
HAL Id: hal-00873978
https://hal.science/hal-00873978

Submitted on 9 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient on-chip configuration infrastructure for a
flexible multi-ASIP turbo decoder architecture

Vianney Lapotre, Hübner Michael, Guy Gogniat, Purushotham Murugappa
Velayuthan, Amer Baghdadi, Jean-Philippe Diguet

To cite this version:
Vianney Lapotre, Hübner Michael, Guy Gogniat, Purushotham Murugappa Velayuthan, Amer Bagh-
dadi, et al.. An efficient on-chip configuration infrastructure for a flexible multi-ASIP turbo decoder ar-
chitecture. ReCoSoC 2013 : 8th IEEE International Workshop on Reconfigurable and Communication-
Centric Systems-on-Chip, Jul 2013, Darmstadt, Germany. �10.1109/ReCoSoC.2013.6581518�. �hal-
00873978�

https://hal.science/hal-00873978
https://hal.archives-ouvertes.fr

An efficient on-chip configuration infrastructure for a flexible multi-ASIP turbo decoder
architecture

Vianney Lapotre∗, Michael Hübner †, Guy Gogniat∗, Purushotham Murugappa‡, Amer Baghdadi‡ and Jean-Philippe Diguet∗
∗Univ. Bretagne Sud, UMR6285, Lab-STICC, F56100 Lorient, France. Email: firstname.lastname@univ-ubs.fr

†Rurh-Universität Bochum, ESIT, Bochum, Germany. Email: michael.huebner@rub.de
‡Telecom Bretagne, UMR6285, Lab-STICC, F29200 Brest, France. Email: firstname.lastname@telecom-bretagne.eu

Abstract—Dynamic reconfiguration of multiprocessor platforms is
an important challenge for System-on-Chip designers. Addressing this
issue is mandatory in order to manage the increasing number of
applications and execution conditions that multiprocessor platforms
have to face. In this paper, a novel configuration infrastructure for
the UDec multi-ASIP turbo decoder architecture is presented. Our
approach leads to split the interconnection architecture in two subsets,
one dedicated for data and another dedicated for configuration. Indeed
both types of communication do not have the same requirements. Our
novel configuration infrastructure, which proposes an area efficient and
low latency solution, has been validated through a two-step approach.
First a SystemC/VHDL mixed simulation model has been developed to
perform an early performance evaluation, second a hardware FPGA
prototype has been built. Results show that up to 64 processing
elements can be dynamically configured in 5.352 µs.

Keywords-Multi-ASIP; Reconfiguration; Self-adaptation; Turbo de-
coder;

I. INTRODUCTION

The increasing demand of flexibility, energy efficiency and
throughput requirement for telecommunication applications leads
designers to build dynamically reconfigurable application specific
multiprocessor platforms. In this context the UDec architecture
presented in [1] is a flexible multi-ASIP turbo decoder. It con-
sists of Application Specific Instruction set Processors (ASIP)
interconnected through a Network on Chip (NoC) dedicated to
data exchanges. The flexibility of the UDec architecture comes
from a configuration memory associated to each ASIP. Each time
a new configuration has to be launched, each ASIP downloads
the corresponding parameters from its configuration memory. This
flexibility must rely on a configuration infrastructure in order to
transfer new parameters to configuration memories. Moreover, due
to the increasing requirements in terms of throughput and low
latency, the available reconfiguration time between two data frames
decreases in recent communication standards. Fig. 1.a illustrates
a scenario in which three frames are serially decoded with three
different configurations. The configuration latency of a frame
(noted ∆tConfig) is constrained by the previous frame decoding
duration. Fig. 1.b shows the frame duration for a frame size of 2048
bits depending on the decoding throughput. This example illustrates
how the available time to decode a frame critically decreases when
the throughput requirement increases. Consequently, reaching a
reconfiguration time below 10 µs will be a key concern to face
expected throughput of future communication standards like LTE
Advanced which provides throughput up to 1Gbps. Management of
dynamic reconfiguration of such multiprocessor channel decoder is
not well addressed in the literature. To face these requirements this
paper proposes an optimized on-chip configuration infrastructure
dedicated to configuration data transfer in a dynamically reconfig-
urable application specific multiprocessor platform.

Several configuration infrastructures and strategies have been

0

5

10

15

20

25

30

35

40

45

50

10 80 150 220 290 360 430 500 570 640 710 780 850 920 990

fr
a

m
e

 d
u

ra
ti

o
n

 (
in

 µ
s)

LTE cat.4 (2011)

(150 Mbps ; 14 µs)

LTE Advanced (2014)

(1 Gbps ; 2.5 µs)

HSPA + (2010)

(84 Mbps ; 24 µs)

LTE cat.5 (2011)

(300Mbps ; 7 µs)

Config. Frame n+1Config. Frame n

Frame n-1 Frame n Frame n+1

Config. Frame n+2

Time

ΔtConfig (n+1)

a) Configuration latency constraint

Decoding

Configuration

Frame duration (n)

10 80 150 220 290 360 430 500 570 640 710 780 850 920 990

Throughput (in Mpbs)

b) Frame decoding duration for a 2048 bits frame

Figure 1. Configuration latency constraint and frame duration

developed for recent reconfigurable multiprocessor architectures
dedicated to multimedia and telecommunication applications. In [2]
and [3], configurations are distributed among several configuration
servers that provide configuration data on demand. In [2] configura-
tion servers are dedicated resources embedded in an heterogeneous
platform while in [3] each cluster of DSPs corresponds to a config-
uration server that provides a complete or a part of a configuration.
In both approaches, a unique NoC is used for application and
configuration data as it is assumed that configuration transfers do
not negatively impact the application data throughput. However,
in [1] the NoC is designed for interleaving process and cannot
be used to configure ASIPs without reducing data throughput.
Indeed, this NoC consists of two unidirectional butterfly NoCs
that are optimized for application data. In this case, an additional
configuration interconnect is mandatory to provide configuration
mechanisms that do not lower decoding performances.

