas they should be
7516. Nevertheless, these relations seem to be the only nontrivial ones; this may be proved by
using the Knuth-Bendix completion algorithm (see [KB70,BN98]) over an appropriate orientation
of the relations.

3.2.4. Third orbit. This orbit consists in the operads 〈 , 〉, 〈 , 〉, 〈 , 〉, and 〈 , 〉.
We choose 〈 , 〉 as representative of the orbit.

Proposition 3.7. The set of based (resp. nonbased) bubbles of 〈〈 , 〉〉 of arity n is the set
of based (resp. nonbased) bubbles whose first edge is blue and the number of uncoloured edges of
the border is congruent to n (resp. n + 1) modulo 2. Moreover, the coloured Hilbert series of
〈〈 , 〉〉 satisfy

(3.2.14) B1(z1, z2) =
z2

2

1 − 2z1 + z2
1 − z2

2
and B2(z1, z2) =

z1z2 − z2
1z2 + z3

2

1 − 2z1 + z2
1 − z2

2
.

Proposition 3.8. The Hilbert series F of 〈 , 〉 satisfies

(3.2.15) 2t− t2 + (2t− 2) F +3 F2 = 0.
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Theorem 3.9. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the equiv-
alence relation satisfying

(3.2.16) (c( ) ◦2 c( )) ◦3 c( ) ↔ (c( ) ◦1 c( )) ◦2 c( ),

(3.2.17) (c( ) ◦2 c( )) ◦3 c( ) ↔ (c( ) ◦1 c( )) ◦2 c( ).

The proof of Theorem 3.9 relies on the good orientation

7→ ,(3.2.18)

7→ .(3.2.19)

From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z, t ∈ S,

(3.2.20) x ⋄ (y • (z ⋄ t)) = (x ⋄ (y • z)) ⋄ t,

(3.2.21) x • (y ⋄ (z • t)) = (x ⋄ (y • z)) • t.

3.2.5. Fourth orbit. This orbit consists in the operads 〈 , 〉 and 〈 , 〉. We choose 〈 , 〉
as representative of the orbit.

Proposition 3.10. The set of bubbles of 〈〈 , 〉〉 is the set of bubbles whose first edge is blue
and last edge uncoloured. Moreover, the coloured Hilbert series of 〈〈 , 〉〉 satisfy

(3.2.22) B1(z1, z2) =
z1z2

1 − z1 − z2
and B2(z1, z2) =

z1z2

1 − z1 − z2
.

Proposition 3.11. The Hilbert series F of 〈 , 〉 satisfies

(3.2.23) 2t− t2 + (2t− 2) F +3 F2 = 0.

Theorem 3.12. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the
equivalence relation satisfying

(3.2.24) (c( ) ◦2 c( )) ◦2 c( ) ↔ (c( ) ◦1 c( )) ◦2 c( ),

(3.2.25) (c( ) ◦2 c( )) ◦2 c( ) ↔ (c( ) ◦1 c( )) ◦2 c( ).
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The proof of Theorem 3.12 relies on the good orientation

7→ ,(3.2.26)

7→ .(3.2.27)

From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z, t ∈ S,

(3.2.28) x ⋄ ((y ⋄ z) • t) = (x ⋄ (y • z)) ⋄ t,

(3.2.29) x • ((y ⋄ z) • t) = (x ⋄ (y • z)) • t.

3.2.6. Fifth orbit. This orbit consists in the operads 〈 , 〉 and 〈 , 〉. We choose 〈 , 〉
as representative of the orbit.

Proposition 3.13. The set of based (resp. nonbased) bubbles of 〈〈 , 〉〉 is the set of based
(resp. nonbased) bubbles whose penultimate edge is blue (resp. uncoloured) and the last edge is
uncoloured (resp. blue). Moreover, the coloured Hilbert series of 〈〈 , 〉〉 satisfy

(3.2.30) B1(z1, z2) =
z1z2

1 − z1 − z2
and B2(z1, z2) =

z1z2

1 − z1 − z2
.

