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Abstract 

 

 

The objective of the study was to provide a stand-scale assessment of long-term productivity 

changes in even-aged stands and to depict their chronology over the twentieth century. 

We focused on dominant height growth as a proxy for productivity, reconstructed from stem 

analyses in temporary plots. Height increments from two generations of stands were compared. 

Stands were associated in pairs to ensure accurate control of intrinsic site fertility conditions. The 

historical evolution of the growth rate was estimated using a statistical modeling approach based on 

a mixed-effects model, with a control of both site and developmental stage effects. We placed 

emphasis on a model formulation that leads to a meaningful interpretation of growth rate evolution. 

We applied the methodology to a sample of 14 stand pairs and 84 stem analyses of Common Beech 

in northeastern France. An accelerated increase in growth rate was identified, reaching +50% over 

the twentieth century. The trend also displayed short-term growth anomalies. 
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INTRODUCTION 

 

Increases in the growth of forest tree species have been acknowledged in the Northern Hemisphere 

and in other parts of the world (Spiecker et al. 1996, Jacoby and d'Arrigo 1997, Boisvenue and 

Running 2006). With increasing consensus on their existence, emphasis has then been placed on the 

environmental causality of such changes (Nelleman and Thomsen 2001, Nabuurs et al. 2002, Milne 

and van Oijen 2005, Kahle et al. 2008). However, the magnitude and historical dynamics of these 

increases remain poorly understood to date (Spiecker 1999). The main reasons for this lie in 

recurrent deficiencies of growth-trend analyses: a choice of inconsistent productivity indicators, a 

limited or partial control in sampling designs of the factors which usually affect productivity, and a 

lack of a combined modeling strategy for the estimation of growth change. 

 

Productivity indicators. Forest productivity is defined as a wood biomass or volume increment per 

unit of time and area (Assmann 1970, P. 160–161). Because most forests undergo regular but 

undocumented thinning operations, there is inherent difficulty in determining forest productivity 

from repeated forest inventory measurements. Noticeable exceptions arise from a limited number of 

permanent plot networks, covering a time period ranging from several decades to a century 

(Eriksson and Johansson 1993, Pretzsch 1996, Elfving and Tegnhammar 1996). Hence, the only 

way to address growth-trend issues is to consider past growth of trees using retrospective 

techniques, such as ring width measurements from increment cores (Cook and Kairiukstis 1990, P. 

26–28), or past height measurements from stem analysis (Curtis 1964). Because increment cores are 

far easier and cheaper to sample, radial growth is the first ranking data source on the topic (Spiecker 

et al. 1996, Jacoby and d'Arrigo 1997). Nevertheless, there are weaknesses inherent in radial growth 

indicators: (i) they depend on between-tree competition, including the effects of silvicultural 

schedules or local disturbances, (ii) their measurement at breast height may underestimate tree 

volume increment (Bouriaud et al. 2005). In contrast, dominant height is not affected by 

competition (Frothingham 1918, Lanner 1985) and has been used as a traditional proxy for 

productivity of even-aged stands (Eichhorn 1904, Assmann 1970, P. 161–163). The dominant height 

of stands can be reconstructed from stem analysis if applied to dominant trees. However, stem 

analysis is destructive and time consuming, and very few growth-trend studies based upon this 

proxy have been published (Untheim 1996, Kahle et al. 2008). 
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Sampling designs. The context of retrospective analyses renders possible the conception of 

sampling designs well-grounded for the investigation of growth trends. They must permit 

comparison of growth intensities during distinct periods in time, with control of intrinsic site 

fertility conditions. This requires selecting stands of different generations, with a sufficiently large 

time range to identify long-term trends (Spiecker et al. 1994). A classical approach suggests that the 

balance of age and fertility factors is ensured through regional samples of large size (Badeau et al. 

1996, Schneider and Hartmann 1996). However, rotation age usually increases with decreasing site 

fertility. Consequently, the oldest stands are mostly located on the poorest sites whereas a wider 

range of sites is covered by the younger ones. This may result in a positive bias in the detected long-

term trend (Becker et al. 1995). The latter flaw can be avoided by sampling clusters of stands of 

different ages, close to each other in space. This procedure grants very close proximity – if not 

identity – of topographic, soil, and mean climate conditions, but has been rarely used (Untheim 

1996, Lebourgeois et al. 2000, Vejpustkova et al. 2004).  

 

Statistical modeling approach. The assessment of growth trend magnitude and dynamics requires 

isolation of the historical signal from growth data, where it is confused with site and age, and with 

competition effects if the growth indicator selected depends on competition. As a quantitative and 

multi-dimensional problem, it should be addressed through a statistical modeling approach. 

However, the aim of most earlier studies was to detect rather than to quantify growth trends, and 

very few of them were based on a modeling approach (Elfving and Nyström, Tome et al., 

Mielikäinen and Timonen, among contributions gathered in Spiecker et al. 1996, Elfving and 

Tegnhammar 1996, Goelz et al. 1999, Gschwantner 2006). In addition, the estimation of the current 

date effect leads to considering short-term growth increments (annual to pluri-annual) instead of 

totals. Otherwise, the chronology estimate at a given date would integrate former changes recorded 

in growth and would not be interpretable (e.g. Elfving and Tegnhammar 1996, Goelz et al. 1999). 

The need for modeling approaches has been pointed out in Spiecker (1999), but no decisive step 

ahead has been accomplished in more recent studies (Vejpustkova et al. 2004, Perez et al. 2005, 

Lopatin 2007). The quantitative description of long-term trends therefore remains a largely 

unexplored issue to date. 

 

In France, the available contributions on changes in forest productivity mostly result from 

dendrochronological approaches to radial growth, and report positive trends (Badeau et al. 1996). In 

this paper, we therefore revisit the subject of changes in productivity through a case study on even-
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aged stands of Common Beech (Fagus sylvatica L.) in the northeastern area. Our objective is to 

provide a consistent assessment of the chronology and intensity of such past changes. Dominant 

height growth was selected for its insensitivity to stand density and its relationship to stand 

productivity, and was reconstructed from stem analyses. The sampling design was defined 

according to the paired-plots method, based on neighboring stands of different ages located in the 

same site fertility conditions. The historical signal in dominant height growth was extracted using 

an original statistical modeling analysis of height increments, allowing to factor out the effects of 

site and developmental stage. Specific attention was paid to the interpretability of the model and of 

the historical signal extracted, which to our knowledge has never been proposed earlier. 