In [4], clusters of DSPs are connected through a NoC for appli-
cation data exchanges and a dedicated bus is used for both control
and configuration transfers. A central controller sends configuration
commands to local cluster controllers that download configurations
from a central shared memory using DMA accesses. Thus, each
component connected to the bus is a master. Extra hardware is
required in order to manage and to arbitrate these transfers. In
this paper, we propose a dedicated configuration infrastructure
optimized for the architecture described in [1]. It consists of a
low complexity unidirectional on-chip bus implementing multicast
mechanisms and incremental data burst in order to reduce the
configuration latency. Moreover, a configuration manager, which
is the only master on the bus, is in charge of the configuration
generation at run-time. Compared to existing efforts our approach
provides both a very low configuration latency and a low area

overhead. Several optimizations have been developed in order to
minimize the cost of the configuration infrastructure. To validate
our contribution we have adopted a two-step evaluation process
based on a virtual prototyping approach. In a first step a Sys-
temC/VHDL mixed simulation model has been used to perform
an early evaluation of our solution. Then, in a second step a FPGA
prototype has been built to measure the actual hardware cost and
performance.

The rest of this paper is organized as follows. Section II
introduces the UDec architecture. Section III highlights the main
issues that need to be addressed in order to build an efficient
configuration infrastructure while section IV describes the proposed
bus-based solution. Section V provides first evaluations through
a SystemC/VHDL mixed model. Section VI presents the FPGA
implementation results. Finally section VII concludes the paper.

II. MULTI-ASIP TURBO DECODER

A. UDec architecture

The turbo decoding system diagram is presented in Fig. 2. It
consists of component decoders that exchange extrinsic information
through an interleaver (Π) and a deinterleaver (Π−1) processes. The
component decoder 1 receives Log-Likelihood Ratio (LLR) from
a demapper for each bit of a data frame in the natural order while
component decoder 0 receives LLR in interleaved order. Then,
iterative decoding algorithm is performed to decode the data frame.

Component
decoder 0

Component
decoder 1

π-1 π

π

Hard. dec

Channel
LLR

Figure 2. Turbo decoding system

The UDec turbo decoder architecture [1] is shown in Fig. 3.
It consists of two rows of DecASIPs interconnected through a
butterfly topology NoCs [5]. Each row corresponds to a component
decoder. In the example of Fig. 3, four ASIPs are organized in
2 component decoders respectively built with 2 ASIPs. Within
each component decoder the ASIPs are connected by two 80-
bit buses for boundary state metrics exchange. The DecASIP
implements the Max-Log MAP algorithm as described in [6]. It
supports both single and double binary convolutional turbo codes
and implements radix-4 trellis compression technique for SBTC
mode. Large frames are processed by dividing the frame into N
windows each with a maximum size of 64 symbols. Each ASIP can
manage a maximum of 12 windows. The DecASIP is associated
with 3 memory banks of size 24x256 used to store the input
channel LLR values ¬. There are also another 3 banks of size
30x256 used for extrinsic information storing ­. Each ASIP is
further equipped with two 40x32 memories which hold state values
®. Moreover, each ASIP is configured through a program ¯ and
a configuration memory °. The configuration memory contains
all parameters required to perform the initialization of the ASIP
while the program memory contains the instructions in order to
perform the decoding algorithm. Since the DecASIP is designed to
work in a multi-ASIP architecture as described in [1], it requires
several parameters to deal with a subblock of the data frame and

40

40

40

40

Component decoder 0 Component decoder 1

Butterfly

NoC

N
o

C
in

te
rfa

ce
N

o
C

in
te

rfa
ce

N
o

C
in

te
rf

a
ce

N
o

C
in

te
rf

a
ce

DecASIP

0
DecASIP

2

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

DecASIP

1

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

DecASIP

3

Extrinsic

Memory

(30x256)

Program

Memory

(16x64)

Config

Memory

(26x12)

Input

Memory

(24x256)

Cross metric Memory

(40x32)

1 2

3

5

4

Figure 3. UDec system architecture example with 2x2 ASIPs

several parameters to configure the ASIP mode. Concerning the
subblock partitioning, each ASIP is configured with the size and
the number of windows it has to decode. Furthermore, the last
window size can be different so it corresponds to an additional
parameter. In a single binary turbo code mode, the address of
the tail bits in memory, the size and the number of windows
for the tail bits have to be configured. Parameters for the ASIP
mode correspond to the location of the ASIP in the architecture,
the number of ASIPs required, the parameter which defines if the
current ASIP is in charge of tail bits or not, the target standard
(3GPP-LTE, WIMAX, or DVB-RCS) and the scaling factor for
extrinsic information. Finally, some seed values are necessary for
address generation in order to exchange information over the NoC
that connects the ASIPs of each decoder component. All these
parameters are required for a configuration of an ASIP within the
platform.

