
HAL Id: hal-00873981
https://hal.science/hal-00873981v1

Submitted on 16 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PAutomaC: a probabilistic automata and hidden
Markov models learning competition
Sicco Verwer, Rémi Eyraud, Colin de La Higuera

To cite this version:
Sicco Verwer, Rémi Eyraud, Colin de La Higuera. PAutomaC: a probabilistic automata and hidden
Markov models learning competition. Machine Learning, 2013, pp.1-26. �10.1007/s10994-013-5409-9�.
�hal-00873981�

https://hal.science/hal-00873981v1
https://hal.archives-ouvertes.fr


Machine Learning manuscript No.

(will be inserted by the editor)

PAutomaC: a PFA/HMM Learning Competition

Sicco Verwer · Rémi Eyraud · Colin

de la Higuera

Received: 16 December 2012 / Accepted: 9 August 2013

Abstract Approximating distributions over strings is a hard learning problem.
Typical techniques involve using finite state machines as models and attempt-
ing to learn these; these machines can either be hand built and then have their
weights estimated, or built by grammatical inference techniques: the structure and
the weights are then learned simultaneously. The Probabilistic Automata learn-
ing Competition (PAutomaC), run in 2012, was the first grammatical inference
challenge that allowed the comparison between these methods and algorithms. Its
main goal was to provide an overview of the state-of-the-art techniques for this
hard learning problem. Both artificial data and real data were presented and con-
testants were to try to estimate the probabilities of strings. The purpose of this
paper is to describe some of the technical and intrinsic challenges such a compe-
tition has to face, to give a broad state of the art concerning both the problems
dealing with learning grammars and finite state machines and the relevant litera-
ture. This paper also provides the results of the competition and a brief description
and analysis of the different approaches the main participants used.

S. Verwer
Institute for Computing and Information Sciences, Radboud University Nijmegen.
E-mail: siccoverwer@gmail.com,

R. Eyraud
QARMA team, Laboratoire d’Informatique Fondamentale de Marseille.
E-mail: remi.eyraud@lif.univ-mrs.fr

C. de la Higuera
TALN team, Laboratoire d’Informatique de Nantes Atlantique, Nantes University.
E-mail: cdlh@univ-nantes.fr



2 Sicco Verwer et al.

1 Introduction

This paper describes the PAutomaC probabilistic automaton learning competition
and provides an overview of the relevant literature on this topic. PAutomaC was
an on-line challenge that took place in 2012 at http://ai.cs.umbc.edu/icgi2012/
challenge/Pautomac/. The goal of PAutomaC was to provide an overview of which
probabilistic automaton learning techniques work best in which setting and to
stimulate the development of new techniques for learning distributions over strings.
Many probabilistic automata learning methods have been produced in the past (see
Section 2 for an overview). Most of these focus on deterministic probabilistic au-
tomata (Dpfa), where only the symbols are drawn from probability distributions
but the transitions are uniquely determined given the generated symbol. There
exist some exceptions, however, which aim to learn hidden Markov models [6],
probabilistic residual automata [31], and multiplicity automata [26]. Another im-
portant approach is to learn Markov chains or n-grams by simply counting the
occurrences of sub-strings [66, 56, 46]. These simple counting methods have been
very successful in practice [12].

Although many methods have been proposed, there has been so far no thorough
investigation of which model/algorithm is likely to perform best, why and when.
Knowledge about this would be very helpful to scientists/practitioners faced with
a data set made of strings and the problem of finding a likely distribution over
these strings. PAutomaC aimed to fill this knowledge gap by providing the first
elaborate test-suite for learning string distributions.

In addition to being very helpful for applications of automata learning meth-
ods, PAutomaC was designed in such a way that it provided directions to future
theoretical work and algorithm development. For instance, unlike previous au-
tomata learning competitions (see Section 2.4 for details), in PAutomaC, the type
of automaton device was not fixed: learning problems were generated using au-
tomaton models of increasing complexity. This is not only very useful for practical
applications (where many different types of distributions can be encountered),
but also aims to answer to the interesting question whether it is best to learn
a non-deterministic model (e.g. Hmm) or a deterministic model (e.g. Dpfa) when
the data is drawn from a (non-)deterministic distribution,as described for instance
in the work of Gavaldà et al. [33]. PAutomaC also encouraged the development
and use of new techniques from machine learning that do not build an automaton
structure, but do result in a string distribution. Therefore, the actual structures of
the learned automata were not evaluated in PAutomaC. Instead, the performance
of the different algorithms were tested only on the quality of the resulting string
distribution. Like previous automaton learning competitions, this evaluation was
performed on-line using a test set and an evaluation oracle running on the compe-
tition server. Consequently, the participants could use the observed performance
(and that of the competition) to update their algorithms.

The competition setup in PAutomaC contained some novel elements that may
also be of interest for competitions of other (string) distribution learning algo-
rithms. Above all, in PAutomaC the performance was evaluated using the actual
probabilities assigned by a learned distribution, instead of the more traditional
method of evaluating its predictive performance. This has the advantage of not
only testing whether the high probability events are assigned the largest proba-
bilities, but also whether the low probability events are assigned the correct low



PAutomaC: a PFA/HMM Learning Competition 3

probabilities. Furthermore, the actual strings that were being used for this evalu-
ation were given to the participants beforehand.

The traditional approach to compare language models, which had also been
considered for PAutomaC, is to test the learned model over some unseen data.
Perplexity [19] is the usual measure and, in order to perform well on such a met-
ric, it is necessary to learn a smoothed model, in which a non-null probability is
assigned to all strings (the penalty is infinite otherwise). Experience shows that
in that case, the smoothing method may become preponderant: the quality of
the model can rely mainly on the smoothing. Another issue with such an evalua-
tion task is that the model has to be checked somehow for consistency, since the
probabilities of all possible strings must sum up to one.

The goal of PAutomaC being to compare learning algorithms (and not smooth-
ing algorithms), a different protocol was chosen: the teams knew the test set in
advance, and part of the problem for them consisted in reassigning the mass of
probabilities the learned model used for the strings absent from the test set to those
strings inside this set. In this way, a perplexity-like evaluation measure could be
used to evaluate the differences in the probabilities assigned to different strings
from the test-set. A couple of possible dangers of this protocol were identified by
the PAutomaC Scientific Committee1 and, later, by the participants. A first one
was that the extra information in the test set (which was also randomly drawn
from the unknown target distribution) could be used to learn. A second danger
came from the fact that the teams could submit various solutions to the same
problem (with no feedback about their score, but knowing their overall standing):
this could have allowed some hill-climbing strategy. Both the Scientific Commit-
tee’s analysis and the attempts by some participants showed that the PAutomaC

evaluation process was resistant: the winning team is actually the one who submit-
ted the least times. We detail in this paper the choices that were made to handle
these dangers.

As main contributions of this paper we provide an overview of the literature
on probabilistic automaton learning, and describe PAutomaC including its design
issues and solutions. The results of the competition and the approach followed by
the main participants are also provided. There is a clear winner to PAutomaC:
a novel collapsed Gibbs sampling method for Pfa developed by team Shibata-
Yoshinaka. As it is not common to use such a method when learning distributions
over strings, we hope and expect this result will influence what people will use in
practice. In addition to having an appealing winner, we can draw several interest-
ing conclusions by analyzing the results. In particular, it can be observed that the
Alergia-based method developed by team Llorens outperforms the winning team
on the deterministic instances. This provides some additional insights into the im-
portant question whether it is better to learn deterministic or non-deterministic
models and can serve as an important starting point for further researches on this
topic. Furthermore, we analyze the PAutomaC results with the goal of determin-
ing when which method works best and why. Our analysis indicates the problem
areas for each of the used methods, which forms a basis for future studies and
hopefully further improvements of the used methods. Last but not least, all meth-
ods developed by the participating teams significantly outperform the provided

1 http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/committee.php



4 Sicco Verwer et al.

baseline algorithms, clearly demonstrating the need for developing and evaluating
(new) methods for learning string distributions.

This paper is organized in six sections: introduction (Section 1), motivations
and history (Section 2), an overview of PAutomaC (Section 3), final results (Sec-
tion 4), a brief description and analysis of the approaches used by main participants
(Section 5), and a conclusion (Section 6).

2 Motivations and history

We assume the reader to be familiar with the theory of languages and automata [70],
their probabilistic counterparts such as hidden Markov models [60], and basic con-
cepts from computational complexity [65], computational learning theory [48], and
information theory [19]. For more information on these topics the reader is referred
to the corresponding references.

