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Abstract—The multiplication of wireless standards is introducing
the need of flexible multi-standard baseband receivers. A multi-ASIP
approach for turbo decoding is an answer to reach high throughput
and high flexibility. The increasing demand of throughput for new
greedy application on mobile devices and the reduction of latency
between two frames create the need of an efficient reconfiguration
management of such multi-ASIP platforms. In this paper, we propose
to tackle reconfiguration optimization of a multi-standard ASIP for
turbo decoding developed during previous work. Results show that
for an area overhead of 0.012 mm2 in 65 nm CMOS technology, a
significant reconfiguration time optimization is achieved thanks to a
reduction of the ASIP configuration load of 70%. Moreover, in a multi-
ASIP context in which 8 ASIPs are implemented the configuration load
is divided by ten thanks to the possibility to use a multicast mechanism
for ASIP configuration loading.

I. INTRODUCTION

The evolution of recent wireless communication standards aims
at increasing the requirements in terms of throughput, robustness
against destructive channel effects and convergence of services
in a smart terminal. Turbo codes [1] are frequently adopted
in these wireless standards to reach a low bit error rate. The
increasing throughput requirement often imposes the efficient ex-
ploitation of different parallelism levels. In this context, multi-
ASIP (Application-Specific Instruction-set Processor) architectures
for turbo decoding [2], [3], [4] is a promising approach to reach
high flexibility, high throughput and energy efficiency. In [2] and
[3], authors propose to implement the ASIP described in [5]
in order to build a flexible multi-ASIP based turbo decoder for
LTE requirements. This ASIP is configured through an interleaver
memory, a program memory and the dynamically Reconfigurable
Channel Code Control (DRCCC). The DRCCC is a look-up table
based unit which allows the configuration of the structure of the
convolutional code, the internal data-path, and the configuration
memory. Two configurations are stored in this unit, a working
and a shadow configuration. The working configuration holds the
parameters that are actually used while the shadow configuration
is used to prepare the next configuration. One cycle switching can
be performed between these two configurations thanks to a special
instruction. However, using a specific instruction in the program to
switch between two configurations limits the flexibility because the
reconfiguration scenario is defined statically. In [4], authors present
the UDec architecture. It consists of 8 ASIPs interconnected via a
Network on Chip (NoC). Within each component decoder ASIPs
are also connected by a ring network for metric exchanges. Each
ASIP is configured through a program and a configuration memory.
The configuration memory contains several communication param-
eters which are loaded into internal registers of the ASIP during
an initialization step, while the program describes the control flow
for the initializing loop and the decoding loops.

Unfortunately, the dynamic reconfiguration aspect of these
platforms is superficially addressed. All these platforms can be

reconfigured through program and configuration memories but
the configuration mechanisms are not optimized for an efficient
implementation in a multi-core system. In this paper, we propose
original optimizations for an efficient reconfiguration of multi-
ASIP architectures. The proposed approach is illustrated through
the flexible DecASIP core described in [4].

The rest of this paper is organized as follows. Section II intro-
duces the turbo decoding parameters and describes the DecASIP.
Section III presents the proposed optimizations to reach an efficient
configuration of the multi-ASIP platform. Section IV describes the
implementation of the optimizations into the DecASIP processor
and the evaluation of the (re)configuration performance. Finally,
section V concludes the paper.

II. DECASIP

The DecASIP [4] implements the Max-Log MAP algorithm as
described in [6]. It supports convolutional turbo codes up to eight-
state double binary codes or sixteen-state single binary codes.
Large frames are processed by dividing the frame into N windows
each with a maximum size of 64 symbols. Each ASIP can have
a maximum of 12 windows. The DecASIP is configured through
a program memory and a configuration memory that respectively
contain the instructions to perform the decoding algorithm and
all parameters required to perform the initialization of the ASIP.
Since the DecASIP is designed to be integrated in a multi-ASIP
architecture as described in [4], it requires several parameters
to deal with a subblock of the frame and several parameters to
configure the ASIP mode. Concerning the subblock partitioning,
each ASIP is configured with the size and the number of windows
it has to decode. Furthermore, the last window size can be different
so it corresponds to an additional parameter. In a single binary
turbo code mode, the address of the tail bits in memory, the size
and the number of windows for the tail bits have to be configured.
Parameters for the ASIP mode correspond to the location of
the ASIP in the architecture, the number of ASIPs required, the
parameter which defines if the current ASIP is in charge of tail
bits or not, the target standard (3GPP-LTE, WIMAX, or DVB-RCS)
and the scaling factor for extrinsic information. Finally, some seed
values are necessary for address generation in order to exchange
information over the NoC that connects the ASIPs of each decoder
component.