B. UDec configuration

The behavior of the UDec turbo decoder is dependent of the
parameters loaded in the configuration memory of each ASIP. In
order to improve the reconfiguration step, it is essential to optimize
the organization of the configuration memory. The configuration
parameters stored in the configuration memory can be divided in
four categories: 1) domain dependent, 2) identical for all ASIPs,
3) different for all ASIPs and 4) different for the last two ASIPs
which decode the tail bits in single binary turbo code mode. A
smart memory organization allows an efficient broadcasting of the
configuration parameters to the required ASIPs. Thus, three groups
which occupy three different parts of the configuration memory
have been defined.

Table I shows the configuration memory organization. A config-
uration consists of 286 bits and is organized as follows:

• From address @0 to @1, parameters can be different for each
ASIP. Furthermore, to optimize the initialization step of ASIP,
the parameter Tail which indicates if the ASIP has to perform
or not the tail bits is included in this group. Only the last two
ASIPs have to deal with the tail bits in single binary turbo
code mode.

• From address @2 to @6, parameters are identical for ASIPs
of the same decoder component.

bit 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
@0 - Tail ASIPId
@1 Turbo Seed 0 Turbo Seed 1
@2 - TurboInitIteration Maxiteration State NumSteps
@3 Turbo Step 0 Turbo Step 1
@4 Turbo Step 2 Turbo Step 3
@5 Turbo Step 4 Turbo Step 5
@6 Turbo Step 6 Turbo Step 7
@7 - @ Tail bits Scaling Factor Mode
@8 Turbo PrevStep Blocklength in bits
@9 - NumASIPs StepIndex WindowSize LastWindowSize
@10 - CurrentWindowN norm CurrentWindowID tail WindowN tail

Table I
ASIP CONFIGURATION MEMORY

• From address @7 to @10, parameters are the same for all
ASIPs.

This organization allows an efficient and fast reconfiguration at
the platform level. Indeed, multicast mechanisms can be used to
load the configuration in order to minimize the data transfer load. In
this context, two multicast transfers are necessary to send domain
dependent parameters to corresponding ASIPs and one multicast
transfer for parameters that are the same for all ASIPs. Finally,
unicast transfers are used to load the ASIP dependent parameters.

Once configurations are loaded in ASIPs configuration mem-
ories, ASIPs can be launched as soon as input data are ready.
The configuration parameters are then read from the configuration
memory and stored in each ASIP internal registers. When this
initialization phase is finished the decoding phase can start. Note
that a new configuration can be downloaded into configuration
memories while computation is performed, such an approach
minimizes the reconfiguration latency and allows the execution
scheme described in Fig. 1.a.

Besides the ASIPs, the UDec platform implements flexible
elements as a controller, an input interface, the two buses for
boundary state metrics exchange and the Butterfly NoC. The
controller is in charge of the computation scheduling depending
of the mode (serial or shuffle decoding), the number of decoding
iterations, and the number and location of the selected ASIPs. The
input interface is configured to spread the symbols coming from
a demapper to the inputs memory of selected ASIPs depending
of the frame size, the selected standard, the number and the
location of the selected ASIPs. Finally, the two buses for boundary
state metrics exchange and the Butterfly NoC Network Interfaces
(NIs) are configured to take into account the number and location
of the selected ASIPs. For that purpose, an extra configuration
memory attached to the platform controller is added. When a new
configuration is loaded, the controller launches an initialization
phase to read configuration parameters in this memory and store
them into configuration registers.

III. MAIN CHALLENGES FOR AN EFFICIENT CONFIGURATION

INFRASTRUCTURE

Dynamic reconfiguration of flexible multiprocessor platforms
is one of the main challenges for system designers. This issue
is important, especially when dealing with multiprocessor plat-
forms where no global communication interconnect can be shared
between application and configuration data. In this case, it is
mandatory to implement a communication infrastructure dedicated
to configuration data. In the UDec architecture, the 80-bit buses and

the Butterfly NoC are optimized and dedicated to data exchange
between DecASIPs. These interconnections can not be used to
transfer the configuration data. To build an efficient solution, the
configuration infrastructure has to take into account the following
requirements: 1) Low complexity, 2) Multicasting mechanism and
3) Burst transfer.

A. Low complexity

The configuration infrastructure only manages configuration
memories updates. Thus, this extra hardware must have a minimal
impact on the global design complexity in terms of area overhead.
When designing a communication architecture in a multiprocessor
platform, two main technologies are available: Network on Chip
or On-Chip Bus. Last decade has seen the huge adoption of
Networks on Chip in complex System on Chip to mainly enhance
the throughput and the scalability compared to a bus-based com-
munication infrastructure. However, the design of a communication
interconnect dedicated to configuration data does not require such
a complex approach. Indeed, broadcasting can be defined as a
unidirectional communication between a reconfiguration manager
that generates and downloads configuration data to one or a group
of processing elements that have to be configured. Hence, there
is not transfer concurrency issue, and a unique component, called
Master, is able to initiate a transfer. Moreover, we assume that the
configuration manager is, at any time, aware of the configuration
state of the platform. Thus, no read operations are necessary to
check a status or the presence of a particular configuration in
a given processing element. These features lead to a bus-based
structure that provides a simple communication interconnect for
this particular context.