 

MATERIALS 

 

Sampling strategy: the paired-plots method 

The identification of the environment-related historical changes in growth implies control of the 

developmental stage and intrinsic site fertility, which affect dominant height. The paired-plots 

sampling method (Untheim 1996, Lebourgeois et al. 2000) consists in associating neighboring 

stands, which should differ only in age. It thus provides an efficient way to sample stands whose 

ages are balanced with permanent environmental conditions. Control of the site fertility can be 

further strengthened by additional measurements of local environmental indicators. Also, greater 

proximity in genetics (in natural stands) and management practices between the associated plots is 

an implicit benefit of the method. 

We applied the method to pure and regular stands of Common Beech within its semi-continental 

production range in northeastern France. Beech was selected because management-related impacts 

on growth evolution are likely very weak: there is no existing breeding program, Beech is attested 

always to have been regenerated naturally (Hüffel 1926), and the intensity of management has been 

reported as traditionally moderate (Polge 1981). Moreover, the sampling was restricted to State 

forests to ensure structure and management continuity through time.  

To vary site conditions within the sample, 14 stand pairs were sampled in 1998 within the 

considered geographic domain. Old stands were selected that were close to the standard rotation age 

(150–180 years). Young stands were chosen half as old (70–80 years) in order to ensure a correct 

statistical separation of ontogenic/environmental effects on growth and a comparison of growth 

within a sufficient age range. The prior control of within-pair environmental conditions included a 

maximum distance of 500 m, and the identity of topography, parent rock, and soil. Stand pairs were 
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selected after an in situ check of stand characteristics, topography and soil (depth, texture, and 

stoniness), completed by humus forms (Jabiol et al. 1995) and understorey vegetation. For an 

accurate comparison of soil indicators, soil analyses were also carried out in 2007 (see below), and 

were completed by vegetation surveys conducted in the summer season in 400 m
2
 area plots, to 

predict water and nutrient status from Ellenberg indicators (Ellenberg et al. 1992, Hawkes et al. 

1997). Stand characteristics are reported in Table 1 and mapped in Figure 1.  

 

Table 1. Location and age of stands. a Mean geographic coordinates of stand pairs (ED 50 

system), 
b mean elevation of stand pairs in meters asl, c stand age in 1998. 

 

 

Stand pair 

 

Forest 

 

Locationa 

 

Elevationb 

(m) 

 

Within-pair distance 

(km) 

 

Stands agec  

(yr) 

 

Age difference 

     Young 

 

Old 

 

 

 

1 

 

Haye 

 

6° 05' E,  48° 39' N 

 

400 

 

0,11 

 

72 

 

136 

 

64 

2 " 6° 05' E,  48° 40' N 370 0,20 66 137 71 

3 " 6° 07' E,  48° 39' N  395 0,23 58 143 85 

4 Sarrebourg 7° 00' E,  48° 44' N 325 0,10 53 109 56 

5 Hesse 7° 04' E,  48° 40' N 325 0,07 63 157 94 

6 Lemberg 7° 17' E,  49° 00' N 295 0,11 84 142 58 

7 Mouterhouse 7° 24' E,  49° 01' N 370 0,30 53 132 79 

8 Goendersberg 7° 26' E,  49° 07' N 360 0,33 47 184 137 

9 Morimond 5° 42' E,  48° 03' N 440 0,18 56 124 68 

10 La Petite Pierre 7° 18' E,  48° 51' N 330 0,08 39 122 83 

11 FC Fislis 7° 24' E,  47° 31' N 480 0,16 90 169 79 

12 Ban d’Uxegney 6° 25' E,  48° 10' N 405 0,15 75 122 47 

13 Sainte Hélène 6° 39' E,  48° 19' N 340 0,07 65 131 66 

14 Fraize 6° 24' E,  48° 21' N 365 0,12 84 153 69 

 

Mean  

   

370 

 

0.16 

 

64.6 

 

140.1 

 

75.4 

Standard-

deviation 

  50 0.08 15 20.2 21.7 

 

 

Dominant height sampling and reconstitution 

The height growth trajectory of a tree can be reconstructed from its origin using stem analysis 

(Curtis 1964), based upon ring counts of disks sawn at regular intervals along a tree stem, up to the 

terminal bud. When stem analysis is applied to a sample of dominant trees, the calculation of a 
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dominant height growth trajectory is possible. Dominant height was defined as the mean height of 

the 100 thickest trees/ha at 1.30 m height. In each stand, dominant trees were sampled according to 

Duplat and Tran-Ha (1997): to avoid local sampling bias (Pierrat et al. 1995, Garcia 1998), the five 

thickest trees of 0.06-ha circular plots were selected, of which the first, third, and fifth ones were 

cut. Disks were first sawn every 4 m along logs, starting at a constant 0.30 m, then every 2 m on 

reaching the upper parts of stems and crowns. Age was counted from the stump height. In total, 84 

stem analyses were performed. 

These stem analyses provided successive height measurements separated by several years. To 

compute the mean trajectory of dominant trees, additional height-age pairs were calculated by linear 

interpolation of individual curves. As tree ages were seldom identical within a stand, curves were 

averaged by date to preserve growth synchronization over time. Calculation dates were chosen to 

include as many initial (instead of interpolated) measurements as possible, with an average 

resolution criterion of 7–10 years. Stand age was defined as the median tree age. Growth 

trajectories are plotted in Figure 2. Seven singularly small increments were detected (a fraction of 

the old-stand curve of pair 8 was affected, see Figure 2) and were removed. The number and 

duration of increments considered for modeling are reported in Table 2. 

 

Figure 1. Location of sampled stands. Each dot corresponds to a stand-pair. 
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Figure 2. Dominant height growth curves reconstituted from stem analyses. Dashed lines: old 

stands; full lines: young stands. Arrow: disturbance detected on the old stand of pair 8. 

 

 

 

 

Table 2.  Growth increment characteristics. Standard deviations are given in parentheses. 