The work presented in [4] on the proposal of the DecASIP
architecture focuses simply on providing the target flexibility
and performance requirements in terms of throughput and area
efficiency. Indeed, the topic of dynamic reconfiguration is not
addressed. Despite of the proposed high flexibility, it presents some
lacks to offer an efficient reconfiguration. The next section points
out theses lacks and proposes solutions to implement an efficient
reconfigurable ASIP in a multi-ASIP architecture context.



bit 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
@0 - Tail ASIPId
@1 Turbo Seed 0 Turbo Seed 1
@2 - TurboInitIteration Maxiteration State NumSteps
@3 Turbo Step 0 Turbo Step 1
@4 Turbo Step 2 Turbo Step 3
@5 Turbo Step 4 Turbo Step 5
@6 Turbo Step 6 Turbo Step 7
@7 - @ Tail bits Scaling Factor Mode
@8 Turbo PrevStep Blocklength in bits
@9 - NumASIPs StepIndex WindowSize LastWindowSize
@10 - CurrentWindowN norm CurrentWindowID tail WindowN tail

Table I
CONFIGURATION MEMORY ORGANIZATION

III. PROPOSED OPTIMIZATIONS

We propose to reach an efficient dynamic reconfiguration of
the DecASIP through several optimization techniques. The first
technique concerns the storage optimization of configuration pa-
rameters. The second technique proposes a new configuration
memory organization. The third technique introduces a generic
program independent of the configuration to be performed and
tackles the management of interframe delay since the ASIP is
currently reseted after each processed frame. The final technique
deals with the multi-configuration storage.

A. Configuration parameters storage

To reach (re)configuration efficiency, we propose to move all pa-
rameters defined in the instruction code words to the configuration
memory. This solution allows to (re)configure only one memory to
change all configuration parameters. Furthermore, when the ASIP
is configured, the configuration memory can be accessed without
any conflict since the configuration parameters are transferred into
internal registers of the ASIP during the initialization step. Thus,
the configuration transfer can be partially or completely masked
by loading the next configuration in configuration memory during
the processing of the current frame. If the configuration loading
is completely masked, the configuration overhead consists in the
initialization step only. The next sub-section presents a way to
integrate the new parameters in a smart memory organization.

B. Configuration memory organization

In order to improve the (re)configuration of the ASIP, it is
essential to analyze the organization of the configuration memory.
The configuration parameters stored in the configuration memory
can be divided in four categories: 1) domain dependent, 2) identical
for all ASIPs, 3) different for all ASIPs and 4) different for the
last ASIPs which decode the tail bits in single binary turbo code
mode. A smart memory organization should allow an efficient
broadcasting of the configuration parameters to the required ASIPs.
According to the previously described categories, we create four
groups which occupy four different parts of the configuration
memory.

Table I shows configuration memory organization. It is built as
follows: (1) from address @0 to @1, parameters can be different
for each ASIP. Furthermore, to optimize the initialization step of
ASIP, the parameter Tail which indicates if the ASIP has to perform
or not the tail bits is included in this group. Only the last two
ASIPs are concerned by the tail bits in single binary turbo code
mode; (2) from address @2 to @6, parameters stored are domain
dependent; (3) from address @7 to @10, parameters stored are the

same for all ASIPs. This organization allows a good way for a fast
reconfiguration at the platform level. Indeed, multicast mechanisms
can be used to load the configuration in a multi-ASIP architecture in
order to minimize data transfers load. In this context, two multicast
transfers are necessary to send domain dependent parameters to all
ASIPs and one multicast transfer for parameters that are the same
for all ASIPs. Finally, unicast transfers are used to load the ASIP
dependent parameters.