B. Multicasting and selection

The UDec platform is configured through the DecASIP configu-
ration memories. As shown in Section II-B, the DecASIP configu-
ration memory is organized in order to allow multicast mechanisms
for an efficient and fast configuration of the multi-ASIP platform.
Moreover, depending on the application requirements, the number
of activated DecASIPs to perform a given configuration can be
tuned at run-time. Hence, a mechanism of processor selection has
to be introduced in order to send configuration data to activated
DecASIPs only.

C. Incremental data burst transfer

The last point to build an efficient configuration infrastructure
for the UDec platform is related to the transfer mode. Since some

Mem.@

Data
T_enable

Dest. @

Selector

T
_

in
it

D
_

e
n

a
b

le

D
a

ta

B
a

se
.

@

D
e

st
.

@

Configuration

Manager

26 8 8

26

8

8

Configuration

memory 0

Master Interface

(MI)

Slave Interface 0

(SI_0)

Slave Interface 1

(SI_1)

Slave Interface N

(SI_N)

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Configuration

memory 1

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Configuration

memory N

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Enable SI_0

Enable SI_1

Enable SI_N

T_enable

Figure 4. Architecture of the proposed bus interconnect

of the configuration data has to be loaded in adjacent parts in
the configuration memory, all related transfers can be defined as a
burst starting from a base address in the configuration memory. For
example, based on the DecASIP memory organization of Table I,
configuration data identical for all DecASIPs can be incrementally
transferred starting from the base address @7. Four incremental
transfers are then performed.

Many On-Chip Buses have been developed these last years that
propose different topologies and different communication proto-
cols. Representative On-chip Buses are the AMBA [7], the Core-
Connect [8] or the Avalon bus [9]. Unfortunately, these solutions
do not support multicast. Work presented in [10] supports multicast
but this solution implements complex arbitration mechanisms and
communication protocols that are not necessary in our context.
The Fast Simplex Link (FSL) [11] proposes a low complexity
unidirectional bus for data transfer. Unfortunately multicast is
not supported. It is thus mandatory to propose an optimized bus
dedicated to configuration data that could be used for the UDec
platform in order to reach the configuration latency challenge.

IV. CONFIGURATION INFRASTRUCTURE

To address the main issues highlighted in Section III, we
propose a new bus-based communication infrastructure as well as
the associated communication protocol. Our goal is to optimize
configuration data transfers into DecASIPs configuration memories
for the UDec platform. In this section, we detail the architecture,
the dynamic selection of activated DecASIPs and the protocol.

A. Architecture overview

The proposed bus architecture is presented in Fig. 4. This archi-
tecture can be split in four functional blocks: Master Interface (MI),
Slave Interface (SI), Selector and interconnect. Each configuration
memory is connected to the bus through a SI. The configuration
manager deals with the configuration generation which is based
on internal decisions and external information and commands (this
point is not addressed in this paper).

The MI provides an interface allowing the connection of the
configuration manager to the bus. To initiate a transfer, the MI
receives, from the configuration manager, the address of a SI or
a group of SIs (called Destination address) and the memory base
address where the transfer starts. During a transfer, the MI also
manages the increment of the memory address based on the base
address.

The SI provides an interface between the bus and the configu-
ration memory. Its role is, when a transfer is enabled, to check if
the destination address corresponds to its own address or one of its
associated multicast addresses. Then, the SI retrieves the data (and

the associated memory address) from the bus and writes it into the
configuration memory.

The Selector provides a simple and efficient solution to select,
at run-time, DecASIPs that are targeted by the next configuration
data. For this purpose, each SI has a 1-bit input that is driven by the
Selector. When this input is enabled, the associated SI is activated
and reacts to the events on the bus while it ignores all transfers in
the other case.

The interconnect part of the proposed architecture consists of
three buses and a transfer enable control signal. Two address buses
are required. The first one (Dest.@ in Fig. 4) is used to select the
destination (i.e. one SI or a group of SIs) and the second (Mem.@)
is used to indicate the target memory address. The third bus is used
to send the configuration data. Finally, a control signal (T enable)
is used to inform SIs that a transfer has been enabled.

B. Addressing

Due to the context of this work which deals with a platform
that consists of several implementations of specialized processing
elements, and to minimize the design complexity, we choose to
statically, at design-time, define the SIs addresses and the different
multicast addresses associated with each SI. Indeed, the interest
of a run-time address definition is reduced by the fact that the
DecASIPs are statically grouped depending of the domain in which
they perform the treatments. Each SI connected to the interconnect
block owns an unique address. This address allows configuration
information transfers to a particular configuration memory only.
Moreover, each SI is associated to two multicast addresses. The
first one is common for all SIs and the second one is common for
SIs associated with DecASIPs in the same domain.

C. Transfer protocol

The transfer of configuration data can be divided in three steps:
1) initialization and data transfer from the configuration manager
to the MI, 2) data transfer from the MI to one or several SIs and
3) configuration memory loading from the SI.

1) From the configuration manager to the MI (upper part of
Fig. 5): During the initialization step, the configuration manager
sends the destination address and the base memory address to the
MI. The T init control signal (Fig. 4) is driven to indicate to the
MI that a transfer initialization is required. On the MI side, when
these two addresses are read, the first one is stored and the second
one is used to initialize the memory address increment process.
These addresses are used until a new transfer initialization step is
performed. After the initialization step, the configuration manager
can send one data per cycle on the Data bus. The D enable control
signal is also driven at the same time to inform the MI that a data
is available. Obviously, the data transfer can be suspended if no
data is available. Fig. 5 shows an example of transfer initialization
and data transfer between the configuration manager and the MI.