 

  
 

Sample size 

 

Mean duration  

(yr) 

 

Maximum duration 

Old stands 

 

185 

 

9.3   (4.0) 

 

21.5 

Young stands 

 

 

171 5.0   (2.1) 13.0 

Total 356 7.2   (3.9)  
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Post-sampling assessment of site control 

The close control of mean climate in the paired-plots method is implicit. To further check the 

quality of pairing for factors varying rapidly in space, environmental indicators were computed 

from in situ measurements, soil analyses, and vegetation surveys. They were also used as an 

indication of site fertility variations between pairs. They comprised: 

- soil indicators of nutrition and water availability, based on soil analyses carried out in each stand 

following recommendations by Gégout and Jabiol (2001): (a) soil layer textures were analyzed to 

provide 1 m depth soil water capacity (SWC100) calculated from texture capacity estimates by 

Bruand et al. (2003) and stone layer contents, and (b) pH, cations (Ca, K, Mg, Na, Al, H, Fe, Mn, 

cmol+.kg
–1

), total nitrogen (N), organic carbon (C), and phosphorus (P) concentrations (g.kg
–1

) 

were measured in the first soil layer. Additional synthetic nutrition indicators were then computed: 

C/N ratio for nitrogen availability, cation exchange capacity (CEC), concentration of bases (S = Ca 

+ K + Mg + Na), and base saturation rate (S/CEC). 

- Vegetation-based Ellenberg indicators of local water and nutrition status (Ellenberg et al. 1992) 

including: nitrogen availability (Nel), basicity (Rel), and humidity (Fel). These indicators are 

defined for botanic species of Europe and are expressed on a relative scale ranging from 1 to 9, 

reflecting the increase in factors. For each indicator, averages were computed over each vegetation 

survey. 

Means and standard-deviations for the main environmental indicators are given in Table 3.  

 

 

MODEL FORMULATION 

 

Model structure 

The model was initially formulated in the form of a differential equation (continuous time). It was 

then integrated with respect to time to be fitted to growth increments. 

Under a stable environment, dominant height growth rate is usually expressed as a function of stand 

developmental stage (age or size, denoted DS) and of permanent site conditions (S) (Equation 1): 

dt

dH0  =  f (DS, S)  (1) 

Figure 2 depicts an overall sigmoid pattern for height-age trajectories. Because they offer a good 

compromise between flexibility, robustness, and structural interpretation (Zeide 1993), three-

parameter sigmoid-generating differential equations are usually used for expressing Equation (1). 
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Growth intensity and trajectory asymptotic limit are parameterized by two scale parameters and a 

shape parameter controls the trajectory curvature. Rewriting Equation (1) within this frame leads to: 

 

 
dt

dH0  
=  r f (DS, K, m)  (2) 

 

where r denotes the growth rate (meters/year) and K the height asymptotic upper limit (meters), and 

m is the shape parameter (dimensionless). More precisely, r is the growth rate occurring at a 

conventional developmental stage DSr such that f (DSr) = 1, which can be modified through a re-

parameterization procedure. 

 

Table 3. Main environmental characteristics of sample and between-generation comparisons. 

a
 Standard-deviations are given in parentheses, 

b
 p-value associated with the paired t-tests, 

c
 mean 

of indicator for the first soil layer.  

 

 

Environmental indicator 

 

 

Sample meana 

 

Young stands mean 

 

Old stands mean 

 

pb (paired t-test) 

 

pH pH c 5.09  (0.95) 

 

5.11 5.07 0.67 

Base saturation rate S/CEC (%) c 53  (36) 

 

51 55 0.41 

Ellenberg basicity index 

 

Rel 5.32  (1.2) 5.55 5.18 0.04 

Carbon to nitrogen ratio C/N (kg.kg-1) c 16.0  (3.0) 

 

15.8 16.3 0.36 

Ellenberg nitrogen index Nel 

 

5.30  (0.82) 5.46 5.15 0.29 

Phosphorus concentration P (g.kg-1) c 0.044  (0.041) 

 

0.039 0.050 0.79 

Soil water capacity (1 m) SWC100 (mm) 141  (48) 

 

148 135 0.56 

Ellenberg humidity index Fel 

 

5.38  (0.25) 5.37 5.39 0.78 
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There are recurrent contributions asking which parameter(s) should stand for the effect of site. From 

the traditional Algebraic Difference Approach (ADA, Bailey and Clutter 1974), anamorphic 

(proportional) or polymorphic (single asymptote) site curves are derived, depending on which 

parameter, K or r respectively in the present formulation, is allowed to vary. In the more recent 

Generalized Algebraic Difference Approach (GADA, Cieszewski and Bailey 2000) advanced 

polymorphic curves are derived (with both different shapes and multiple asymptotes), based on 

simultaneous variations in several site-specific parameters (usually two) constrained by specific 

relationships. Most of the time, the selection of the site parameter structure is based on the fitting 

accuracy of respective formulations (e.g. Nord-Larsen 2006).  

The dependence of the increment level on r is immediate from Equation (2). We thus considered r 

as the primary site parameter. For further coherence, Equation (2) was parameterized for r to stand 

as the maximal growth rate (denoted R), reached at the inflexion point of growth paths. Because K 

may also vary according to site, the significance of a site variation of that parameter was also 

investigated. A correlation between r and K was tested. 

If historical environmental changes have modified site conditions over time, their effects can be 

summarized as functions of calendar date, applied as modifiers of any site parameter in the model 

(potentially r and K). Because the present sampling is retrospective, late growth is not documented 

for the younger stand generation (Figure 2). Consequently, the asymptote parameter K cannot be 

reliably estimated for that generation, as well as any dependence on calendar date (the estimate of K 

is assumed common to each stand pair, and is estimated mainly from the older stand data). On the 

contrary, R is sensitive to the early stages of height growth and can be soundly estimated in both 

generations of stands. The effect of calendar date was thus investigated on parameter R.  

The productivity change was expressed as a function of time g(t). To keep consistent with the 

proportional formulation of the increment to parameter R (Garcia 1989), g(t) was defined as a 

multiplier of the increment: 

 
dt

dH0 =  g(t) R f (DS, K, m)  (3) 

 

Equation (3) suggests that g applies in a homogeneous way, inducing the same relative change in 

the R value in time whatever the initial level of R (i.e. there is no site/growth-trend interaction in a 

multiplicative formulation). 