2.1 Why learn a probabilistic automaton?

Finite state automata (or machines) are well-known models for characterizing the
behavior of systems or processes. They have been used for several decades in
computer and software engineering to model the complex behaviors of electronic
circuits and software such as communication protocols [52]. A nice feature of an
automaton model is that it is easy to interpret, allowing one to gain insight into
the inner workings of a system. In many applications, unfortunately, the original
design of a system is unknown. This is the case for instance when one wants to:

– model Dna or protein sequences in bioinformatics [64],
– find patterns underlying different sounds for speech processing [81],
– infer morphological or phonological rules for natural language processing [35],
– model unknown mechanical processes in physics [67],
– discover the exact environment of robots [61],
– detect anomaly for intrusion detections in computer security [53],
– do behavioral modeling of users in applications ranging from web systems [11]

to the automotive sector [75],
– discover the structure of music styles for music classification/generation [20].

In all such cases, an automaton model is learned from observations of the
system, i.e., a finite set of strings. Usually, the data gathered from observations
is unlabeled, that is to say that it is often possible to observe only strings that
can be generated by the system, and strings that cannot be generated are thus
unavailable. The standard method of dealing with this situation is to assume a
probabilistic automaton model, i.e., a distribution over strings. In such a model,
different states can generate different symbols with different probabilities. The
goal of automata learning is then one of model selection [37]: find the probabilistic
automaton model that gives the best fit to the observed strings, i.e., that is most
likely to have generated the data. In addition to the data probability, this implies
that the model size has to be taken into account in order to avoid over-fitting.
Otherwise, the model that generates only the seen strings and whose probabilities
correspond to the observed frequency perfectly achieves the goal. But this naive



PAutomaC: a PFA/HMM Learning Competition 5

�� �����������

Fig. 1 An Hmm (a.) and a Pfa (b.) that are equivalent: they correspond to the same proba-
bility distribution - this example is taken from [30].

model is of little use: it assigns null probability to all unseen strings and therefore
makes no generalization.

2.2 Which probabilistic automata to learn?

Several variants of probabilistic automata have been proposed in the past. An
important and obvious recurring rule with respect to these variants is the fact that
the better the machine is at modeling string distributions, the harder it is going
to be to learn it. The best known variants are probabilistic finite state automata
(Pfa) and hidden Markov models (Hmm) (see Figure 1):

– Pfa [59] are non-deterministic automata in which every state is assigned an
initial and a halting probability, and every transition is assigned a transition
probability (weight). The sum of all initial probabilities equals 1, and for each
state, the sum of the halting and all outgoing transition probabilities equals
1. A Pfa generates strings probabilistically by starting in a state determined
at random using the initial state distribution, either halting or executing a
transition randomly determined using their probabilities, and iterating and
generating the transition symbol in case it has not halted. A study of these
automata can be found in [77, 78].

– Hidden Markov models (Hmms)2 [60, 46] are Pfa (as described in the previ-
ous paragraph) where the symbols are emitted at the states instead of at the
transitions which are only used to move. Initial probabilities are assigned to
each state but there are no final probabilities, defining therefore a distribution
over Σn for each value of n. In order to obtain a distribution over Σ∗ a special
halting symbol or state can be introduced. With such an addition an Hmm

generates strings like a Pfa.

Interestingly, although Hmms and Pfa are commonly used in distinct areas of
research, they are equivalent with respect to the distributions that can be mod-
eled: an Hmm can be converted into a Pfa and vice-versa [77, 30]. Though it is

2 We only consider discrete Hmms.



6 Sicco Verwer et al.

easy to randomly generate strings from these models, determining the probability
of a given string is more complicated because different executions can result in the
same string. For both models, computing this probability can be solved optimally
by dynamic programming using variations of the Forward (or Backward) algo-
rithm [7]. However, estimating the most likely parameter values (probabilities) for
a given set of strings and a given model (maximizing the likelihood of model given
the data) cannot be solved optimally unless RP equals NP [1]. The traditional
method of dealing with this problem is the Baum-Welch [7] greedy algorithm.

The deterministic counterpart of a Pfa is a deterministic probabilistic finite
automaton (Dpfa) [14]. These have been introduced for efficiency reasons essen-
tially: in the non-probabilistic case, learning a Dfa is provably easier than learning
a Nfa [21]. However, although non-probabilistic deterministic automata are equiv-
alent to non-probabilistic non-deterministic automata in terms of the languages
they can generate, it is shown in [77, 78, 30] that Dpfa are strictly less powerful
than Pfa. Furthermore, distributions generated by Pfa cannot be approximated
by Dpfa unless the size of the Dpfa is allowed to be exponentially larger than the
one of the corresponding Pfa [39, 38]. There is a positive side to this loss in power:
estimating the parameter values of a Dpfa is easy, and there exist algorithms that
learn a Dpfa structure in a probably approximately correct (Pac) like setting [18]3.
This is not known to be possible for Pfa or Hmms. For Pfa it has only been shown
that they are strongly learnable in the limit [25], or Pac-learnable (under some
restrictions) using a (possibly exponentially larger) Dpfa structure [33].

In addition to Pfa, Hmms, and Dpfa, other probabilistic finite state automata
have been proposed such as: Markov chains [66], n-grams [56, 46], probabilistic
suffix trees (Pst) [62], probabilistic residual finite state automata (Prfa) [31],
and multiplicity automata (Ma) [9, 8] (or weighted automata [54]). Probabilistic
accepting automata will use weights to assign probabilities to individual strings,
whose meaning is the probability of accepting (Vs not accepting) the string. Such
automata are also sometimes called fuzzy automata. Although Markov chains and
n-grams are a lot less powerful than Dpfa (both the structure and parameters
are easy to compute given the data), they are very popular and often effective
in practice. In fact, to the best of our knowledge, it is an open problem whether
Pfa, Hmm, or Dpfa learners are able to consistently outperform n-gram models
on prediction tasks. Probabilistic suffix trees are acyclic Dpfa that have a Pac-
like learning algorithm [62]. Probabilistic residual finite state automata are more
powerful than Dpfa, but less powerful than Pfa. Though multiplicity automata
are more powerful than Pfa, they are also shown to be strongly learnable in the
limit [26]. The expressiveness power of the different types of probabilistic automata
is summarized in Figure 2.

2.3 How to learn a probabilistic automaton?

Early work concerning the learning of distributions over strings can be found
in [43] and [2]. In the first case, the goal was to learn probabilistic context-free
grammars; in the second, convergence issues concerning identification in the limit
with probability 1 are studied. Although these initial studies were done decades

3 The hardness of Pac-learning the structure of a Dpfa is shown in [47].



PAutomaC: a PFA/HMM Learning Competition 7

������

����	ABCD�E�

BF���

����

���B�B���B

��BBBBB

BBBBBB���

Fig. 2 The hierarchy of the different finite states machines. Multiplicity automata (MA) can
model the most distributions (but can also model other functions), n-grams are the least
expressive.

ago, only three techniques have become mainstream for learning Pfa, Hmms, and
Dpfa.

Parameter estimation. The first family of techniques takes a standard structure
or architecture for the machine, typically a complete graph, and then tries to
find parameter settings that maximize the likelihood of model given the data. If
the structure is deterministic, the optimization problem is quite simple: transi-
tion probabilities can be estimated using the maximum likelihood [80]. If not, the
standard method is the Baum-Welch algorithm [7, 6] which iteratively computes
a new estimate for the transition probabilities using the probabilities assigned to
the input data. Although this technique is known to be sensitive to initial prob-
abilities and may get stuck in a local optimum, it has frequently been applied
successfully in practice.

Bayesian inference. The second family of techniques correspond to Bayesian meth-
ods such as Gibbs sampling [34], see, e.g., [55, 32]. Instead of learning a single
model (a point4 estimate), these methods aim to make predictions using the joint
distribution formed by all possible models. This joint distribution is hard to com-
pute and an Hmm Gibbs sampler estimates it by iteratively sampling the visited
hidden states conditioned on earlier samples of all other state visits. The station-
ary distribution of the thus formed Markov chain is exactly this joint distribution.
Although these methods are not yet commonplace for Pfa, we believe this is likely
to change after this competition.

State-merging. Learning Dpfa typically relies on the technique of state-merging
(see, e.g., [21]): the idea is to start with a very large automaton with enough
states to describe the learning sample exactly, and then iteratively combining the
states of this automaton in order to refine this model into a more compact one.

4 One instance of a model is a point in the space of all possible models.



8 Sicco Verwer et al.

The three main state-merging algorithms for probabilistic automata that have had
the largest impact were proposed in the mid-nineties:

– Alergia [14] by Carrasco and Oncina,
– Bayesian model merging [69] by Stolcke, and
– Learn-PSA [63] by Ron, Singer, and Tishby.