2) From the MI to the SI(s)(middle part of Fig. 5): Fig. 5
presents two examples of data transfer on the bus. The first one
shows the transfer of a single data, and the second one shows a data
burst. The transfer on the bus consists of two phases: address phase
and data phase. The address phase lasts for a single clock cycle.
During this cycle, the destination and the base memory addresses
are sent on the corresponding bus. The T enable control signal
is also driven to indicate that a transfer occurs. During the data

Destination @ Destination @@

@ Base @ Base @

Data 0 Data 0 Data 1 Data 2 Data 3

1. Transfer

initialization

2. Address

phase

3. Data

phase

4. Memory input

driving

5. Memory

loading

Communication from the Configuration Manager to the Master Interface (MI)

Clk

T_init

D_enable

Dest. @ [15..0]

Base. @ [15..0]

Data [25..0]

Destination @Destination @@

@

@

Base @ Base @ + 1 Base @ + 2 Base @ + 3Base @

Base @ Base @ Base @ + 1 Base @ + 2 Base @ + 3

Data 0

Data 0

Data 0 Data 1 Data 2 Data 3

Data 0 Data 1 Data 2 Data 3

Communication from the Master Interface (MI) to the Slave Interfaces (SIs)

Communication from the the Slave Interface (SI) to the Configuration Memory

T_enable

Dest. @ [15..0]

Mem. @ [15..0]

00Data [25..0]

Mem. @ [15..0]

00Data [25..0]

Write_enable

Figure 5. Communication from the configuration manager to the configuration memory through the communication infrastructure

phase, the data is sent on the Data interconnect. When a data
burst is performed, a data is available at each clock cycle. The
destination address is maintained on the bus during the transfer
procedure while, for each data, the memory address is incremented
by the MI.

3) From the SI to the configuration memory (lower part of
Fig. 5): When a transfer occurs, the SIs involved in the transfer
store the memory address (read during the address phase) and get
the data on the next clock cycle. To write into the configuration
memory, the memory address is stored during one clock cycle.
When the data is available, the control signal write enable of the
memory is driven and the memory address and the data are sent
on the interconnect between the SI and the configuration memory.

These three steps allow the transfer of a data into the config-
uration memory in 5 clock cycles while 11 clock cycles and 6
clock cycles are necessary through the CoreConnect and the AMBA
buses respectively. Moreover, thanks to the pipeline nature of the
transfers, the configuration infrastructure is able to provide one data
per clock cycle to the destination.

D. Selection

The UDec platform can dynamically select the number of
DecASIPs involved in the decoding process depending on the
requirements of an application (e.g. throughput, error rate, etc.).
When a configuration command occurs, a selection mechanism is
launched to select the SIs associated to the configuration memories
connected to the DecASIPs involved in the next configuration.
When an SI is not selected, it ignores all transfers on the bus.
The Selector is configured through the bus infrastructure by the
configuration manager which sends a configuration vector on the
bus. Each bit of this vector corresponds to the state of one SI. This
solution allows a fast selection of SIs compared to a mechanism in
which each SI is selected through a unicast transfer. To reduce the
complexity of the selector, one selector is associated with a number
of SIs corresponding to the width of the data interconnect (that
determines the width of the configuration vector). For the UDec
platform 26 SIs can be associated to one Selector. Depending on
the number of SIs, several Selectors can be distributed along the
bus infrastructure.

Since the selection is performed through a transfer on the bus,
the SIs targeted by the selection process are ready to receive
configuration data after 5 cycles. However, taking into account the
pipeline nature, a data transfer can be initialized by the configu-
ration manager with a delay of one clock cycle after the selection
data has been sent to the MI. This delay is sufficient to guarantee
that the targeted SIs are ready when the first configuration data
arrives.

This section has detailed the configuration infrastructure high-
lighting main features and providing an in-depth analysis of the
latency. Next sections focus on the two-step validation process.
First the SystemC/VHDL mixed model is described, then the FPGA
prototype is detailed.

V. SYSTEMC/VHDL MIXED VALIDATION

To validate our contribution we propose to analyze the config-
uration infrastructure through a mixed SystemC/VHDL simulation
model based on the platform presented in Section II. For this
purpose, a complete Cycle and Bit Accurate SystemC [12] model of
the proposed bus architecture was implemented. Then, this model
was connected to a VHDL model of the multi-ASIP platform
(which was already available) to allow a mixed SystemC/VHDL
simulation. Finally, A non-timed SystemC model was developed
to simulate the configuration manager (which is in charge of the
configuration generation based on parameters set by the designer).
The goal of this mixed model was to validate and to provide
early evaluation of the proposed bus architecture through realistic
configuration scenarios.

A. Platform model

Fig. 6 presents the different components implemented in the
platform model. On the VHDL model side, A Random generator
associated with an Emitter produce the encoded symbols. The
channel model is an Additive White Gaussian Noise (AWGN).
The Input interface distributes the received symbols in the In-
put memories of each DecASIP. A verification module compares
original symbols with decoded symbols to evaluate the decoding
performance. Finally, A controller is used to manage the platform.
In Fig. 6, data and control flow are highlighted with full black and
broken lines respectively.