C. Generic program
Three different programs are currently used in the DecASIP: two

programs for single binary turbo code and one program for duo
binary turbo codes. In single binary mode, after the initialization
step, the last two ASIPs have to perform the tail bits while other
ASIPs execute NOP operations. So, a particular program is loaded
in these last two ASIPs. In duo binary mode, the frames are
decoded after the initialization step. We propose to merge these
three programs to one unique program presented in Table II.
This solution allows to consider a single program for different
configurations and thus reduces the number of reconfigurations. For
this purpose, the program which integrates the tail bits computation
is used as a reference program. From instruction 1 to 4 in Table
II, the initialization phase of the ASIP is performed. When the
ASIP INIT is executed, one configuration memory line is read and
corresponding internal registers are initialized. The instruction Re-
peat until owns 2 parameters. The first one marks the boundary of
the loop while the second one indicates that the number of iterations
of the loop depends of the configuration size. The new memory
organization previously described requires 11 read accesses. Hence
the initialization step requires 13 clock cycles. (i.e. one clock cycle
to read the memory, one more clock cycle to initialize the loop,
and another clock cycle to complete the initialization of the ASIP).
Instructions from line 5 to 16 concern the tail bits decoding in
single binary mode. In duo binary mode, no tail bits have to be
decoded. In order to minimize the impact on the complexity of the
ASIP by adding new control instructions, we have chosen to modify
the Fetch pipe stage in order to detect and replace the instructions
for tail bits with NOP instructions if the ASIP is not concerned.
Hence, using a unique program in this mode adds 12 extra NOP
instructions before the decoding which corresponds to tail bits
computation in single binary mode. However, the extra introduced
clock cycles are negligible regarding the number of cycles required
to perform the decoding on one entire frame. Instructions from
line 17 to 40 concern the decoding of the frame. This part of the
program is common for single and duo binary turbo code modes.
In order to create a generic program, the instructions Repeat until,



k Label Instruction
1 Repeat until init 0
2 NOP
3 ASIP INIT
4 init: NOP
5 SET WindowsN 0
6 SET WindowsInit 0
7 TailBits
8 ZOLB RW0, RW0, LW0
9 NOP
10 DATA LEFT ADD metric column2
11 RW0: NOP
12 LW0: NOP
13 EXCH BETA ALPHA
14 NOP
15 NOP
16 NOP
17 SET WindowsN 1
18 SET WindowsInit 1
19 Repeat until LOOP 1
20 PUSH
21 ZOLB RW1, CW1, LW1
22 NOP
23 DATA LEFT ADD metric column2
24 RW1: NOP
25 EXCH BETA ALPHA
26 CW1: NOP
27 DATA RIGHT ADD metric column2
28 LW1: EXTCALC ADD info line2
29 WINDOW INIT ALPHABETA 0 3
30 NOP
31 WINDOW INIT ALPHABETA 4 7
32 HARD DECISION
33 NOP
to NOP
39 NOP
40 LOOP: NOP
41 ASIP STOP

Table II
GENERIC PROGRAM ASSEMBLY CODE

SET WindowsN and SET WindowsInit have to be independent of
the configuration parameters. For this purpose, these instructions
own an additional parameter that changes depending of the context.
This parameter indicates which configuration parameter stored in
internal register has to be used with this instruction. For example,
the instruction Repeat until LOOP line 1 is associated with the
additional parameter 0. When this instruction is read, the number
of iterations of the loop is read in the internal register that contains
the configuration size while it is read in the register that contains
the maximum number of decoding iterations when this additional
parameter is 1 (line 19 in Table II).

In order to allow the decoding of consecutive frames without
reconfiguration, the instruction ASIP STOP in line 41 tackles the
interframe management. It is used to trigger the reset of all internal
registers which are read during the decoding of the first symbol of
a new frame. This reset avoids interferences caused by previous
data generated during decoding of the previous frame. Afterwards,
ASIP is stopped, and waits for a new trigger on the Restart pin to
perform a new frame with the same configuration without a new
initialization phase of the ASIP. The Reset pin is used when a new
configuration has been loaded in the configuration memory.