There are two reasons why the developmental stage might be modeled as an effect of size (H0) 
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rather than age. First, if a historical enhancement of growth exists, it implies that mensurations of 

successive generations of stands taken at the same age differ. Because growth is not independent of 

size (Shinozaki et al. 1964, Valentine 1985, West et al. 2001), the use of age as a proxy for DS 

would bias the comparison of increments. Second, the replacement of DS by H0 in Equation (3) 

suggests a dynamic interpretation of the growth trend: if we consider a fixed increment starting 

from a fixed initial height, a growth enhancement (g > 1) implies that less time is needed to achieve 

the same final height for any R value. Consequently, g acts as a time flattening factor. For instance a 

value of 1.5 for g is equivalent to a reduction by one third of the time needed to reach a given size 

with an equal initial value. Such an interpretation is of particular relevance to the present study, but 

is not permitted when age stands for DS. The following formulation was therefore assumed: 

 

 
dt

dH0 =  g(t) R f (H0, K, m)  (4) 

 

Time t was further taken as t = (date – dateb), where date denotes the calendar date and dateb is a 

reference base date for trend estimation, taken as 1900. R was consequently denoted Rb, 

representing the site conditions prevailing at the base date: 

 

 
dt

dH0 =  g(t) Rb f (H0, K, m)  (5) 

 

Equation (5) is an ordinary differential equation with separable variables. Its integration over any 

increment time period [t–1, t] (assuming a closed-form solution for H0) leads to: 
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Functional representation 

As the mathematical representation of developmental stage influences the estimation of g (Equation 

(5)), special attention was paid to the asymptotic behavior of growth equations chosen, to represent 

the slow convergence of tree height growth processes (Figure 2, Zeide 1993). We first considered 

Richards equation (Richards 1959), which has exponential convergence of height in time and is 

widely used in forestry. We also selected two equations with less asymptotic slowing (power 
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convergence of time), including the Hossfeld equation (Woollons et al. 1990, Zeide 1993) and the 

Korf equation (Zarnovican 1979). These were further denoted as R-, H-, and K-equations. The 

equations were parameterized for Rb to represent the maximal growth rate. The differential forms of 

growth equations and expressions for T and H0 (t) are given in the Appendix (Equations (7) to 

(15)). Due to the lack of theory on the growth trend pattern, g was expressed in three different 

forms:  

(i) a linear function of t (mean trend): 1 + d1 t       (16) 

 

 (ii) a quadratic function of t, to test for a putative accelerated pattern: 1 + d1 t + d2 t
2
  (17) 

 

 (iii) a higher-order polynomial-type function of t, to detect historical variations of decennial 

range. The accuracy of common high-degree polynomials is restricted by their oscillatory 

nature and the impact of their local behavior on the entire target range (Burden and Faires 

2001). We thus considered cubic splines, which are piecewise polynomial functions of degree 

3 and have the property of optimum curvature (Lange 1999).  

 

The spline function was written as a function of t centered on t = 0, with nodes equally-spaced at n-

year intervals (between 10 and 20 years for the present purpose), and was parameterized with a base 

time interval [0, n]: 

   



21

0

3

k

3

1k

k

3

3

2

21 )0,kmin(pm)0,kmax(pdd1)(
k

k

k

ntnttdtttg   (18) 

 

where d1, d2, d3, pk, and pmk are spline parameters to be estimated, collected in a parameter vector 

g, and n, k1, and k2 externally specify the width and number of spline intervals necessary to 

describe the whole period range covered. The spline function extremities over the time period 

covered by available increments are not constrained by any end condition. 

As g varies slowly over a usual increment time step, its integration in Equation (6) was 

approximated (except in the case of Equation (16), where it holds strictly) as:  

 

 1g
1

1
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2

)( 
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tu

  (19) 

 

This made the statistical adjustment of parameters associated to cubic terms easier. 
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STATISTICAL METHODOLOGY 

 

Mixed-effect models as a frame 

The sampling design corresponds to longitudinal data structured according to two hierarchical 

levels: a stand-pair level and a stand-within-pair level, next designated levels 1 and 2. The fertility 

parameter Rb should meet with site variations (level 1) that can be enriched by an additional within-

pair variation (level 2) for a control of residual site differences among stands. A simultaneous site 

variation in parameter K was also tested. As mentioned above, the incompleteness of the sampling 

design allowed for a variation of K at level 1 alone. The shape parameter m was assumed constant.  

Mixed-effects models (Davidian and Giltinan 1995) provide an efficient way of fitting longitudinal 

data with structured variation in some parameters. Rather than using dummy-variable 

parameterization, site parameters are considered as random variables for which expectancy and 

variance are estimated under a given distribution assumption (e.g. Lappi and Bailey 1988). 

Individual estimates are then obtained by a specific posterior procedure (Davidian and Giltinan 

1995). From Equation (6) the model is non-linear in the parameters and was fitted using multi-level 

non-linear mixed-effects models, adjusted by maximum likelihood. A normal distribution for both 

errors and random parameters and their independence were assumed (Lindström and Bates 1990). 

The model was fitted on successive non-overlapping growth intervals (Borders et al. 1988), and 

thus predicted a height at year t conditionally to height at the former year t-1 available in data. This 

data structure has been recurrently recommended in literature (Borders et al. 1988, Wang et al. 

2007). Due to the choice of mixed-effects models, the error-in-variable problem (Wang et al. 2007, 

Cieszewski and Strub 2007) was not addressed. The present statistical modeling method can be 

viewed as a "varying parameter" method (Cieszewski and Strub 2007) applied to height increments: 

all successive observations of a given forest plot are used for estimating site-dependent parameters. 