Non-timed SystemC

Butterfly NoC

N
o

C
in

te
rfa

ce
N

o
C

in
te

rfa
ce

N
o

C
in

te
rf

a
ce

N
o

C
in

te
rf

a
ce

DecASIP 0 DecASIP 2

Extrinsic

Memory

Program

Memory

Config

Memory

Input

Memory

Cross metric Memory

DecASIP 1

Extrinsic

Memory

Program

Memory

Config

Memory

Input

Memory

Cross metric Memory

Extrinsic

Memory

Program

Memory

Config

Memory

Input

Memory

Cross metric Memory

DecASIP 3

Extrinsic

Memory

Program

Memory

Config

Memory

Input

Memory

Cross metric Memory

Input interface

Channel

Noisy symbols

Emitter

Symbols

Random generatorPlatform controller

Verification module

To ASIPs To NoC

Hard decision

from ASIPs

Config

Memory

CABA SystemC

Control flow Data flow Configuration flow

Mem.@

Data
T_enable

Dest. @

Selector
Slave Interface 0

(SI_1)

Slave Interface 1

(SI_3)

Slave Interface N

(SI_4)

Slave Interface 0

(SI_0)

Slave Interface 0

(SI_2)

Master Interface

(MI)

T_init

D_enable

Data

Base. @

Dest. @ Configuration

Manager

26

8

8

26

8

8

VHDL

Figure 6. Architecture model for SystemC/VHDL mixed simulation

3

Frame n Frame n+1

tT(n) T(n+1)

21

Decoding

Configuration

1 Configuration manager reads new frame parameters ; 2 configuration generation ; 3 Configuration transfer

Frame n +2

321

Configuration for frame n+1

(configuration of the platform to deal with

the next frame)

Configuration for frame n+2

Figure 7. Configuration steps of the UDec platform

On the SystemC model side, 1 Selector and 5 SIs are imple-
mented. Each SI is connected to a configuration memory: 4 De-
cASIP configuration memories Conf. Mem. and one configuration
memory associated with the controller of the platform. This last
memory is used to configure the modules of the platform (see
Section II-B). For clarity reasons, connections between the selector
and the SIs are not represented in Fig. 6. The SystemC model of
the Configuration Manager allows an interaction with the designer
in order to simulate complete dynamic reconfiguration scenarios.
In Fig. 6, Configuration data flow is shown in doted lines.

B. Configuration scenario

In the context of this work, the maximum configuration latency
of a frame is constrained by the previous frame decoding duration
as shown in Fig. 1.a. The configuration of the UDec platform is
divided in three steps as shown in Fig 7: (1) the configuration
manager receives the configuration order associated with frame
parameters (i.e. frame size, standard, throughput, targeted BER)
necessary to generate the configuration for the DecASIPs. (2) the
configuration parameters for each selected DecASIP presented in
section II-B are generated. (3) the configuration parameters for each

Standard frame size Conf. time Dec. time Config. time
(in bits) (in cycles) (in cycles) ratio (in %)

DVB-RCS 440 43 4528 0.95
DVB-RCS 1728 43 25548 0.17
3GPP-LTE 440 43 4751 0.91
3GPP-LTE 1728 43 26455 0.16
3GPP-LTE 3008 43 45215 0.095

Table II
CONFIGURATION LOADING IMPACT FOR 4 ACTIVE ASIPS

selected DecASIP configuration memory is transfered through the
configuration infrastructure presented in Section IV.

The SystemC/VHDL mixed model allows to rapidly evaluate
several scenarios and to verify the efficiency of the platform.
In order to illustrate one possible scenario and to evaluate the
performance of our approach we consider in the next subsection a
typical case study in which DVB-RCS and 3GPP-LTE frames are
alternatively decoded. This scenario corresponds to the reception of
TV (DVDB-RCS) and web browsing (3GPP-LTE) simultaneously
on the same terminal.

C. Model evaluation

The proposed SystemC/VHDL mixed model allows a fast evalu-
ation of the configuration performance with respect to the decoding
time for realistic configuration scenarios generated at run time by
the configuration manager. The configuration latency of the UDec
platform using the proposed approach is defined by equation 1.

ConfigurationLatency =
31 + (3.NASIP)

F
(1)

Where NASIP is the number of DecASIPs and F is the
frequency of the proposed bus. 31 clock cycles are necessary to
transfer the parameters common to all ASIPs and the parameters
common to ASIPs of the same decoder component. 3 additional
clock cycles are necessary to transfer parameters that are different
for each ASIP.

Table II shows, for the two considered standards and for different
data frame sizes, the ratio of the configuration loading regarding
the decoding time for 4 active ASIPs and 6 decoding iterations.
The last column represents the configuration time when compared
to the total time required to configure and decode a frame. The
configuration time is constant since the number of ASIPs is fixed.
However, when the data frame size increases, the decoding time
increases too. Consequently, the configuration time impact becomes
negligible with high frame size (0.095% for a 3008-bit frame in
3GPP-LTE mode). When the frame size is smaller, the impact of
configuration loading is still low (less than 1% for a 440-bit frame
size).

The SystemC/VHDL mixed model has enabled an early and fast
validation of the main features describes in Section IV. Starting
from this model, next section presents the first hardware imple-
mentation on FPGA and an evaluation for an ASIC technology.

VI. HARDWARE PROTOTYPE

To validate the proposed bus architecture and communication
protocol presented in section IV a hardware prototype on a Xilinx
XUPV5 platform based on a Virtex 5 LX110T FPGA was devel-
oped.