Proposition 3.14. The Hilbert series F of 〈 , 〉 satisfies

(3.2.31) 2t− t2 + (2t− 2) F +3 F2 = 0.

Theorem 3.15. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the
equivalence relation satisfying

(3.2.32) (c( ) ◦2 c( )) ◦2 c( ) ↔ (c( ) ◦1 c( )) ◦1 c( ),

(3.2.33) (c( ) ◦2 c( )) ◦2 c( ) ↔ (c( ) ◦1 c( )) ◦1 c( ).

The proof of Theorem 3.15 relies on the good orientation

7→ ,(3.2.34)

7→ .(3.2.35)
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From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z, t ∈ S,

(3.2.36) x • ((y ⋄ z) • t) = ((x • y) ⋄ z) • t,

(3.2.37) x ⋄ ((y • z) ⋄ t) = ((x ⋄ y) • z) ⋄ t.

3.2.7. Sixth orbit. This orbit consists in the operads 〈 , 〉 and 〈 , 〉. We choose 〈 , 〉
as representative of the orbit.

Proposition 3.16. The set of bubbles of 〈〈 , 〉〉 is the set of based bubbles whose maximal
sequences of blues edges of the border have even length. Moreover, the coloured Hilbert series of
〈〈 , 〉〉 satisfy

(3.2.38) B1(z1, z2) =
z2

1 + z2
2 + z1z

2
2

1 − z1 − z2
2

and B2(z1, z2) = 0.

Proposition 3.17. The Hilbert series F of 〈 , 〉 satisfies

(3.2.39) t+ (t− 1) F + F2 + F3 = 0.

Theorem 3.18. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the
equivalence relation satisfying

(3.2.40) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ).

The proof of Theorem 3.18 relies on the good orientation

7→ .(3.2.41)

From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z ∈ S,

(3.2.42) (x ⋄ y) ⋄ z = x ⋄ (y ⋄ z).

3.2.8. Seventh orbit. This orbit consists in the operads 〈 , 〉 and 〈 , 〉. We choose 〈 , 〉
as representative of the orbit.

Proposition 3.19. The set of bubbles of 〈〈 , 〉〉 is the set of based bubbles having exactly one
uncoloured edge in the border. Moreover, the coloured Hilbert series of 〈〈 , 〉〉 satisfy

(3.2.43) B1(z1, z2) =
2z1z2 − z1z

2
2

(1 − z2)2 and B2(z1, z2) = 0.

Proposition 3.20. The Hilbert series F of 〈 , 〉 satisfies

(3.2.44) t− F +2 F2 − F3 = 0.



ENVELOPING OPERADS 23

Theorem 3.21. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the
equivalence relation satisfying

(3.2.45) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ).

The proof of Theorem 3.21 relies on the good orientation

7→ .(3.2.46)

From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z ∈ S,

(3.2.47) (x • y) ⋄ z = x • (y ⋄ z).

This relation is the one of L-algebras [Cha07,Ler11].

3.2.9. Eighth orbit. This orbit consists in the operads 〈 , 〉, 〈 , 〉, 〈 , 〉, and 〈 , 〉.
We choose 〈 , 〉 as representative of the orbit.

Proposition 3.22. The set of bubbles of 〈〈 , 〉〉 is the set of based bubbles whose last edge is
uncoloured. Moreover, the coloured Hilbert series of 〈〈 , 〉〉 satisfy

(3.2.48) B1(z1, z2) =
z2

1 + z1z2

1 − z1 − z2
and B2(z1, z2) = 0.

Proposition 3.23. The Hilbert series F of 〈 , 〉 satisfies

(3.2.49) t− (1 − t) F + F2 = 0.

Theorem 3.24. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the
equivalence relation satisfying

(3.2.50) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(3.2.51) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ).

The proof of Theorem 3.24 relies on the good orientation

7→ ,(3.2.52)

7→ .(3.2.53)

From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z ∈ S,

(3.2.54) (x ⋄ y) ⋄ z = x ⋄ (y ⋄ z),

(3.2.55) (x • y) ⋄ z = x • (y ⋄ z).
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These relations are similar to the ones of duplicial algebras [Lod08,Zin12]. In a duplicial algebra,
• is associative in addition.