The first deals with learning a Dpfa while the second tries to learn both the
parameters and the structure of an Hmm. The third learns probabilistic suffix
trees. Like the first technique, these are greedy algorithms that can get stuck in
local optima. However, they do come with theoretical guarantees: probabilistic
suffix trees can be Pac-learned [62], Dpfa have been proved to be learnable in the
limit with probability 1 [14], and more recently it has been shown that they can
also be learned in a Pac-like setting [18]. Based on these three basic algorithms a
number of refinements for state merging learning algorithms have been proposed:

– There have been several extensions of Alergia [24, 15, 22, 23, 82, 36].
– Improvements of Ron et al. [63] based on the concept of distinguishable states

have been developed [72, 57, 38, 16]. An incremental version also exists [33].
– Algorithm Mdi was introduced by Thollard et al. [73, 74, 71]. This algorithm

also uses state merging.
– Recently, they have been extended to learn not only the distribution over

strings of events/symbols but also over their timing behaviors [76] and from a
continuous stream of data instead of a data set [5].

Other methods. Several other methods have been proposed that have not yet be-
come mainstream, most notably:

– Esposito et al.’s [31] approach has consisted in learning probabilistic residual
finite state automata based on the identification of the residuals of a rational
language. These are the probabilistic counterparts to the residual finite state
automata introduced by [27, 28].

– Denis et al. [26] and Habrard et al. [41] introduced the innovative algorithm
Dees that learns a multiplicity automaton (the weights can be negative but
in each state the weights sum to one) by iteratively solving equations on the
residuals.

– Other algorithms learning multiplicity automata have been developed, using
common approaches in machine learning such as recurrent neural networks [13],
Principal Component Analysis [4] or a spectral approach [3].

Most of these methods estimate the model parameters based on maximum
likelihood. This can cause problems when computing probabilities, especially for
strings of low frequency. For some of these methods, therefore, smoothing meth-
ods have been developed that adjust the maximum likelihood estimate in order
to hopefully overcome these difficulties [17]. Typically, these smoothing methods
assign larger probabilities to infrequent strings, and consequently, less to more fre-
quent ones. For n-gram learning, smoothing is very often used and sophisticated
methods such as back-off smoothing exist [83]. For Dpfa learning, smoothing tech-
niques can be found in [29, 71, 40]. Smoothing Pfa and Hmms is still a question
requiring further research.

In conclusion, many algorithms for learning probabilistic automata have been
produced. Due to the difficulty of the learning problem, most of them focus on



PAutomaC: a PFA/HMM Learning Competition 9

some form of Dpfa. Another important approach is to learn Markov chains or
n-grams by simply counting the occurrences of sub-strings. As already stated,
these simple methods have been very successful in practice [12]. When one is
faced with a data set made of strings and one needs to find a likely distribution
over these strings for tasks such as prediction, anomaly detection, or modeling,
it would be very helpful to know which model is likely to perform best and why.
Due to the lack of a thorough test of all of these techniques, this is currently an
open question. Furthermore, the facts that all known algorithms are of the greedy
type and the recent successes of search-based approaches for non-probabilistic
automaton learning [42, 45] makes one wonder whether search-based strategies are
also beneficial for probabilistic automaton learning. The Probabilistic Automaton
learning Competition (PAutomaC) aims to answers these questions by providing
an elaborate test-suite for learning string distributions.

2.4 About previous competitions

There have been in the past competitions related with learning finite state ma-
chines or grammars.

– The first grammatical inference competition was organized in 1999. The par-
ticipants of Abbadingo (http://abbadingo.cs.nuim.ie) had to learn Dfa of
sizes ranging from 64 to 512 states from positive and negative data, strings
over a two letter alphabet.

– A follow-up was system Gowachin (http://www.irisa.fr/Gowachin/), devel-
oped to generate new automata for classification tasks: the possibility of having
a certain level of noise was introduced.

– The Omphalos competition (http://www.irisa.fr/Omphalos/) involved learn-
ing context-free grammars, given samples which in certain cases contained both
positive and negative strings, and in others, just text.

– In the Tenjinno competition, the contestants had to learn finite state trans-
ducers (http://web.science.mq.edu.au/tenjinno/).

– The Gecco conference organized a competition involving learning Dfa from
noisy samples (http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html).

– The Stamina competition (http://stamina.chefbe.net/), organized in 2010,
also involved learning Dfa but new methods were used and permitted to solve
even harder problems.

– The Zulu competition (http://labh-curien.univ-st-etienne.fr/zulu/) con-
cerned the task of actively learning Dfa through requests to an oracle.

– The RersGrey Box Challenge (http://leo.cs.tu-dortmund.de:8100/isola2012)
aimed to discover the complementary values of white-box and black-box soft-
ware system analysis techniques, including tools for learning finite state ma-
chines.

More generally, a number of other machine learning competitions have been
organized during the past years. A specific effort has been made by the Pascal

network (http://pascallin2.ecs.soton.ac.uk/Challenges/).



10 Sicco Verwer et al.

3 An overview of PAutomaC

The goal of PAutomaC was to provide an overview of which probabilistic automa-
ton learning techniques work best in which setting and to stimulate the develop-
ment of new techniques for learning distributions over strings. In order to stimulate
this development, PAutomaC was set up using an oracle server that was able to
evaluate the submissions by participants on-line. Furthermore, in contrast to the
traditional methods used to evaluate predictive machine learning algorithms, the
performance in PAutomaC was evaluated using the actual probabilities assigned
by a learned distribution.

Two types of data were available: artificial and real-world data donated by
researchers and industries. But we have to admit that the latter were after all
of little interest in the context of the competition. The problem came from the
fact that not knowing the targeted probabilities implies a biased way to evaluate
them. We chose to use 3-grams trained on the complete data sets to fix these
probabilities, hoping that the induced bias would be drastically reduced since the
competition sets consisted of less than 10% of these data. Unfortunately, this
goal was not achieved since the participants who scored the best on these data
sets used n-grams (even when they were using more complex approaches on the
artificial data sets). We will thus not discuss the real-world data sets in the rest
of this paper (detailed information is available on the website).

In this section, we first describe the way the targets automata were gener-
ated. We then turn our attention on how the submissions of the participants were
evaluated. Finally we discuss the choices made all along this process.

3.1 Generating artificial data

Artificial data was generated by building random probabilistic machines with 5 to
75 states and with an alphabet consisting of 4 to 24 symbols (both inclusive, and
decided uniformly at random). These machines were subsequently used to generate
data sets. Of all possible state-symbol pairs that could occur in transitions, between
20 and 80 percent (the symbol sparsity) of them were generated. These pairs were
selected by first choosing a state at random, and subsequently choosing a symbol
from the set of symbols that had not yet been selected for that state. This created
a selection without replacement from the set of all possible state-symbol pairs
that was modified to remain uniform over the states. This modification made it
less likely that the resulting symbols were evenly distributed over the states. For
every generated state-symbol pair, one transition was generated to a randomly
chosen target state. Between 0 and 20 percent (the transition sparsity) transitions
were generated in addition to these, selected without replacement from the set
of possible transitions, modified to remain uniform over the source states and
transition labels.

Initial and final states were selected without replacement until the percentages
of selected states exceeded the transition and symbol sparsities, respectively. All
initial, symbol, and transition probabilities were drawn from a Dirichlet distribu-
tion with concentration parameters set to 1 (making every probability distribution
equally likely). The final probabilities were drawn together with the symbol prob-
abilities.



PAutomaC: a PFA/HMM Learning Competition 11

From such a structure, one training set (with repetitions) and one test set
(without repetitions) were generated from every target. With probability one out
of four, the generated train set was of size 100 000, it was of size 20 000 otherwise.
New test strings were generated using the target machine until 1 000 unique strings
had been generated. The test strings were allowed to overlap with the strings
used for training. If the average length of the generated strings was less than 5
or greater than 50, a new automaton and new data sets were generated using
the same construction parameters. In total, 150 models and corresponding train
and test sets were generated using this way. We evaluated the difficulty of the
generated sets using a 3-gram baseline algorithm: the problem was considered
easy if the baseline output was close to the target (a perplexity difference of less
than 1.0), and difficult otherwise. We then selected 16 of them, aiming to obtain
ranging values for the number of states, the size of the alphabet, sparsity values,
and difficulty. We applied the same procedure for Dpfa but without generating
additional transitions; and for Hmms, we generated state-state pairs instead of
state-symbol-state triples.

In total, this results in 48 (16 for every type) artificially generated problems for
use in the competition. The participants were given no other information about
the target than the two files of strings (one for the training set and one for the
test set). The format of these files is given in Figure 3.

� �

���������

���������������

���	����	������

���	���������A�����A

�������������������A���

����������������

A������A���

B

CDEF�����F�����������

��������

���������������������A

����	����������������A��A�����

B

CDEF�����F��F�������

�E���������F�����

�� �����F!���"#!���F

$���F!����F!���F����

�F�����%��&E��'�����
�(���"�)

������������������������������������������"�������
�����������������������������������������'!��F����

Fig. 3 Format of the files made available to the participants of the PAutomaC challenge.