Dest. @

Selector
Slave Interface N

(SI_4)

Slave Interface 0

(SI_0)

8

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Slave Interface 1

(SI_3)

Slave Interface 0

(SI_1)

Slave Interface 0

(SI_2)

26 8

D
a

ta

M
e

m
.

@

W
_

e
n

a
b

le

Xilinx ChipScope Debug Module
To computer

Via JTAG

Mem.@

Data
T_enable

Dest. @

Master Interface

(MI)

26

8

T_init

D_enable

Data

Base. @

Dest. @26

8

8

FSL to MI

Interface

Asynchronous

FIFO

Microblaze
FSL

Timer UART

PLB

Local

memory

(BRAM)

LMB

Figure 8. Architecture of the prototype

The prototype architecture is shown in Fig. 8. It consists of
a Xilinx Microblaze soft core that generates the configuration at
run-time. The configuration is then sent through an FSL bus to a
FSL to MI interface. The Fast Simplex Link (FSL) [11] connection
has been considered as this interconnect structure proposes a fast,
simple and unidirectional connection for the Microblaze which
ease its integration within the configuration infrastructure (other
interconnection solution to the Microblaze would lead to an higher
complexity and lower performance). An asynchronous FIFO is
associated to the FSL connection in order to provide frequency
domain flexibility on both Microblaze and configuration infrastruc-
ture sides. The FSL to MI interface realizes the protocol adaptation
between the FSL communication protocol and our bus protocol.
Finally, the outputs of each SI are connected to a Xilinx ChipScope
module that allows the run-time monitoring of these signals. This
module replaces the configuration memories associated with the
SIs.

The FSL bus provides a solution to transfer, each cycle, a
32-bit width data. Hence, we define an adaptation protocol in
order to, starting from a 32-bit frame, extract control and data
information. Fig. 9 shows the two FSL frames model used to adapt
the communication protocol. Depending of the control flag, the FSL
to MI interface provides a transfer initialization or a data transfer
service on the bus. Fig. 9.a shows the FSL frame model sent by
the Microblaze to initialize a transfer on the bus. In this case the
control flag is set to 1, the flag indicates that this frame corresponds
to a transfer initialization. The 8-bit component destination and
the 8-bit base memory address are extracted. One cycle later, the
interfaces drives MI’s inputs as described in section IV-C. Fig. 9.b
shows the FSL frame model sent by the Microblaze to transfer data
after a transfer initialization. In this case the control flag is set to
2, the flag indicates that this frame corresponds to a data transfer.
The 26-bit data is extracted from the frame and the interface drives
MI’s inputs as described in section IV-C.

Thanks to this hardware implementation, configuration transfer
time were evaluated for several numbers of DecASIPs. For this
purpose, the Microblaze and the proposed bus frequency is set to
125 MHz. The Chipscope module is configured to monitor the
output signals of the SIs. Table III shows the configuration transfer
times of the bus compared to designs we have implemented using
CoreConnect PLB4 [8] and AMBA AXI4 [7] buses connected to
a Microblaze with the same clock frequency (set up to 125MHz).
Thanks to the multicast mechanisms, a low overhead of 144 ns is

Ctrl. Flag =1
0531 23 15

Comp. @ mem. @ Not used

Ctrl. Flag = 2
0531

Configuration data

a) Transfer initialization frame

b) Data frame

Figure 9. FSL to MI protocol adaptation

Nb. Transfer latency (in ns) Speedup
ASIPs This work [8] [7] vs. [8] vs. [7]

4 1 032 3 872 2 212 3.75 2.14
6 1 176 5 808 3 168 4.94 2.69
8 1 320 7 744 4 224 5.87 3.2

16 1 896 15 488 8 448 8.17 4.45
32 3 048 30 976 16 896 10.16 5.54
64 5 352 61 952 33 792 11.57 6.31

Table III
CONFIGURATION TRANSFER TIME IN ns

necessary to configure each additional couple of DecASIPs (one
ASIP in both natural and interleaved domains) while 1936 ns and
1056 ns are necessary for [8] and [7] respectively. Results of Table
III show that the proposed implementation significantly reduces the
configuration time overhead when the number of active DecASIPs
increases compared to classical bus approaches.

Compared to equation 1, the performance of the proposed
configuration infrastructure FPGA prototype is defined by equation
2.

ConfigurationLatency =
93 + (9.NASIP)

FMicroblaze
(2)

Where NASIP is the number of DecASIPs and FMicroblaze is
the frequency of the Microblaze and the proposed bus. 93 clock
cycles are necessary to transfer the parameters common to all
ASIPs and the parameters common to ASIPs of the same decoder
component. 9 additional clock cycles are necessary to transfer
parameters that are different for each ASIP. Compared to equation
1, the performance penalty is due to two factors. Indeed, the FSL
bus used to connect the Microblaze processor to the configuration
infrastructure and the protocol adaptation between the FSL bus and
the MI lead to additional cycles which impact the transfer latency.
Moreover, the Microblaze doesn’t send one data per cycle on the
FSL bus since several cycles are necessary to build the frames
presented in Fig. 9 before each transfer.

However, as shown in Table III, using this solution combined
with our low latency configuration infrastructure allows us to
perform the configuration of up to 64 ASIPs in less than 10 µs
(5.353 µs) which opens very interesting perspectives for future
reconfigurable decoders.