From a statistical point of view, the model defined by Equation (6) applied to successive growth 

intervals [ti-1, ti] is written as: 
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with: 

Rb  =  Rb0 + Rb1 + Rb2,   K  =  K0 + K1       (21) 

Rb1 ~ N (0, ²Rb,1) , K1 ~ N(0,  Rb2 ~  N (0, ²Rb,2) , i ~ N (0, ² 
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cor (Rb1, K1) =            (23) 

where g, Rb0, K0, m and ² are fixed parameters, Rb1 and K1 are level-1 random components of Rb 

and K and Rb2 that of Rb at level 2. Parameters Rb,1, Rb,2 and 1 are random parameter standard-

deviations and  is the eventual level-1 correlation between Rb1 and K1. 

The homoskedasticity assumption was furthermore relaxed. A variance function was introduced, 

assuming that the residual standard deviation around the increment was proportional to a power of 

the expected increment: 

       λ2

100

2σV  iii tHtĤε   (24) 

 

where  and  are variance function parameters, and )(ˆ
0 tH  stands for the prediction from model 

(20). 

As compared with a fit on age-height series where structural autocorrelation in successive 

observations is generated (Duplat and Tran-Ha 1997, Nord-Larsen 2006), the present data structure 

made an autocorrelation function in the error model unnecessary (Borders et al. 1988). 

Models were fitted using the nlme procedure of S-PLUS (Pinheiro and Bates 2000). Model 

comparisons were drawn according to the Akaike Information Criterion (AIC). Nested models were 

further compared using the Likelihood Ratio Khi-2 Test (LRT). Plots of residuals versus 

fits/variables were used to check for adequate fitting or abnormal curvatures while testing growth 

equations and date effect representations. 

 

Estimation of mean growth change – modeling steps 

Step 1. The accuracy of Equations (13) to (15) (Appendix) was compared by a fit without any date 

effect. A random variation of parameter Rb was allowed at levels 1 and 2. Three fits were 

performed: (i) no random variation for parameter K and (ii) random variation for parameter K at 

level 1 with correlation or (iii) without correlation to Rb. Step 2. The effect of date was introduced in 

the successive functional forms of Equations (16) to (18), the latter with 20-year node intervals. 

Step 3. A variance function was introduced into the model to take the error structure into account. 

Through examination of residual plots, two forms were tested (Equation (24)), as either a 

proportional ( = 1) or power function of height increments. In the following, fits were restricted to 

the most accurate growth equation and the random variation structure resulting from step 2. The 

cubic spline function was then tested with 15- and 10-year node intervals. Step 4. The model with 

the most convenient node interval length from step 2 was fitted again with each growth equation, to 
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further check for their relative consistency and also to consider the sensitivity of date effect 

estimation to equation choice. A bilateral 95% confidence interval for cubic-spline estimate of date 

effect was computed according to the derivation presented in the Appendix. 

 

Interaction between growth change and site 

As deviations from the multiplicative formulation suggested in Equation (3) may be possible, the 

date/site interaction was tested by deriving an indirect individual stand-pair index for productivity 

change – denoted I – based on a jackknife-like approach. It was computed as follows: for each 

sample, Equation (20) was adjusted as many times as available stand-pairs, with successive one-to-

one pair exclusions. The productivity level for the year 2000 without pair k was designated as P-k, 

while the mean productivity level over the sample was denoted P. Assuming that pair k has 

experienced a sharper change in time than the mean sample, P–k should be less than P. Therefore P 

– P–k is positive and provides a consistent definition of I, denoted Ik for stand k: 

 Ik = P – P–k      (25) 

The date/site interaction was investigated by testing the relationship between index Ik and level-1 

estimates of Rb. 

 

RESULTS 

 

Main characteristics of sample and quality of pairing 

Stand age criteria were adequately met, with a mean difference between generations of around 75 

years. The ages of older stands ranged within sound limits (Table 1). Stands were mainly located on 

brown soils (European Commission 2005). The main environmental characteristics (Table 3) 

indicated a fair average nutritional status (pH of 5.0, base saturation rate of 47%, and C/N ratio of 

16.2). Soil water capacity at 1m depth (SWC) reached 140mm. In addition, the sample variations in 

environmental conditions were not negligible, as demonstrated by coefficients of variation (15% for 

C/N, 20% for pH, and 30% for SWC). 

Geographical distances between paired stands are given in Table 1. Paired-stands were located very 

close to one another (mean distance: 0.16 km). The within-pair site differences were investigated 

using environmental indicators. No singular pair was detected when individual anomalies were 

sought. Systematic between-generations differences were then assessed using two-sided paired t-

tests. The mean values of main indicators and p-values for t-tests are presented in Table 3. One 

significant difference was found (p = 0.04) for the Ellenberg indicator of basicity (Rel), higher in 
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the younger generations (5.55/5.18). It was not confirmed on soil pH. A trend towards higher 

nitrogen availability in younger stands was also detected, but was not significant (Table 3). 

 

Estimation of mean growth change 

A first assessment of growth change was provided by computing a paired t-test of the within-pair 

difference between the total height of young stands and that of older stands taken at the same age. A 

systematic and very significant difference of 5.7m on average was found (p < 10–4, mean 

comparison age: 75.4 years). 

The main modeling steps and parameter estimates with the final growth equation are summarized in 

Table 4, also including a comparison of different growth equation fits from step 2. Step 1. The R-

equation initially appeared to be the least adapted, although with a slight difference from the K- and 

H-equations, which had similar accuracy (all equations were within a 5 AIC unit interval). The 

closeness of the equations' behaviors and the high estimates for K (50 to 80 m) seemed in good 

accordance with the low-curvature pattern observed for old-stand growth curves (Figure 2). The 

introduction of random variation for K at level 1 provided significantly better fits for the R- and H-

equations (p = 10–4 and 6.0 10–4 respectively, around –10 AIC units), and to a lesser extent for the 

K-equation (p = 0.03), consistently with higher estimates for K. The order of magnitude for 

variation in K was around 10% and remained stable in the next steps. The correlation between 

random variations of Rb and K at level 1 was found to be positive (0.5 to 0.7 depending on the 

growth equation fitted), but did not lead to significantly worse fits when set to zero (p = 0.3 to 0.5). 