3.2 Evaluation

The evaluation measure was based on perplexity. Given a test set S, it was defined
by the formula:

Score(C, S) = 2−
∑

x∈S PT(x)∗log
2
(PC(x))



12 Sicco Verwer et al.

where PT(x) is the normalized probability of x in the target and PC(x) is the
normalized candidate probability for x submitted by the participant. The nor-
malization process is the usual one when perplexity is considered: it consists in
modifying the probabilities so that they sum to 1 on the set S. A consequence of
this normalization was that adding probability to one of the test strings removed
probability from the others. Therefore, this perplexity score measured how well
the differences in the assigned probabilities matched with the target probabilities.

Notice that this measure is equivalent to the well-known Kullback-Leibler (KL)
divergence [50]. Indeed, given two distributions P and Q, the KL divergence
is defined as KL(P,Q) =

∑
x P (x) log2(P (x)/Q(x)) which can be rewritten into

KL(P,Q) = (−
∑

x P (x) log2 Q(x)) −H(P ) where H(P ) is the entropy of the tar-
get distribution. H(P ) is constant in our case since the aim is to compare various
candidate distributions Q. As we were only interested in the divergence on a given
test set S, the only varying element of the KL divergence is −

∑
x∈S P (x) log2 Q(x)

which is equivalent to our measure, up to a monotonous transformation.

To decide the final overall rank of each participant, points were attributed for
each data set: the leader of a problem at the end of the competition scored 5
points, the second 3, the third 2 and the fourth 1. In case of equality on a problem
(based on the first 10 digits of the perplexity score), the earliest submission won.
The winner is the participant whose overall score was the highest. There was no
restriction on the number of submissions a given participant could provide, but
no feedback was given about the resulting perplexity. To compute the final score
of a participant, only the best submission to each problem was considered.

3.3 Discussion on the design of the competition

When organizing an on-line competition, one has to make various choices about the
generation of data and the evaluation of the participant submissions. We described
above what was done for PAutomaC but we feel that the choices that were made
have to be discussed. What follows thus contains arguments about the validity of
our approach and therefore of the results of the competition.

Target generation. As already stated, we used a Dirichlet distribution for sampling
the output probabilities. The main advantage of this method is that every possible
distribution is equally likely when sampled using a Dirichlet distribution (with
concentration parameters set to 1). Notice that this does not happen when every
output probability is iteratively sampled uniformly at random. Since we did not
intend to bias the distribution in PAutomaC towards certain types of distributions,
using the Dirichlet distribution seemed the logical choice.

If we were to sample all output probabilities from a Dirichlet distribution
unconstrained, however, we would obtain a very densely connected Pfa with high
probability. Such densely connected automata are uninteresting from a learning
perspective: a simple one-gram will already reach a close to optimal perplexity. We
therefore constrained this sampling using symbol and transition sparsity values.
These two values were preselected and the generated Pfa was then forced to match
these sparsity values. Afterwards, we sampled the transition probabilities for every
state using a Dirichlet distribution.



PAutomaC: a PFA/HMM Learning Competition 13

The Pfa structure generator worked by iteratively adding new transitions until
the preselected sparsity values were reached. This selection remained uniform over
all states, lowering the probability that every state gets assigned the same number
of symbols and transitions. The generator initialized by adding to every state
one random symbol and one random transition for that symbol. This avoided the
generation of states with a final probability of 1.0, i.e., sink states. This was done
because we aimed for the final probability generation to be independent of the
structure generation.

The final probability of each state was handled as the emission of a special
symbol: this allowed a simple normalization process and did not influence the
bias over distributions since their values were sampled together with the output
probabilities using a Dirichlet distribution. Together with the consistency test
(see below), this ensured that the generated machines corresponded to a proper
distribution (probabilities over all possible strings summed to 1). The selection of
which states had final probabilities, however, was performed independently of the
process used to select output transitions. This ensured that having more output
symbols does not lead to lower final probabilities.

An important step took place directly after the generation of a target. It con-
sisted in checking that all states were reachable from an initial state and that they
were all co-accessible. Indeed, verifying the consistency of the machine ensured
that we did not have a path (and thus a probability mass) that reached a part of
the machine that never led to an accepting state. In addition, we tested whether
the generated probability distribution did not result in giving too much weight to
long or short strings. Although this created some bias in the generation procedure,
it was unavoidable because testing the different methods on instances that are too
difficult or uninteresting makes no sense.

Evaluation. As already stated, the choice of an evaluation function that does not
rely on a particular type of machine was a fundamental requirement of PAutomaC.
Using a perplexity measure had the interest to be a widely accepted way to com-
pare distributions and its link with the KL divergence was clearly a plus. Though
we did not inform the participants about it, we also computed two other evalua-
tion functions for each submission: the max-norm (maximal difference between the
submitted probabilities and the target ones) and the sum-norm (the sum of the
differences between the submitted and the target probabilities). While on a few
problems the ranking of the participants was a bit different than the one obtained
with the official perplexity measure, the overall ranking of the teams was the same.

A common issue when dealing with string distributions is smoothing. When
using perplexity as a measure, smoothing becomes necessary because strings with
zero probability obtain an infinite KL divergence when compared to the target (or
any other non-zero assigning distribution) and thus an infinite perplexity. Although
smoothing can be very beneficial in practice, we feel that the standard perplexity
measure is too dependent on smoothing (compared to the max-norm, for instance)
and therefore that a perplexity evaluation based on an unseen test set does not
properly measure the quality of the string distribution. In PAutomaC we therefore
decided to provide the participating teams with knowledge of the actual strings
used to compute the perplexity measure. This removed the need for specialized
smoothing methods since the participants could simply use a minimum value for
the probability assigned to any string.



14 Sicco Verwer et al.

Collusion. A usual problem with on-line competitions is the one of the possibility
of collusion. Indeed, a set of test data has to be made available to participants in
order to evaluate the performance of their algorithm with respect to a given target.
But if this set contains information about the target, then it can be used during
the learning phase and may bias the results. In a competition where the targets
are not stochastic devices, this problem is usually tackled by the requirement that
elements of the test set do not occur in the train set (though they are generated
by the same process). But this cannot be ensured when the aim is to learn a
distribution as both sets have to be generated using the target: erasing elements
of the test set that occur in the train set generates an important bias in the
distribution of the test set. We therefore chose to keep these elements, expecting
that the difference in size between the train and test sets sufficed to make the
information contained in the test set useless.

But collusion can also result from the fact that the test set by itself contains
information about the target distribution: duplicate strings are likely to be frequent
in the target distribution. This is why we decided to remove redundant elements
of the test sets, creating a small bias in the distribution of these sets. However,
since the actual target distribution was used during the evaluation, and thanks to
the choices made for this phase, this did not result in a bias or other problems
during evaluation.

4 Results

4.1 Competition activity

38 participants registered to have access to the problem sets and 16 of them sub-
mitted at least one of their solutions to a problem. There were a total number of
2 787 submissions during the competition. 5 participants managed to score some
points, 4 of them were ranked first at least once (see Figure 4).

During the competition phase, the website received 724 visits (with a maximum
of 54 the last day of the competition) from 196 unique visitors with an average visit
duration of a bit more than 5 minutes. IPs from 37 countries have been detected,
between which 14 countries corresponded to 5 or more visitors.

4.2 Overall results

The final scores can be seen in Figure 4 and detailed results are presented in
Table 1 (available in Appendix). There is a clear winner of PAutomaC: team
Shibata-Yoshinaka. Of all participants, they obtained the best perplexity values
on most instances and performed well on all others. This result is validated by
the computation of other performance indicators (the max-norm and sum-norm).
From Table 1 it can be observed that the method implemented by team Shibata-
Yoshinaka really works well for all of the competition problems: the difference
between the perplexity values of the solutions and their submissions was never
greater than 0.1. Furthermore, this difference was even smaller on the instances
with 100 000 strings, indicating that they made good use of additional data.



PAutomaC: a PFA/HMM Learning Competition 15

Fig. 4 Overall evolution of the score of the 5 leading teams (artificial data sets). For each
problem, 5 points was given to the team whose best submission had the smallest perplexity, 3
points to the second best team, 2 for the third and 1 for the fourth.

4.3 Analysis of the results

In PAutomaC, the different approaches were tested on problem instances with a
broad range of parameter values and coming from different probabilistic automa-
ton models (see Table 2 in Appendix). This makes it possible to perform some
additional analysis of the results with the goal of discovering when each method
works best and and trying to understand why. Tables 1 and 2 (both in Appendix)
clearly show that team Shibata-Yoshinaka is only outperformed on the (nearly)
deterministic ones (Dpfa, or Pfa/Hmm with a small transition sparsity). On these
instances team Llorens performs slightly better. Team Hulden’s method also man-
ages to obtain the best perplexity values on two instances, and actually beats team
Llorens overall performance by just 2 points (rightmost points in Figure 4). Their
method seems to perform best on dense instances with few states. The methods
used by team Bailly and team Kepler have some difficulties with very sparse in-
stances (and thus also with Dpfa), and perform well but not best on the other
instances.