A logical synthesis of the proposed bus components was also
done with a 65nm CMOS technology with a clock frequency
objective equals to 500MHz. Table IV shows the area evaluation for
the three components of the proposed configuration infrastructure.
The logic overhead due to the configuration infrastructure is 0.015
mm2 which leads to a low area penalty of 2% regarding the
logic area of the 4 DecASIPs (0.739 mm2). The complexity of

Infrastructure Component Area (in µm2)
MI 1 790
SI 1 150

Selector 784
Infrastructure for 4 RdecASIPs 15 199

4 DecASIP 738 552

Table IV
AREA OF THE PROPOSED CONFIGURATION ARCHITECTURE

Nb. Transfer latency (in ns) Speedup
ASIPs FPGA ASIC (estimated)

4 1 032 86 12
6 1 176 98 12
8 1 320 110 12
16 1 896 158 12
32 3 048 254 12
64 5 352 446 12

Table V
ESTIMATED CONFIGURATION TRANSFER TIME IN ns FOR AN ASIC

IMPLEMENTATION

the selector is the lowest one since only a comparison with the
input component address is necessary to know if the input vector
has to be copied into the output or not. The complexity of the
SI and MI components is quite similar. The difference is mainly
due to the presence of a counter in the MI for incremental burst
while 8-bit comparators is implemented in the SI for address
comparison. Furthermore, considering an ASIC implementation
with the frequency objective of 500 MHz, a significant speedup
on the configuration transfer latencies shown in Table III can
be expected compared to the 125 MHz FPGA prototype. Table
V shows the estimated configuration transfer time for an ASIC
implementation. Results are estimated using equation 1 with a bus
frequency fixed to 500 MHz and show that a speedup of 12 can
be reached compared to the FPGA implementation.

Results presented in this section show that the proposed con-
figuration infrastructure offers an efficient solution for the UDec
implementing up to 64 ASIPs. It guarantees configuration latency
below 6µs providing a very low configuration latency overhead
and meeting the configuration latency challenge as explained in
the introduction. Furthermore, as detailed in Fig. 7, the next
configuration computation and transfer is performed in parallel
of the current data frame treatment. Such a solution meets future
standard requirements where a code switch can be done as early
as one data frame ahead [13].

VII. CONCLUSION

Configuration data transfer in application specific multiprocessor
platforms is still an important challenge. In this paper, we propose
a configuration infrastructure that provides an efficient and low
complexity solution. This work was validated through a mixed
VHDL/SystemC model and an FPGA prototype for timing and area
evaluation. A synthesis targeting ASIC 65nm CMOS technology
was also performed. Results show that configuration of a multi-
ASIP platform implementing 64 ASIPs can be achieved in 5.352
µs for an FPGA implementation. Future work targets the definition
and the validation of decision algorithms to build an efficient self-
adaptable multicore platform for turbo decoding in a dynamic
environment.

REFERENCES

[1] P. Murugappa, R. Al-Khayat, A. Baghdadi, and M. Jézéquel, “A
Flexible High Throughput Multi-ASIP Architecture for LDPC and
Turbo Decoding,” in Proc. of the Design, Automation and Test in
Europe Conference & Exhibition (DATE), 2011.

[2] F. Clermidy, R. Lemaire, X. Popon, D. Ktenas, and Y. Thonnart,
“An Open and Reconfigurable Platform for 4G Telecommuni-
cation: Concepts and Application,” in Euromicro Conference on
Digital System Design, Architectures, Methods and Tools, DSD
’09, aug. 2009, pp. 449 –456.

[3] C. Jalier, D. Lattard, G. Sassatelli, P. Benoit, and L. Torres,
“Flexible and distributed real-time control on a 4G telecom
MPSoC,” in Proc. of IEEE International Symposium on Circuits
and Systems (ISCAS), 2010, pp. 3961 –3964.

[4] N. Ventroux, A. Guerre, T. Sassolas, L. Moutaoukil, G. Blanc,
C. Bechara, and R. David, “Sesam: An mpsoc simulation envi-
ronment for dynamic application processing,” in CIT, 2010, pp.
1880–1886.

[5] H. Moussa, A. Baghdadi, and M. Jezequel, “Binary de Bruijn
on-chip network for a flexible multiprocessor LDPC decoder,”
in Proc. of the Design Automation Conference (DAC), 2008, pp.
429–434.

[6] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-
optimal maximum a posteriori algorithms suitable for turbo
decoding,” European Transactions on Telecommunications, vol. 8,
no. 2, pp. 119–125, 1997.

[7] ARM, AMBA specifications v2.0. ARM. [Online]. Available:
http://www.arm.com.

[8] IBM, CoreConnect Bus Architecture. IBM Microelectronics. [On-
line]. Available: http://www.ibm.com/chips/products/coreconnect.

[9] Altera, Avalon bus specification: Reference manual. Altera Cor-
poration. [Online]. Available: http://www.altera.com.

[10] Sonics network technical overview. Sonics, Inc. [Online]. Avail-
able: http://www.sonicsinc.com.

[11] Xilinx, FSL V2.0 specification. Xilinx, Inc. [Online]. Available:
http://www.xilinx.com.

[12] T. Grotker, System Design with SystemC. Norwell, MA, USA:
Kluwer Academic Publishers, 2002.

[13] “IEEE Standard for Local and Metropolitan Area Networks Part
16: Air Interface for Fixed and Mobile Broadband Wireless,”
IEEE Std 802.16e-2005, 2006.