D. Multi-configuration
Recent wireless mobile terminals deal with several communi-

cation standards and are able to concurrently execute applications
that simultaneously access to the network. In this context, it is
interesting to have several configurations available in the memory
and to switch between one to another quickly. Furthermore, when
configurations are often executed, storing these configurations in

Pipeline Register Total
file

DecASIP 0.078 0.076 0.175
New ASIP 0.080 0.087 0.187

Diff. 0.002 0.011 0.012
+2.6% + 14.5% +6.8%

Table III
ASIP AREA COMPARISON IN mm2

the configuration memory saves data transfers to load the memory
and consequently reduces the penalty due to configuration transfers.
For this purpose, we need to design the ASIP to manage these
different configurations. A simple way to address this point, is to
add in the configuration memory the address of the configuration
that has to be loaded into the ASIP. This address is stored in the first
address of the configuration memory. So, during the initialization
step, the ASIP reads the first data from the configuration memory
which corresponds to the address of the next configuration in
memory to be loaded. Then the configuration parameters are read in
the configuration memory starting from this address and the ASIP
internal registers are configured.

Optimizations described in this section allow to reduce the
(re)configuration impact: 1) locally through the optimization of the
storage of configuration parameters to efficiently use the memory
capacity and through the possibility to decode several frames
without a new initialization step of the ASIP and 2) globally thanks
to the new memory organization and the generic program which
reduce the total configuration load to transfer when a new configu-
ration has to be performed. Moreover, the multi-configuration man-
agement is becoming a key feature to optimize the management of
a mobile device which deals with several communication standards
and applications. The next section presents the implementation and
the impact of proposed optimizations in the DecASIP.

IV. IMPLEMENTATION AND RESULTS

A. ASIP implementation

Optimizations described in Section III have been implemented
on the DecASIP presented in [4]. Interframe management has been
implemented by adding extra input pins to the ASIP. These pins can
be driven to indicate the address of the next configuration in the
configuration memory. This choice has been done to reduce the
development time of the new ASIP. Moreover, to provide more
flexibility for future configuration organization, input pins have
been added to inform the ASIP about the size of the configuration.
The ASIP was modeled in LISA language using Synopsys Pro-
cessor Designer [7]. Synthesis of the previous and the new cores
was done with 65nm CMOS technology with a clock frequency
objective equals to 500MHz. Synthesis results have been extracted
to determine the impact of the optimizations on the pipeline and
the register file of the ASIP.

Regarding results from Table III, the global logic overhead on
the ASIP is 6.8% ( 0.012 mm2 ). The new pipeline of the ASIP
introduces an area overhead of 2.6% (0.002 mm2). This overhead
is spread along the low complex pipeline stages (i.e. pre-fetch,
fetch, decode, and operand fetch) that are in charge of one or
two optimizations. This implementation limits the impact on the
area on the complex pipeline stages in charge of the decoding
treatments. On the register file side, interframe management and
the larger number of parameters to be stored in internal registers



Config. Program 1 ASIP n ASIPs
parameters memory

New ASIP 286 - 286 n.52+260+104
DecASIP 336 640 976 n.976

Gain 14% 100% 70% 90% (n = 8)
[5] 383 ∼1080 1463 n.1463

+ Interleaver + Interleaver + n.Interleaver
Gain 25% 100% 80% 93% (n = 8)

Table IV
CONFIGURATION AND PROGRAM BIT LOAD COMPARISON IN BITS

cause a significant impact on the register file area. This increasing
is around 14.5% (0.011 mm2). The area overhead is mainly due
to the additional connections and registers used to re-initialize the
metrics register between two frames.

B. Dynamic reconfiguration performance

In this section, we evaluate the gain of proposed optimizations
on the reconfiguration timing performance. For this purpose, we
consider the following reconfiguration steps: 1) The transfer of con-
figuration parameters in the configuration memory of one or several
ASIPs in a multi-ASIP context. 2) The ASIP starts the initialization
process. During this step, the ASIP reads the configuration stored
in configuration memory and initializes internal registers. Then, the
ASIP is ready to execute the computation on the input frame. 3)
Once the computation on a frame is done, two possible scenarii
can appear: the same configuration is used for the next frame or
a new configuration is required. If the same configuration is used
the Restart input pin is triggered when the input data is available,
else, the steps 1) and 2) are performed again.