We further analyzed the results using a standard decision tree learning5 for
two prediction tasks:

1. Predicting the winner given the problem instance parameter values.
2. Predicting whether a deterministic distribution was used to generate the prob-

lem instance given the winner.

5 rpart, implemented in R.



16 Sicco Verwer et al.

The resulting decision trees are depicted in Figure 5. Interestingly, although team
Shibata-Yoshinaka performs well on all problem instances, they are outperformed
by team Llorens on sparse problem instances. Sparse instances are generated using
an automaton that contains only a tiny fraction of all possible transitions given
the number of states and the alphabet size (see Section 3.1). Since deterministic
automata are fixed to use such a fraction, most of these automata are deterministic.
This is confirmed by the second prediction task, which indicates that when team
Llorens performs best there is an 80% chance that the generator is deterministic.
This result is very interesting since team Shibata-Yoshinaka and team Hulden used
methods based on non-deterministic automaton models, while team Llorens used
deterministic models (see Section 5). Of course, we cannot be sure that the used
model or the used method is important when predicting the type of generator, but
it seems to indicate that it is best to learn a non-deterministic model when the
data is drawn from a non-deterministic distribution, and that it is best to learn a
deterministic model when the data is drawn from a deterministic distribution. In
fact, this result also shows that it is possible to detect whether a given set of strings
is drawn from a deterministic or non-deterministic generator (the second tree
in Figure 5): use team Shibata-Yoshinaka’s, team Huldens’s, and team Llorens’s
methods to learn a predictor, test their performance on a validation set, return
the type of model used by the best performing method. Such a method has several
interesting applications like evaluating possible discretization of values coming
from an abstract deterministic generator. In the next section, we provide some
detailed descriptions and individual analyses for each of the methods.

transition sparsity < 0.0208

Llorens Shibata

6 of 7 34 of 41

yes no

win = Llorens

Dpfa
Pfa or
Hmms

9 of 11
30 of 37

yes no

Fig. 5 Decision trees predicting the winner given the parameters of a problem instance (left),
and whether a deterministic or non-deterministic generator was used given who won (right).

5 The different approaches and individual results

A wide spectrum of learning approaches has been used during the competition.
We describe in this section the ones of the main participants - those who scored
at least a point - and provide a small detailed analysis of their performance in
PAutomaC. This section is the result of deep discussions and electronic exchanges
the authors had with the different teams. However, the overview presented here is
superficial and the reader is therefore referred to the original paper describing the
team’s work.



PAutomaC: a PFA/HMM Learning Competition 17

5.1 Team Shibata-Yoshinaka

Shibata and Yoshinaka [68] used a Gibbs sampling method to estimate the prob-
ability Pr(b|a) of a future sentence b given training data a generated by an un-
known Pfa. The probability that a Pfa generates a sentence a = a1 . . . aT by
passing states z = z0 . . . zT in this order is given as

Pr(a, z | ξ) =
∏

1≤t≤T

ξzt−1atzt =
∏

i,a,j

ξ
Ciaj

iaj , (1)

where ξiaj is the probability of the state change from i to j with a letter a and Ciaj

counts the times when that transition occurs. Applying Gibbs sampling directly
to ξ is somewhat tricky. For instance, it requires one to continuously compute new
state sequences, see, e.g., [32]. Therefore, they first marginalize ξ out from Eq. (1)
under the assumption that the prior of ξ is a Dirichlet distribution. Intuitively,
this computes the sum of all possible values of Eq. (1) for every ξ multiplied by
the probability of that ξ. Although this is a very large sum to compute, under
the assumption the ξ is Dirichlet distributed, many terms cancel out making the
resulting computation easy. This technique is called Collapsed Gibbs Sampling, see,
e.g., [10].

Shibata and Yoshinaka sample different values z(1), . . . , z(S) for z independently
from the resulting distribution by Gibbs sampling, i.e., by iteratively sampling from
Pr(zt | a, z0 . . . zt−1zt+1 . . . zT ). The exact values of ξ̃(1), . . . , ξ̃(S) are then simply
the expectation based on the state transition history:

ξ̃
(s)
iaj = E

[
ξiaj

∣∣∣a, z(s)
]
=

Ciaj + β

Ci +ANβ
,

where N is the (maximum) number of states of the target Pfa, A is the size of the
letter alphabet and β is the smoothing parameter (the prior).

In the actual implementation6, they have fixed the number of iterations of CGS
and sampling points a priori. The values of N and β were determined by 10-fold
cross validation amongst a finite number of candidates. Finding good settings for
these values required quite some computational resources.

Analysis. The result of learning a decision tree that aims to predict the perfor-
mance of team Shibata-Yoshinaka given the problem parameters (unknown to the
participants during the competition) is shown in Figure 6. In the learned tree, we
can clearly observe that the collapsed Gibbs sampling approach of team Shibata-
Yoshinaka performs best when there are many (100k) strings available for training,
or when the target contains few (< 21) states. Moreover, in the other cases, it still
finds distributions close to the optimal one (with an average perplexity difference
of 0.0467).

5.2 Team Hulden

The inference approach of Mans Hulden [44] used three strategies:

6 A version of their algorithm is available at http://www.iip.ist.i.kyoto-u.ac.jp/

member/ry/pfai/



18 Sicco Verwer et al.

size = 20k

num states < 21 0.0113

0.0146 0.0467

16 19

13

yes no

yes no

Fig. 6 Decision tree predicting the performance (perplexity difference with the solution) of
team Shibata-Yoshinaka given the parameters of a problem instance.

1. A basic ”baseline” n-gram strategy with smoothing.
2. Another ”baseline” n-gram strategy without smoothing, but using interpolated

test data.
3. The construction of a fully connected Pfa inferred with Baum-Welch (EM),

each between 5 and 40 states in size. Training was done using only the original
training data, and separately also using reconstructed training data, as in (2).

In the first strategy, the n-gram counts were extracted from the training data
for various values of n (between 2 and 9). Then, the log likelihood of the training
data was calculated and the n yielding the highest log likelihood was used to issue
the probabilities to the test strings for submission. Witten-Bell smoothing (see,
e.g., [17]) was used in all cases.

For the second approach, the n chosen in the first one was used to decide
the optimal window size to use for n-grams. In this strategy, the test data was
used for training as well, and was augmented in an iterative fashion. This because
the original test data represented a skewed distribution as duplicates had been
removed. First, the expected number of occurrences of each string in the test
set was calculated based on the total number of occurrences of that string in the
training and test sets. Based on this expected number, a fractional count of strings
was “added” to the test data, reflecting a guess that the original test data had
contained these duplicates. This process was repeated until convergence (when the
expected string count in the test data no longer changed). These counts were then
used for calculating the probabilities of each string in the test data.

For the third strategy, three randomly initialized Pfa of 5, 10, 20, and 40 states
were trained with Baum-Welch for each problem, after which the one with the
highest log likelihood was submitted (several results in case of approximate ties).
Similarly to the n-gram case, another three runs for each state size were made
using both training and reconstructed test data. However, contrary to the n-gram
strategy, using reconstructed test data for training failed to ever improve on the
basic Baum-Welch that used only the PAutomaC training data for training.

The n-gram solutions were submitted early and the EM solutions later. This
allowed the observation, based on the server feedback, that EM outperformed the
n-grams in most cases (roughly 85% of problems). A notable exception is the two
real data problems where the interpolated n-grams performed best in each case.
As mentioned, using reconstructed test data for training helped in the n-gram
strategy, but not with Baum-Welch, probably because of severe over-fitting.



PAutomaC: a PFA/HMM Learning Competition 19

Analysis. The tree predicting the performance of team Hulden’s Baum-Welch/EM
approach is depicted in Figure 7. Their method performs best on dense prob-
lems (transition sparsity > 0.0215), and excels when the target contains not too
many states (< 35). Overall, the performance is close to the one of the winning
team. From personal communication, we discovered that the amount of comput-
ing power used by team Shibata-Yoshinaka’s method is much more than that of
team Hulden’s. Unfortunately, the influence on the results of the computational
resources could not be measured, nor was it a criterion for the competition itself.

transition sparsity < 0.0215

0.3804 num states < 35

0.0309 0.1501

9

23 16

yes no

yes no

Fig. 7 Decision tree predicting the performance (perplexity difference with the solution) of
team Hulden given the parameters of a problem instance.

5.3 Team Llorens

The approach followed by the Llorens team was two-fold: on one hand, they up-
graded the Alergia algorithm [14] by using ideas from evidence-driven approaches
to state merging. Specifically, they computed all possible merges in a red-blue
framework (see [51]), and performed the one that passed the most statistical tests,
which are computed using Hoeffding’s bound as in Alergia. The second line they
followed was to work on the fact that the test data was known and that there could
be a better strategy than the simple normalization to make probabilities sum to
1 on the test set.