3.2.10. Ninth orbit. This orbit consists in the operads 〈 , 〉 and 〈 , 〉. We choose 〈 , 〉
as representative of the orbit.

Proposition 3.25. The set of bubbles of 〈〈 , 〉〉 is the set of bubbles whose all edges of the
border are blue. Moreover, the coloured Hilbert series of 〈〈 , 〉〉 satisfy

(3.2.56) B1(z1, z2) =
z2

2

1 − z2
and B2(z1, z2) =

z2
2

1 − z2
.

Proposition 3.26. The Hilbert series F of 〈 , 〉 satisfies

(3.2.57) t− (1 − t) F + F2 = 0.

Theorem 3.27. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the
equivalence relation satisfying

(3.2.58) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(3.2.59) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ).

The proof of Theorem 3.27 relies on the good orientation

7→ ,(3.2.60)

7→ .(3.2.61)

From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z ∈ S,

(3.2.62) (x ⋄ y) ⋄ z = x ⋄ (y ⋄ z),

(3.2.63) (x ⋄ y) • z = x • (y ⋄ z).

3.2.11. Tenth orbit. This orbit consists in the operads 〈 , 〉, 〈 , 〉, 〈 , 〉, and 〈 , 〉.
We choose 〈 , 〉 as representative of the orbit.

Proposition 3.28. The set of based (resp. nonbased) bubbles of 〈〈 , 〉〉 is the set of based
(resp. nonbased) bubbles whose first edge is uncoloured (resp. blue) and the other edges of the
border are blue. Moreover, the coloured Hilbert series of 〈〈 , 〉〉 satisfy

(3.2.64) B1(z1, z2) =
z1z2

1 − z2
and B2(z1, z2) =

z2
2

1 − z2
.

Proposition 3.29. The Hilbert series F of 〈 , 〉 satisfies

(3.2.65) t− (1 − t) F + F2 = 0.
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Theorem 3.30. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the
equivalence relation satisfying

(3.2.66) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(3.2.67) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ).

The proof of Theorem 3.30 relies on the good orientation

7→ ,(3.2.68)

7→ .(3.2.69)

From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z ∈ S,

(3.2.70) (x ⋄ y) ⋄ z = x ⋄ (y ⋄ z),

(3.2.71) (x • y) • z = x • (y ⋄ z).

These relations are the ones of dipterous algebras [LR03,Zin12].

3.2.12. Eleventh orbit. This orbit consists in the operad 〈 , 〉.

Proposition 3.31. The set of based (resp. nonbased) bubbles of 〈〈 , 〉〉 is the set of based
(resp. nonbased) bubbles whose all edges of the border are uncoloured (resp. blue). Moreover, the
coloured Hilbert series of 〈〈 , 〉〉 satisfy

(3.2.72) B1(z1, z2) =
z2

1

1 − z1
and B2(z1, z2) =

z2
2

1 − z2
.

Proposition 3.32. The Hilbert series F of 〈 , 〉 satisfies

(3.2.73) t− (1 − t) F + F2 = 0.

Theorem 3.33. The operad 〈 , 〉 admits the presentation ({ , },↔) where ↔ is the
equivalence relation satisfying

(3.2.74) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ),

(3.2.75) c( ) ◦1 c( ) ↔ c( ) ◦2 c( ).

The proof of Theorem 3.33 relies on the good orientation

7→ ,(3.2.76)

7→ .(3.2.77)
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From the above presentation, we deduce that any 〈 , 〉-algebra is a set S equipped with
two binary operations ⋄ and • satisfying, for any x, y, z ∈ S,

(3.2.78) (x ⋄ y) ⋄ z = x ⋄ (y ⋄ z),

(3.2.79) (x • y) • z = x • (y • z).

These relations are the ones of two-associative algebras [LR06,Zin12].
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