Table IV compares the configuration and program load (in bits)
for the proposed ASIP, the original DecASIP presented in [4] and
the ASIP presented in [5]. For one ASIP, we observe that the
proposed ASIP can be configured with 286 bits instead of 976
bits thanks to the generic program described in Section III-C while
1463 bits and the complete interleaver table are required for the
ASIP in [5]. Moreover, the new memory organization proposed in
Section III-B allows the optimization of the configuration memory
loading. Indeed, parameters can be sent to several ASIPs through a
multicast mechanism. Thus, in a multi-ASIP context, each original
ASIP has to be configured with its own configuration and program
memory while configuration memory of the proposed new ASIP
can be loaded using a multicast mechanism as follows: 52 bits are
independently loaded in each ASIP. ASIPs that compose the same
decoder component are loaded with 130 common bits. Finally, 104
configuration bits are broadcasted to all ASIPs. Thus, the impact
of the number of ASIPs on the configuration load is significantly
reduced: n.52 bits instead of n.976 bits, where n is the number of
ASIPs implemented. For example, if 8 ASIPs are implemented in
a multi-ASIP platform, the configuration load is 7808 bits with the
original DecASIP, 11704 bits for [5] plus the interleaver tables
and 780 bits with the proposed ASIP. Thus, in this case the
configuration load is divided by 10 and 15 compared the DecASIP
and the ASIP from [5] respectively.

The new configuration memory organization also impacts the
initialization time of the ASIP by reducing the number of read ac-
cesses to the memory. Only 11 read accesses are necessary instead
of 15 in the original ASIP. Moreover, thanks to the new interframe
management presented in Section III-C, the proposed ASIP can
execute the same configuration without a new initialization step.

When the configuration corresponding to the next frame is already
stored in the configuration memory, the reconfiguration process
consists in: 1) drives the input pins of the ASIP to indicate the
location of the next configuration and 2) reset the ASIP to launch
the initialization step. In this case the ASIP can be reconfigured
in 15 clock cycles (with 13 clock cycles to initialize the ASIP) if
we assume that two cycles are necessary to drive the input pins of
the ASIP which define the configuration location in the memory
and launch the ASIP. Furthermore, when the initialization step is
performed, the ASIP does not read the configuration memory until
the next initialization. Hence, during the computation on a frame,
configuration parameters can be loaded in the configuration mem-
ory. Hence, the memory loading process can be totally masked.
If it is masked, the complete (re)configuration of a multi-ASIP
platform represents an overhead of around 15 clock cycles. This
low (re)configuration time overhead allows the implementation of
such an optimized ASIP in multi-ASIP architecture for future high
throughput and low latency requirements.

V. CONCLUSION

Multi-ASIP architectures for turbo decoding is a promising ap-
proach to reach high flexibility and high throughput requirements.
However, configuration of such multi-core platforms is becoming
a critical point. The configuration optimizations presented in this
paper allow the reduction of the configuration load of 70% com-
pared to the original ASIP. Furthermore, in a multi-ASIP context
implementing 8 ASIPs, the proposed smart configuration memory
organization allows dividing the configuration load by 10 using
a multicast mechanism. Future work targets the implementation
of a configuration interconnect structure implementing multicast
mechanism and a configuration manager managing the configura-
tion decision and generation in a flexible multi-ASIP architecture.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Commu-
nications, 1993. ICC 93. Geneva. Technical Program, Conference
Record, IEEE International Conference on, vol. 2, may 1993, pp.
1064 –1070 vol.2.

[2] C. Brehm, T. Ilnseher, and N. Wehn, “A scalable multi-ASIP ar-
chitecture for standard compliant trellis decoding,” in International
SoC Design Conference (ISOCC), 2011, pp. 349 –352.

[3] T. Vogt, C. Neeb, and N. Wehn, “A reconfigurable multi-processor
platform for convolutional and turbo decoding,” in Proc. of In-
ternational Workshop on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2006, pp. 16–23.

[4] P. Murugappa, A.-K. R., A. Baghdadi, and M. Jézéquel, “A
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