The best fit was obtained with the H-equation, closely followed by the R- and K-equations (+4 and 

+9 AIC units respectively, see Table 4). Step 2. As detected by the paired t-test, residuals plotted 

against calendar date displayed a positive trend. An acceleration after the 1950s and growth 

anomalies were also noticeable. Consistently, the introduction of a linear trend in the model 

(Equation (16)) induced significantly better estimates (p = 10-4). The trend amounted to a +35% in 

growth rate over the century (Table 4). Quadratic and 20-year node interval cubic spline effects of 

date greatly improved the goodness of fits (p < 10–4 in each case, –15 and –30 AIC units 

respectively). The H-equation remained the best, preceding the R- and then the K-equation (+6 and 

+14 AIC units respectively). The level-2 random variation of Rb logically flattened. The random 

structure was checked again and confirmed. Step 3. A graphical analysis of residuals revealed a 

heteroskedasticity pattern. A variance function (Equation (24)) was introduced into the model, now 

restricted to the H-equation, and led to a significant improvement (p < 10–4, ). Smaller 

cubic-spline node intervals were finally tested. The 15-year interval turned out to be the most 
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appropriate (p = 0.002, no additional gain with the 10-year node interval) and was retained. 

Height increments were filtered out from the estimates site and developmental stage effects and 

were superimposed onto the estimate of g (and its 95% bilateral confidence interval) in Figure 3. 

This was achieved using the transformation based on a combination of Equations (6) and (19): 
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Figure 3. Historical change in dominant height growth rate. Increments are centered on their 

median date and have been filtered out from site and developmental stage influences (see text). 

Intervals indicate increment duration. Filled and blank dots: young and old stand increments 

respectively; thick-full line: 15-yr node interval cubic-spline estimate of g(t) conventionally set to 

unity at year 1900; dashed line: 95% confidence interval for g estimate; thin-full line: quadratic 

estimate of g(t).  
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Table 4. Characteristics of main models fitted with the Hossfeld growth equation. 

Characteristics of models fitted with the Richards and Korf equations at the end of modeling step 1 

are indicated for comparison (see text). For the last model, standard-errors of parameters are 

provided under parentheses. a index figures denote random variation level for standard 

deviation/correlation estimates, b in the absence of the variance function, c number of model 

parameters, d log-likelihood, e Akaike Information Criterion, f p-value associated with likelihood 

ratio tests (LRT) between successive nested models based on the Hossfeld equation, * not provided. 

 

Model Equation Hossfeld Hossfeld Hossfeld Richards Korf Hossfeld Hossfeld Hossfeld Hossfeld Hossfeld 

 

 Date effect - - - - - linear quadratic 20-yr 

spline 

20-yr 

spline 

15-yr 

spline 

Parameter 

estimates 

Rb 

(m/yr) 

0.417 0.422 0.423 0.417 0.435 0.390 0.358 0.364 0.370 0.381 

(0.023) 

 K 

(m) 

60.4 56.8 57.1 47.3 71.2 52.3 48.1 49.0 49.1 49.0 

(1.8) 

 m 0.708 

 

0.668 0.669 0.658 1.077 0.702 0.673 0.678 0.667 0.667 

(0.021) 

 d1 x 102 

(1/year) 

- - - - - 0.35 0.24 * * -0.765 

(0.315) 

 d2 x 104 

(1/year2) 

- - - - - - 0.67 * * -3.509 

(5.946) 

 Rb,1
a 

(m/year) 

0.044 0.033 0.035 0.033 0.038 0.063 0.057 0.061 0.054 0.055 

(0.024) 

 Rb,2
a 

(m/year) 

0.084 0.085 0.085 0.084 0.087 0.029 0.035 0.031 0.026 0.028 

(0.034) 

 K, 1
a 

(m) 

- 5.9 6.1 5.0 6.9 5.0 4.8 5.4 5.0 4.9 

(0.22) 

 1(Rb,K)a - 0.64 - - - - - - - - 

  (RSEb) 

(m/year) 

0.50 0.48 0.48 0.48 0.49 0.48 0.45 0.42 0.27 0.28 

(0.09) 

  - 

 

- - - - - - - 0.52 0.45 

(0.11) 
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Goodness  

of fit 

pc 6 8 7 7 7 8 9 17 18 20 

 logLd -298.7 -291.3 -291.6 -293.4 -295.8 -285.5 -268.1 -238.8 -228.0 -222.9 

 AICe 609.4 598.5 597.2 600.9 605.6 587.0 554.2 511.7 492.1 485.8 

 p LRTf - 6 10-4 0.42 - - 5 10-4 < 10-4 <10-4 < 10-4 5 10-3 

 

Table 3 (continued). 
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Figure 3 revealed a positive but irregular evolution of dominant height growth. A sharp increase 

occurred in the second part of the century, whereas no clear pattern appeared in the first decades. 

Growth anomalies were detected in spline variations and standardized increments, the latest of 

which centered on the 1940s and 1990s. These observations were consistent with the significant 

goodness of fit gained from the cubic-spline representation of the calendar date effect and the low 

accuracy provided by a linear effect. The increase in growth rate reached +60% around 1980, and 

then oscillated between +50 and +60%.  

Step 4. The final model was fitted again with each growth equation. The sensitivity of the estimate 

of g to both the growth equation and spline node interval selection are illustrated in Figure 4.  

 

 

 

Figure 4. Sensitivity of date effect estimation to growth equation and cubic spline node 

interval. H: Hossfeld equation; K: Korf equation; R: Richards equation. The final model selected 

combines the H-equation and 15-yr cubic spline node interval. 
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Growth equation selection quite unaffected the estimation of g, with a maximum deviation between 

estimates within 5% on the g scale. It appeared that g was more sensitive to the spline node interval: 

at low resolution, the identification and magnitude of growth anomalies were impacted. The 

deviation between estimates rose to 10% on the g scale. As an example, the 20-year node interval 

spline failed to detect the anomaly in the 1940s. Accordingly, it was significantly less accurate than 

the 15-year one. Overall, the order of magnitude of g and the location of accidents in time were 

quite robust to the node interval resolution. 