Analysis. The tree predicting the performance of team Llorens’s Alergia-based
approach is depicted in Figure 8. This tree is quite interesting because the state
merging approach adopted by team Llorens is very different from the first two
approaches. First of all, the root decision shows that their method performs best
on target distributions with a small alphabet (< 18). An interesting question is
whether this can be linked to the known problems of state merging methods for
non-probabilistic automata on large alphabets [79]. Secondly, from this tree it
is very clear that the type of generating distribution has a large effect on the
performance. In particular, it confirms that learning a Dpfa works best when the
generating distribution is a Dpfa. Interestingly, in the non-Dpfa case, it performs
better on dense problems (transition sparsity > 0.0795). This seems to indicate
that learning dense non-deterministic distributions is easier (in terms of perplexity)
than learning sparse ones, even when a deterministic model is learned.



20 Sicco Verwer et al.

alphabet size < 18

Dpfa 0.5949

0.0181 transition sparsity < 0.0795

0.4651 0.2000

11

12

10 15

yes no

yes no

yes no

Fig. 8 Decision tree predicting the performance (perplexity difference with the solution) of
team Llorens given the parameters of a problem instance.

5.4 Team Bailly

Team Bailly tackled the competition by using a spectral approach (see [3]). The
main component which is manipulated is the Hankel matrix [58], representing the
counts for every possible prefix-suffix pair. The core of the spectral technique is the
Hankel matrix factorization, from which the parameters of a probabilistic model
can be directly deduced.

Analysis. Team Bailly approached the competition using a new and promising
method for learning probability distributions over strings. This emphasizes the
interest in determining when their algorithm performs well. The PAutomaC data
clearly shows when this is the case (see Figure 9). Although their method per-
formed well on many instances (32), and was leading the competition for a long
time (see Section 4.2), their performance shows large drops on sparse problem in-
stances (transition sparsity < 0.0428). All methods have some trouble with sparse
problems, but significantly less than team Bailly’s spectral approach. Future re-
search is needed to try to determine exactly why the spectral approach has so much
trouble with these instances, the PAutomaC data and generator remain available
for this purpose.

transition sparsity < 0.0208

15.4104 transition sparsity < 0.04281

0.1996 3.1127

7

32 9

yes no

yes no

Fig. 9 Decision tree predicting the performance (perplexity difference with the solution) of
team Bailly given the parameters of a problem instance.



PAutomaC: a PFA/HMM Learning Competition 21

5.5 Team Kepler

The approach applied by the team Kepler [49] uses n-gram models with variable
length. n-grams are represented as a context tree that maps the probabilities of
sequences of symbols. To shrink the state space while working with large n-grams,
the context tree is pruned based on the Kullback-Leibler divergence. Experiments
showed that this approach almost always achieves lower perplexity than the fixed
3-gram model on the PAutomaC training data. However, it is not clear how to
define the maximum size of the n-gram or the pruning threshold value.

Analysis. Team Kepler’s method shows the same behavior with sparse instances
than team Bailly. However, it has in addition trouble learning distributions coming
from generators with a small alphabet. Again, future research will need to point
out why this happens. It is surprising to see that although the relatively simple
n-gram based approach adopted by team Kepler are very popular in practice, it
did not perform as well as the other more complex approaches to learning string
distributions on the PAutomaC data.

transition sparsity < 0.0208

14.6318 alphabet size < 7

4.5713 0.9846

7

10 31

yes no

yes no

Fig. 10 Decision tree predicting the performance (perplexity difference with the solution) of
team Kepler given the parameters of a problem instance.

6 Conclusion

We presented an overview of PAutomaC, the relevant literature on learning proba-
bilistic automata, a brief explanation of the methods used during the competition,
and an analysis of their results. The results of PAutomaC presented in this paper
indicate that the competition was fruitful:

– There were 5 active participating teams from around the world.
– All participants used different (both old and new) methods and were stimu-

lated to improve these. All methods performed much better than the provided
baseline algorithms.

– The PAutomaC data set provides a detailed comparison of the performance of
each of these methods.

– There is a clear winner, and interestingly, they used a method that is in practice
not (yet) commonly applied when learning Pfa.

– The results remain valid using different evaluation criteria.
– Interesting conclusions can be drawn by analyzing the results.



22 Sicco Verwer et al.

In particular, the observation that team Llorens outperforms the winning team
on the deterministic instances is very interesting for future research as it could
provide a method for deciding whether a given data sample is drawn from a de-
terministic distribution or from a non-deterministic one. This could be very useful
during the discretization of data, for instance. Moreover, it would be very inter-
esting to further investigate and hopefully improve the performance of the spec-
tral and n-gram based approaches developed by team Bailly and team Kepler on
sparse problem instances. Last but not least, new Gibbs sampling and EM/Baum-
Welch methods have been developed for Pfa by team Shibata-Yoshinaka and
Team Hulden. Based on their excellent performance in PAutomaC, we can en-
courage anyone interested in learning probability distributions over strings to use
one of these methods. The developed Gibbs sampler performed consistently bet-
ter in PAutomaC, but required much more computational resources. When the
generating distribution is known to be deterministic, we advise a state merging
approach such as the one developed by team Llorens.

Acknowledgements We are very thankful to the members of the scientific committee for
their help in designing this competition. We want to thank all participants and in particular
Raphael Bailly, Cleo Billa, Mans Hulden, Fabio Kepler, David Llorens, Sergio Mergen, Shihiro
Shibata, and Ryo Yoshinaka for their help during the writing of this paper.

References

1. N. Abe and M. Warmuth. On the computational complexity of approximating
distributions by probabilistic automata. Machine Learning Journal, 9:205–260,
1992.

2. D. Angluin. Identifying languages from stochastic examples. Technical Report
Yaleu/Dcs/RR-614, Yale University, March 1988.

3. R. Bailly. QWA: Spectral algorithm. Journal of Machine Learning Research -

Workshop and Conference Proceedings, ACML’11, 20:147–163, 2011.
4. R. Bailly, F. Denis, and L. Ralaivola. Grammatical inference as a principal

component analysis problem. In Proceedings of ICML’09, pages 33–40. Omni-
press, 2009.

5. B. Balle, J. Castro, and R. Gavaldà. Bootstrapping and learning PDFA in
data streams. Journal of Machine Learning Research - Workshop and Conference

Proceedings, ICGI’12, 21:34–48, 2012.
6. L. E. Baum. An inequality and associated maximization technique in statis-

tical estimation for probabilistic functions of Markov processes. Inequalities,
3:1–8, 1972.

7. L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of Markov chains.
Annals of Mathematical Statistics, 41:164–171, 1970.

8. A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio.
Learning functions represented as multiplicity automata. Journal of the Acm,
47(3):506–530, 2000.

9. F. Bergadano and S. Varricchio. Learning behaviors of automata from multi-
plicity and equivalence queries. Siam Journal of Computing, 25(6):1268–1280,
1996.



PAutomaC: a PFA/HMM Learning Competition 23

10. D. M Blei and M. Jordan. Variational inference for dirichlet process mixtures.
Bayesian Analysis, 1(1):121–143, 2006.

11. J. Borges and M. Levene. Data mining of user navigation patterns. In Web

Usage Mining and User Profiling, number 1836 in Lncs, pages 92–111. Springer-
Verlag, 2000.

12. E. Brill, R. Florian, J. C. Henderson, and L. Mangu. Beyond n-grams: Can
linguistic sophistication improve language modeling. In In Proc. of COLING-

ACL-98, pages 186–190, 1998.
13. R. C. Carrasco, M. Forcada, and L. Santamaria. Inferring stochastic regular

grammars with recurrent neural networks. In Proceedings of ICGI’96, volume
1147 of Lnai, pages 274–281. Springer-Verlag, 1996.

14. R. C. Carrasco and J. Oncina. Learning stochastic regular grammars by means
of a state merging method. In Proceedings of ICGI’94, volume 862 of Lnai,
pages 139–150. Springer-Verlag, 1994.

15. R. C. Carrasco, J. Oncina, and J. Calera-Rubio. Stochastic inference of regular
tree languages. Machine Learning Journal, 44(1):185–197, 2001.

16. J. Castro and R. Gavaldá. Towards feasible PAC-learning of probabilistic
deterministic finite automata. In Proceedings of ICGI’08, volume 5278 of Lncs,
pages 163–174. Springer-Verlag, 2008.

17. S. F. Chen and J. Goodman. An empirical study of smoothing techniques for
language modeling. In Acl, pages 310–318. Association for Computational
Linguistics, 1996.

18. A. Clark and F. Thollard. Pac-learnability of probabilistic deterministic finite
state automata. Journal of Machine Learning Research, 5:473–497, December
2004.

19. T. Cover and J. Thomas. Elements of Information Theory. John Wiley and
Sons, New York, NY, 1991.

20. P. Cruz-Alcázar and E. Vidal. Two grammatical inference applications in
music processing. Applied Artificial Intelligence, 22(1–2):53–76, 2008.