 

Interaction between growth change and site 

Any deviation from the multiplicative formulation of date/fertility effects should be absorbed by 

within-pair random variations of parameter Rb. A preliminary test (not presented) was therefore to 

plot the young-stand estimates of Rb against those of old stands. No deviation from the first 

bisecting line was detected. Index Ik (Equation (25)) was then calculated based on a quadratic effect 

of date to simplify the fitting process. With respect to the magnitude of variation of g and Rb, the 

variability of Ik was found to be very small (standard deviation of 3.9% on the g scale). Ik showed 

no clear relationship with level-1 estimates of Rb (Figure 5). Their correlation was found negative 

and not significant (–0.26, p = 0.35 using a Pearson t-test). 

 

 

Figure 5. Relationship between stand-pair productivity change index (Ik) and level-1 estimates 

of site parameter (Rb1). 
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DISCUSSION 

 

Sampling strategy and properties of the paired-plots method 

 

Control and variation of fertility 

The control of fertility in stand pairs relied upon the in situ assessment of environmental indicators. 

The quality of pairing was further assessed from soil analyses and vegetation indicators. No 

singular pair was detected. From vegetation surveys, significantly more acidic conditions (p = 0.04) 

were found in the older stands (Rel, Table 3), but this was not reflected in the soil analyses. Stand 

ageing in Common Beech is associated with an acidification of the upper soil layers (Aubert et al. 

2004, Godefroid et al. 2005). This difference in the acidity status may thus result from the 

difference in the maturation stage between paired stands. Conversely, no other difference was 

identified among all indicators measured from soil analyses and vegetation surveys, which 

reinforced the confidence in the effective control of site conditions. 

The variation of site conditions across stand-pairs was also part of the sampling strategy. The 

pairing constraint may inherently limit the range of fertility that can be covered. However, 

significant variations in nutritional and water indicators were found (Table 3). Also, the 95% level 

confidence interval for parameter Rb (mean and random standard-deviation estimates, Table 4) 

ranged from 0.32 to 0.58 m.yr
–1

,
 
corresponding to a ratio of almost 2 between extremes and 

suggesting that a substantial range of site conditions was encompassed. 

 

Stands history 

The comparison of distinct stand generations could be affected by uncontrolled variations in time 

other than environmental conditions, such as those associated with stand management. In France, an 

overall conversion of coppice with standards (CWS) started in the 1830s and intensified in the mid 

nineteenth century (Hüffel 1926). Yet, Beech trees do not grow from stumps (Oswald 1981) and 

present stands thus result from natural regeneration, irrespective of their age. In addition, any 

impact of possible historical changes in silviculture is limited here, as dominant height is quite 

insensitive to density. Beech stands have moreover been managed at traditionally high densities in 

France, and thinning practices have intensified only recently (Polge 1981). 

 

Bias in dominant height reconstitution 

The reconstruction of dominant height trajectories from stem analyses assumes that the sampled 



 

24 

trees have remained dominant during their whole lifespan. Nevertheless, trees of lower social ranks 

may become dominant, following local thinning or mortality events (Delvaux 1964, Harcombe 

1987). When moving backward from the sampling date, retrospective height trajectories would 

increasingly diverge from the true one, underestimating height at earlier stages, and concurrently 

overestimating the growth rate (Magnussen and Penner 1996, Raulier et al. 2003). Whereas the 

issue is poorly covered in the literature, we believe that this impact should be limited. First, 

dominant trees were defined as the thickest and not the highest trees, which prevented sampling of 

opportunist trees that may favor allocation to height growth (contrary to Magnussen and Penner 

1996). Second, rank progressions rarefy when thinning intensity is low (Pardé 1981), which is 

reported to be true for Beech forests in northeastern France (Polge 1981). Because we compared 

pairs of stands sampled at different ages, further concern may be raised about whether the intensity 

of such bias is age-dependent and may impact the comparison of growth. Basically, the bias 

originates from social rank shift events, and by nature it may increase with age, whereas the 

opposite seems impossible. Thus, the older stands may be more affected – but not less – than the 

younger ones, which would at worst result in underestimation of the true magnitude of the growth 

trend. Therefore, the +50% increase reported cannot be artifactual, and rather stands as a minimum 

if the bias exists. 

 

Growth modeling: functional representations and model structure 

 

Growth equation 

Special attention was paid to selection of the growth equation and its impact on the final estimate of 

growth evolution. As depicted in Figure 4, the latter was weak. Actually, the assessment of growth 

change results from the comparison of the early-growth trajectories that are common to both 

generations. Hence, the asymptotic behavior of growth equations mostly ensures an adequate fitting 

of late-growth trajectories of mature stands. Another feature of equation fits was the significant 

between-stand variation of the asymptote parameter K, which was further found to be uncorrelated 

to Rb. Such variation was in accordance with trajectory patterns (Figure 2), which do not especially 

suggest any convergence towards an upper limit, nor a strong tightening of the set of growth curves. 

Usual datasets seldom uncover the asymptotic phase of growth patterns and may practically call 

into question the use of asymptotic models as the most accurate type for fitting current growth 

curves. Alternative growth equations based on assumptions of oblique-asymptotes or power 

trajectories have been suggested (Duplat and Tran-Ha 1997, Cieszewski 2003) and may deserve 
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more attention. 

 

Hypothesis of a multiplicative effect of calendar date 

The hypothesis was based on: (i) the need to keep consistent with the usual representation of the 

effect of site as a multiplicative parameter in growth equations, (ii) the dynamical interpretation 

offered by such formalism. In addition, no clear deviation from that hypothesis was highlighted by 

the analysis of index Ik and within-pair Rb variations. From a causal viewpoint, this suggested that 

no site factor would have constrained/saturated the response of growth to environmental changes. 

However, such patterns may be hardly detectable within the usual range of site conditions of the 

present sample.  

 

Cubic spline representation of historical change in dominant height growth rate 

The spline function provided a detailed chronology of dominant height growth rate, in good 

agreement with the fluctuations depicted in the observations. It allowed us to detect a medium-term 

acceleration pattern starting in the 1950s and repeated growth anomalies over the century. However, 

its endmost increase in the 1990s might be partly artifactual, due to the absence of an end condition.  

The use of spline functions may also raise concerns regarding the positioning of anomalies. Figure 

3 depicted rather symmetrical variations of the spline around its local minima. If we accept that 

growth recovery following perturbations (say for instance climatic) may be progressive, the 

variation should be asymmetric by nature (Bréda and Badeau 2008), and possibly result in a lagged 

positioning of the spline function extrema. Some confirmation may be found in the spline behavior 

in the 1900s and 1990s, but it remains tenuous. 