21. C. de la Higuera. Grammatical inference: learning automata and grammars. Cam-
bridge University Press, 2010.

22. C. de la Higuera and J. Oncina. Identification with probability one of stochas-
tic deterministic linear languages. In Proceedings of ALT’03, volume 2842 of
Lncs, pages 134–148. Springer-Verlag, 2003.

23. C. de la Higuera and J. Oncina. Learning probabilistic finite automata. In
Proceedings of ICGI’04, volume 3264 of Lnai, pages 175–186. Springer-Verlag,
2004.

24. C. de la Higuera and F. Thollard. Identication in the limit with probability one
of stochastic deterministic finite automata. In Proceedings of ICGI’00, volume
1891 of Lnai, pages 15–24. Springer-Verlag, 2000.

25. F. Denis and Y. Esposito. Learning classes of probabilistic automata. In
Proceedings of Colt 2004, volume 3120 of Lncs. Springer-Verlag, 2004.

26. F. Denis, Y. Esposito, and A. Habrard. Learning rational stochastic languages.
In Proceedings of Colt 2006, volume 4005 of Lncs, pages 274–288. Springer-
Verlag, 2006.

27. F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using non
deterministic finite automata. In Proceedings of ICGI’00, volume 1891 of Lnai,
pages 39–50. Springer-Verlag, 2000.



24 Sicco Verwer et al.

28. F. Denis, A. Lemay, and A. Terlutte. Learning regular languages using RFSA.
In Proceedings of ALT’01, volume 2225 of Lncs, pages 348–363. Springer-
Verlag, 2001.

29. P. Dupont and J.-C. Amengual. Smoothing probabilistic automata: an error-
correcting approach. In Proceedings of ICGI’00, volume 1891 of Lnai, pages
51–62. Springer-Verlag, 2000.

30. P. Dupont, F. Denis, and Y. Esposito. Links between probabilistic automata
and hidden Markov models: probability distributions, learning models and
induction algorithms. Pattern Recognition, 38(9):1349–1371, 2005.

31. Y. Esposito, A. Lemay, F. Denis, and P. Dupont. Learning probabilistic resid-
ual finite state automata. In Proceedings of ICGI’02, volume 2484 of Lnai,
pages 77–91. Springer-Verlag, 2002.

32. J. Gao and M. Johnson. A comparison of bayesian estimators for unsuper-
vised hidden markov model pos taggers. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, pages 344–352. Association
for Computational Linguistics, 2008.

33. R. Gavaldà, P. W. Keller, J. Pineau, and D. Precup. Pac-learning of Markov
models with hidden state. In Proceedings of ECML’06, volume 4212 of Lncs,
pages 150–161. Springer-Verlag, 2006.

34. A. Gelfand and A. Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410):pp. 398–409,
1990.

35. D. Gildea and D. Jurafsky. Learning bias and phonological-rule induction.
Computational Linguistics, 22:497–530, 1996.

36. T. Goan, N. Benson, and O. Etzioni. A grammar inference algorithm for the
world wide web. In Proceedings of Aaai Spring Symposium on Machine Learning

in Information Access, Stanford, CA, 1996. Aaai Press.
37. P. Grünwald. The minimum description length principle, 2007. MIT Press.
38. O. Guttman. Probabilistic Automata and Distributions over Sequences. PhD

thesis, The Australian National University, 2006.
39. O. Guttman, S. V. N. Vishwanathan, and R. C. Williamson. Learnability of

probabilistic automata via oracles. In Proceedings of ALT’05, volume 3734 of
Lncs, pages 171–182. Springer-Verlag, 2005.

40. A. Habrard, M. Bernard, and M. Sebban. Improvement of the state merging
rule on noisy data in probabilistic grammatical inference. In Proceedings of

ECML’03, volume 2837 of Lnai, pages 169–1180. Springer-Verlag, 2003.
41. A. Habrard, F. Denis, and Y. Esposito. Using pseudo-stochastic rational lan-

guages in probabilistic grammatical inference. In Proceedings of ICGI’06, vol-
ume 4201 of Lnai, pages 112–124. Springer-Verlag, 2006.

42. M. Heule and S. Verwer. Exact Dfa identification using Sat solvers. In
Proceedings of ICGI’10, volume 6339 of Lncs, pages 66–79, 2010.

43. J. J. Horning. A study of Grammatical Inference. PhD thesis, Stanford Univer-
sity, 1969.

44. M. Hulden. Treba: Efficient numerically stable EM for Pfa. Journal of Machine

Learning Research - Workshop and Conference Proceedings ICGI’12, 21:249–253,
2012.

45. A. Hasan Ibne, A. Batard, C. de la Higuera, and C. Eckert. Psma: A parallel
algorithm for learning regular languages. In NIPS Workshop on Learning on

Cores, Clusters and Clouds, 2010.



PAutomaC: a PFA/HMM Learning Competition 25

46. F. Jelinek. Statistical Methods for Speech Recognition. The Mit Press, Cam-
bridge, Massachusetts, 1998.

47. M. J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie.
On the learnability of discrete distributions. In STOC, pages 273–282, 1994.

48. M. J. Kearns and U. Vazirani. An Introduction to Computational Learning The-

ory. Mit press, 1994.
49. F. Kepler, S. Mergen, and C. Billa. Simple variable length n-grams for prob-

abilistic automata learning. Journal of Machine Learning Research - Workshop

and Conference Proceedings, ICGI’12, 21:254–258, 2012.
50. S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math.

Statist., 22(1):79–86, 1951.
51. K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the Abbadingo one

Dfa learning competition and a new evidence-driven state merging algorithm.
In Proceedings of ICGI’98, volume 1433 of Lnai, pages 1–12. Springer-Verlag,
1998.

52. D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines - a survey. Proceedings Of the IEEE, 84(8):1090–1123, 1996.

53. P. Milani Comparetti, G. Wondracek, C. Kruegel, and E. Kirda. ProSpEx:
Protocol Specification Extraction. In IEEE Symposium on Security and Privacy,
2009.

54. M. Mohri. Finite-state transducers in language and speech processing. Com-

putational Linguistics, 23(3):269–311, 1997.
55. R. Neal. Markov chain sampling methods for dirichlet process mixture models.

Journal of computational and graphical statistics, 9(2):249–265, 2000.
56. H. Ney, S. Martin, and F. Wessel. Corpus-Based Statiscal Methods in Speech and

Language Processing, chapter Statistical Language Modeling Using Leaving-
One-Out, pages 174–207. Kluwer Academic Publishers, 1997.

57. N. Palmer and P. W. Goldberg. Pac-learnability of probabilistic deterministic
finite state automata in terms of variation distance. In Proceedings of ALT’05,
volume 3734 of Lncs, pages 157–170. Springer-Verlag, 2005.

58. J.R. Partington. An Introduction to Hankel Operators. London Mathematical
Society Student Texts. Cambridge University Press, 1988.

59. A. Paz. Introduction to probabilistic automata. Academic Press, New York, 1971.
60. L. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recoginition. Proceedings of the Ieee, 77:257–286, 1989.
61. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing

sequences. Information and Computation, 103:299–347, 1993.
62. D. Ron, Y. Singer, and N. Tishby. Learning probabilistic automata with vari-

able memory length. In Proceedings of Colt 1994, pages 35–46. Acm Press,
1994.

63. D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic
probabilistic finite automata. In Proceedings of Colt 1995, pages 31–40, 1995.

64. Y. Sakakibara. Grammatical inference in bioinformatics. IEEE Trans. Pattern

Anal. Mach. Intell., 27(7):1051–1062, 2005.
65. A. Sanjeev and B. Boaz. Computational Complexity: A Modern Approach. Cam-

bridge University Press, New York, NY, USA, 1st edition, 2009.
66. L. Saul and F. Pereira. Aggregate and mixed-order Markov models for statis-

tical language processing. In Proceedings of the Second Conference on Empirical

Methods in Natural Language Processing, pages 81–89. ACL, 1997.



26 Sicco Verwer et al.

67. C.R. Shalizi and J.P. Crutchfield. Computational mechanics: Pattern and
prediction, structure and simplicity. Journal of statistical Physics, 104:817–879,
2001.

68. C. Shibata and R. Yoshinaka. Marginalizing out transition probabilities for
several subclasses of Pfas. Journal of Machine Learning Research - Workshop

and Conference Proceedings, ICGI’12, 21:259–263, 2012.
69. A. Stolcke. Bayesian Learning of Probabilistic Language Models. Ph.D. disserta-

tion, University of California, 1994.
70. A. Sudkamp. Languages and Machines: an introduction to the theory of computer

science. Addison-Wesley, third edition, 2006.
71. F. Thollard. Improving probabilistic grammatical inference core algorithms

with post-processing techniques. In Proceedings of ICML’01, pages 561–568.
Morgan Kauffman, 2001.