 

Intensity of changes in productivity 

 

In Figure 3, an index of around 1.6 in 1980 means that current height growth rate level is 60% 

higher at that date, relative to 1900. It is also equivalent to say that only 62.5% of the time (1/1.6) 

would be required to reach the same dominant height in the virtual permanent conditions of year 

1980 as in those of 1900, corresponding to a time contraction factor of 37.5%. However, this does 

not mean that young stands growing at this virtual date would be 60% higher than in 1900 (see 

Figure 2), which would hold only if height trajectories were linear. Actually, the shift in growth has 

been progressive. The average level of g over the twentieth century amounts to 1.27, which is 

equivalent to a contraction factor of 21%. 
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The univalent relationship that links dominant height to total stand production (in volume or basal 

area per hectare), whatever site conditions, empirically holds at a regional scale (Assmann 1970). 

Thus, it is plausible to assume its stability under environmental changes, and it means that the 

contraction factor would apply straightforwardly to production levels. Yet, because the order of 

magnitude reported for changes is so high and has strong potential consequences for forest 

management, further work is required to test the stationariness of the dominant height growth–

productivity relationship over time. An implication of the present work is also that classical site 

index curves can no longer be used for defining site index as an updated measure of site fertility. 

Based on the height growth chronology, date-dependent adaptive site index-curves were thus 

derived for forest management applications in Beech stands (Bontemps et al. 2007). 

Regarding growth trends on Common Beech, the following results were found in the literature: in 

the Swabian Alb in Germany, Untheim (1996) identified an increase in dominant height of +2.9 to 

+3.7m at a constant age of 80 years over the period 1930–2000. A comparison of site index of 

successive stand generations in Denmark led to a similar estimate of around +3.7m over a one 

century interval (Skovsgaard and Henriksen 1996). Both estimates were within the range of those 

reported (Table 1). From a dendrochronological approach in northeastern France, Badeau et al. 

(1995) found a growth rate increase by around +100% over the century, twice as high as our 

estimate, and seemingly unrealistic. Because the latter study differed from ours in both the sampling 

design, growth indicator and signal extraction method, no immediate explanation for this difference 

can be found. However, a very similar acceleration pattern was detected in the mid century 

following the decennial anomaly of the 1940s (Badeau et al. 1995). 

 

 

CONCLUSIONS 

 

We reported an original methodology for the estimation of long-term productivity changes in even-

aged stands and its application to common Beech in northeastern France. It was intended to address 

earlier inconsistencies (Spiecker 1999) and was based on combining the paired-plots method as an 

accurate way to control site fertility, the use of dominant height as a proxy for productivity, and a 

statistical modeling approach to estimate the chronology of dominant height growth. An accelerated 

increase of up to 60% at the end of the twentieth century was found. This is half the estimate 

reported in the same area using a dendrochronology approach (Badeau et al. 1995). The average 

increase over the century was +27%.  
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However the sampling design made it impossible to test for the historical change in late growth. 

Also, an interaction between the historical change and site was not found, but it may remain 

difficult to detect from the low number of replicates of the method and the site range encompassed. 

The method may be used to assess regional or species-related variations in past trends and to gain 

insight into the environmental factors involved through comparisons of their chronologies. Also, it 

could be similarly applied to other productivity-oriented indicators such as radial growth.  

 

ACKOWLEDGEMENTS 

 

We gratefully thank the French Ministry for Agriculture and Fisheries (MAP) as well as the French 

Forest Service (ONF) for providing funding and support to the present study. The first author was 

also funded by a PhD grant from the MAP. We also wish to thank : C. Richter, J.-L. Dupouey, B. 

Renaux for their contribution to sample elaboration as well as in situ ecological appraisal, D. Rittié 

for conducting stem analysis, B. Jabiol and J.-C. Gégout for soil analysis design, and J.-C. Pierrat, 

J.-C. Gégout and J.-M. Leban for their helpful comments on the manuscript. 

 



 

28 

Appendix 

 

Differential forms for growth equations 
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Integrated form for H0(t) 

Integration of each equation in any time interval [t–1, t] leads to a closed-form solution for H0: 
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Confidence interval for cubic-spline estimate of g(t) 

 

We rewrite g (Equation (18)) as: 
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where p is the vector of spline parameters pk and ft is the vector of fk(t) which stands for t, t2, t3, and 
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 terms (Equation (18)). Note that g is linear in p. 

The estimator for p is a maximum likelihood estimator (ML) and is thus asymptotically unbiased 

and normally distributed (Lindström and Bates 1990), which applies to ML,
ˆ
t , the derived estimator 

of t , and: 

t

tt



 ML,
ˆ

 ~ N(0,1)  with: ]ˆ[V ML,

2

tt    

With the variance-covariance matrix of vector p denoted pΣ̂ , an estimate of  
2

t is given by: 

 

tpt

t

t

t

t fΣff ˆ]p[Vˆ 2   
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The variance-covariance matrix estimate for fixed effects is obtained from the statistical fit of the 

model, from which the sub-matrix of dimension q for the pk can be extracted. Such an estimate of 

2

t is not conditional on other model parameter estimates. 

Now replacing 2

t by 2ˆ
t (Krzanowski and Marriott 1994) leads to: 

 

t

tt





ˆ

ˆ
ML, 

 ~ T (df) 

 

where T stands for the Student distribution and df stands for the number of degrees of freedom for 

the estimators of p. 

Degrees of freedom calculation for a hierarchical mixed-effects model coincides with that of 

classical hierarchical analysis of variance and was calculated as indicated in Pineiro and Bates 

(2000). Hence, with nobs and r denoting the total number of observations and model parameters 

respectively, np the number of stand pairs at level 1 (between-stands variation), and assuming 

random variation of 2 parameters (Rb and K) within that level, it becomes: 

 

df  =  nobs – (np + r – 2) 

 

Finally a bilateral confidence interval conditional to t at level 1- is given by: 

 

)(ˆˆ1)( 2/1ML, dftfΣftg tpt

t

t   for any t. 
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