72. F. Thollard and A. Clark. Pac-learnability of probabilistic deterministic finite
state automata. Journal of Machine Learning Research, 5:473–497, 2004.

73. F. Thollard and P. Dupont. Entropie relative et algorithmes d’inférence gram-
maticale probabiliste. In Actes de la conférence Cap ’99, pages 115–122, 1999.

74. F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic Dfa inference
using Kullback-Leibler divergence and minimality. In Proceedings of ICML’00,
pages 975–982. Morgan Kaufmann publishing, 2000.

75. S. Verwer, M. de Weerdt, and C. Witteveen. Learning driving behavior by
timed syntactic pattern recognition. In IJCAI’11, pages 1529–1534, 2011.

76. S. Verwer, M. Weerdt, and C. Witteveen. A likelihood-ratio test for iden-
tifying probabilistic deterministic real-time automata from positive data. In
Proceedings of ICGI’10, volume 6339 of LNCS, pages 203–216. Springer-Verlag,
2010.

77. E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco.
Probabilistic finite state automata – part I. Pattern Analysis and Machine

Intelligence, 27(7):1013–1025, 2005.
78. E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, and R. C. Carrasco.

Probabilistic finite state automata – part II. Pattern Analysis and Machine

Intelligence, 27(7):1026–1039, 2005.
79. N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and P. Dupont.

Stamina: a competition to encourage the development and assessment of soft-
ware model inference techniques. Empirical Software Engineering, pages 1–34,
2012.

80. C. S. Wetherell. Probabilistic languages: a review and some open questions.
Computing Surveys, 12(4):361–379, 1980.

81. Tzay Y. Young. Handbook of Pattern Recognition and Image Processing: Com-

puter Vision, volume 2. Academic Press, 1994.
82. M. Young-Lai and F. W. Tompa. Stochastic grammatical inference of text

database structure. Machine Learning Journal, 40(2):111–137, 2000.
83. C. Zhai and J. Lafferty. A study of smoothing methods for language models

applied to information retrieval. ACM Trans. Inf. Syst., 22:179–214, 2004.



PAutomaC: a PFA/HMM Learning Competition 27

Appendix

Nb Solution Hulden Kepler Bailly Shibata Llorens 3-gram
1 29.898 30.131 30.547 30.147 29.994 30.395 33.415
2 168.331 168.455 174.866 168.429 168.430 168.420 177.950
3 49.956 50.044 55.540 50.174 50.042 50.675 68.248
4 80.818 80.837 85.480 80.844 80.827 80.843 101.161
5 33.235 33.241 33.427 33.237 33.237 33.238 44.616
6 66.985 67.044 82.35 67.059 67.007 67.000 110.059
7 51.224 51.265 52.092 51.264 51.249 51.259 57.134
8 81.375 81.710 85.849 81.799 81.403 81.710 106.194
9 20.840 20.889 26.920 25.229 20.856 20.850 66.094
10 33.303 33.401 34.554 33.724 33.334 34.039 44.986
11 31.811 32.138 33.248 32.138 31.853 32.546 37.909
12 21.655 21.671 21.912 21.671 21.663 21.769 25.086
13 62.806 63.073 120.565 100.681 62.820 62.816 157.789
14 116.792 116.841 118.602 116.914 116.836 116.839 125.827
15 44.242 44.285 45.208 45.285 44.274 44.701 48.155
16 30.711 30.844 31.809 35.586 30.7187 30.7186 41.168
17 47.311 47.354 48.109 48.735 47.352 47.9215 51.804
18 57.329 57.339 57.534 76.103 57.3316 57.3320 65.941
19 17.877 17.930 18.816 19.316 17.880 17.919 21.118
20 90.972 91.016 95.304 91.351 90.999 93.504 108.990
21 30.519 30.605 35.578 30.714 30.568 32.217 46.839
22 25.982 26.078 26.136 26.010 25.988 26.080 29.904
23 18.408 18.418 18.720 18.547 18.413 18.447 20.805
24 38.729 38.737 42.366 38.753 38.7317 38.7322 48.068
25 65.735 65.978 67.929 66.069 65.783 67.266 86.387
26 80.743 82.657 111.502 141.082 80.833 80.837 211.986
27 42.427 42.473 43.511 42.712 42.464 42.456 46.825
28 52.744 52.855 53.583 53.084 52.841 53.198 65.570
29 24.031 24.199 28.580 24.817 24.042 24.106 43.389
30 22.926 22.932 23.394 22.960 22.934 23.211 25.291
31 41.214 41.243 42.531 41.417 41.233 41.623 46.323
32 32.613 32.743 41.975 38.300 32.622 32.619 52.932
33 31.865 31.872 32.2194 31.920 31.871 32.030 34.485
34 19.955 20.428 20.581 20.476 19.969 20.542 23.499
35 33.777 34.326 34.714 33.835 33.800 34.295 42.808
36 37.986 38.203 38.206 38.176 38.018 38.405 39.686
37 20.980 21.016 21.025 21.027 21.001 21.016 21.106
38 21.446 21.494 21.650 21.514 21.459 21.596 21.736
39 10.002 10.0029 10.054 10.005 10.0034 10.004 10.262
40 8.201 8.255 8.366 8.496 8.207 8.206 8.847
41 13.912 13.941 13.942 13.932 13.921 13.940 14.0142
42 16.004 16.008 16.080 16.008 16.007 16.005 16.431
43 32.637 32.747 32.841 32.817 32.723 32.777 32.862
44 11.709 11.798 11.920 11.778 11.725 12.041 12.082
45 24.042 24.048 24.252 24.084 24.050 24.045 24.153
46 11.982 11.999 12.136 12.082 11.988 12.106 12.272
47 4.1190 4.124 4.144 4.120 4.1192 4.1191 4.671
48 8.036 8.042 8.183 8.045 8.039 8.191 8.417

Table 1 Perplexity scores of active participants, the 3-gram baseline, and the solutions for
all problem instances.



28 Sicco Verwer et al.

Nb num states alphabet size symbol sparsity trans. sparsity size type
1 63 8 0.3274 0.0872 20k Hmm
2 63 18 0.3280 0.0166 20k Hmm
3 25 4 0.7900 0.0790 20k Pfa
4 12 4 0.4375 0.1508 100k Pfa
5 56 6 0.2946 0.0217 20k Hmm
6 19 6 0.4825 0.0526 20k Dpfa
7 12 13 0.2372 0.0833 20k Dpfa
8 49 8 0.3622 0.0645 100k Pfa
9 71 4 0.3873 0.0141 20k Dpfa
10 49 11 0.6327 0.0221 20k Pfa
11 47 20 0.4947 0.0213 20k Dpfa
12 12 13 0.3526 0.1116 20k Pfa
13 63 4 0.6905 0.0159 100k Dpfa
14 15 12 0.4944 0.0800 20k Hmm
15 26 14 0.4121 0.0672 20k Pfa
16 49 10 0.6184 0.0204 100k Dpfa
17 22 13 0.2168 0.1738 20k Pfa
18 25 20 0.2260 0.0400 100k Dpfa
19 68 7 0.3256 0.0350 100k Hmm
20 11 18 0.3939 0.1570 20k Hmm
21 56 23 0.2531 0.0497 20k Hmm
22 55 21 0.0575 0.2411 100k Pfa
23 33 7 0.3810 0.1148 100k Hmm
24 6 5 0.5000 0.1666 20k Dpfa
25 40 10 0.5775 0.0456 20k Hmm
26 73 6 0.5868 0.0137 20k Dpfa
27 19 17 0.6378 0.0526 20k Dpfa
28 23 6 0.7464 0.1134 20k Hmm
29 36 6 0.3750 0.0384 20k Pfa
30 9 10 0.6555 0.1751 20k Pfa
31 12 5 0.3833 0.1992 20k Pfa
32 43 4 0.7733 0.0233 100k Dpfa
33 13 15 0.5949 0.1183 20k Hmm
34 64 21 0.3705 0.0281 20k Pfa
35 47 20 0.3553 0.0213 20k Dpfa
36 54 9 0.6317 0.0748 100k Hmm
37 69 8 0.5217 0.1825 100k Pfa
38 14 10 0.7857 0.1939 20k Hmm
39 6 14 0.4167 0.1810 20k Pfa
40 65 14 0.6473 0.0154 20k Dpfa
41 54 7 0.6931 0.1430 100k Hmm
42 6 9 0.5185 0.1667 20k Dpfa
43 67 5 0.5970 0.1641 20k Pfa
44 73 13 0.6333 0.0561 20k Hmm
45 14 19 0.8008 0.0867 20k Hmm
46 19 23 0.4851 0.0973 20k Pfa
47 61 15 0.3027 0.0164 100k Dpfa
48 16 23 0.6957 0.0625 20k Dpfa

Table 2 The parameters of all generated problem instances: number of states, alphabet size,
symbol sparsity, transition sparsity, size of training set, and type of machine.


