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Abstract. In this paper, we present a new way of constraining the evolution of an active
contour with respect to a set of fixed reference shapes. This approach is based on a description
of shapes by the Legendre moments computed from their characteristic function. This provides
a region-based representation that can handle arbitrary shape topologies. Moreover, exploiting
the properties of moments, it is possible to include intrinsic affine invariance in the descriptor,
which solves the issue of shape alignment without increasing the number of d.o.f. of the initial
problem and allows introducing geometric shape variabilities. Our new shape prior is based
on a distance, in terms of descriptors, between the evolving curve and the reference shapes.
Minimizing the corresponding shape energy leads to a geometric flow that does not rely on any
particular representation of the contour and can be implemented with any contour evolution
algorithm. We introduce our prior into a two-class segmentation functional, showing its benefits
on segmentation results in presence of severe occlusions and clutter. Examples illustrate the
ability of the model to deal with large affine deformation and to take into account a set of
reference shapes of different topologies.
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1 Introduction

Exploiting high-level information about expected objects to ease the interpretation of low-level cues
extracted from images, following the mechanism of visual attention, may be highly beneficial in
applications such as image segmentation. In this spirit, incorporating global shape constraints into
active contours traces back to pioneering works such as [1–4]. It has recently received an increasing
attention in the context of implicit representations (see e.g. [5–9] and references therein). In the
present paper, we present a novel approach for constraining the geometry of an evolving active
contour toward a set of reference shapes.

1.1 Relationship to prior work

Our approach bears similarities with several previously published contributions. There are several
ways of enforcing shape constraints on active contours. While alternatives have been proposed in [6,
9–11], in the most usual approach, an additional prior term is incorporated into the segmentation
energy functional [2, 7, 12–16]. This framework includes a trade-off parameter which allows tuning
the balance between the data fidelity term and the shape prior according to the level of noise and
the confidence in the model.

Most of the time, the shape prior is based on a similarity measure between the evolving shape and
a reference one, which may be either a given silhouette [8, 17] or the result of a (pre)segmentation
stage [15, 18] or the outcome of some learning procedure [2, 5, 7, 9, 13, 14].

While several authors employ a parametric representation of curves [2, 4, 5], or geometric dif-
ferential representations [19], a vast majority of recent papers consider non-parametric models. In
particular, signed distance functions have become popular [6, 7, 9, 13, 14, 16]. An interesting feature
of such implicit representations is that they do not constrain shape topology. However, they are most
of the time linked to a particular implementation, namely the level sets framework while in certain
contexts, faster implementations that also handle changes of topology (e.g. [20]) may be preferable.

The first important issue that must be dealt with when using a reference shape is the question
of variability. Variations of the shape away from a reference template are, in the majority of existing
works, handled using statistical models, even if a framework that accounts for geometric transfor-
mations of the reference shape was proposed in [8]. Many models are based on standard Principal
Component Analysis (PCA) [3, 4, 6, 9, 14] which involves Gaussian distributions. To better model
real-world shape distributions, which may be arbitrarily complex, Gaussian kernel space density
estimation [5] and, more recently, Parzen kernel density estimation [16] were proposed.

A second issue is the question of shape alignment. Pose parameters (rotation, translation and
scaling) are generally taken into account in an explicit fashion [6–9, 13, 14], which increases the num-
ber of d.o.f. of the problem, and leads to systems of coupled partial differential equations (PDE’s).
To overcome these problems, intrinsic alignment was proposed: in [4, 12] for explicit snakes imple-
mentations, in [16, 17] for implicit representations in the case of translation and scale invariance,
and extended in [21] to the affine case.

1.2 Contributions of our work

The approach reported in the present paper combines a compact, parametric representation of shapes
(introduced by the authors in [17, 21] for the modeling of single shapes) with curve evolution theory.
More specifically, this parametric description is based on Legendre moments computed from the
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characteristic function of a shape. Such region-based representation shares with implicit representa-
tions [6, 7, 13, 14] the appealing property of dealing with arbitrary shape topologies. The advantage
of our model over those based on signed distance function is that it is not bound to any particular
implementation.

Moreover, as we have shown in [21], the geometric information about shape, carried by moments,
can be exploited to make our shape descriptor intrinsically affine-invariant. This avoids the problem
of pose estimation and introduces supplementary, geometrical variability in the model. In contrast
with methods that explicitly take into account pose parameters [6–9, 13, 14], no additional estimation
is needed. Note that, among the intrinsically invariant models previously proposed, the representa-
tions in [4, 12] cannot handle complex topologies, in contrast with the approaches in [16, 17], but the
latter are limited to translation and scale invariance. To our knowledge, only the method proposed
in [8] has further degree of invariance: it can handle projective transformations but using an explicit
formulation, however. Finally, note that the pose parameters are readily available as a by-product
of our method, which can be crucial in certain applications.

The model presented in [21] was limited to the single-reference, affine-invariant case. In the
present paper, we address the multi-reference case, i.e. multiple reference shapes are simultaneously

considered, in the spirit of [16]. More precisely, the proposed shape prior is defined based on a
distance, in terms of descriptors, between the evolving curve and the reference shapes. This is
obviously a way of introducing variability into the model. As illustrated by experimental results,
further variations may be dealt with by combining the multi-reference model with affine invariance.
To our knowledge, such results are completely novel in the domain. Introducing strong geometric
invariance, especially in the multi-reference case, obviously yields intricate energy landscapes with
many local minima, making the optimization more difficult. We also show that some geometric
transformations such as rotations, may be handled using the multi-reference model in conjunction
with a lower level of geometric invariance. In the multi-reference context, the distance between
descriptors constitutes an interesting feature for shape recognition or pose estimation.

Finally, a unique evolution equation for the active contour is derived using the formalism of shape
derivative and classical differentiation rules as proposed in [22] by Aubert et al. Thanks to the ability
of the model to change topology during evolution, automatic initialization of the active contour is
also possible, whatever the topology of the final target shape. Moreover, as already stated, neither
the model nor the evolution equation depend on any implementation consideration. Consequently,
both level sets [23] or spline-snakes [20] implementations may, for instance, be considered.

The remainder of the paper is structured as follows. In Sec. 2, we present our moment-based
shape descriptor and its three possible levels of intrinsic geometrical invariance, namely translation
and scaling, similarity and affine transformations. In Sec. 3, we give the expression of the proposed
multi-reference shape prior and present the evolution equations associated to each level of invariance.
In Sec. 4, we illustrate the benefits of the new prior on the segmentation of objects with various
topologies, undergoing large affine transformations, in the presence of noise, occlusions and clutter.

A preliminary version of this work was presented at the ECCV’06 conference [24].

2 Shape Descriptors and Geometrical Invariance

In our approach, objects are represented by their silhouette. In other words, shapes are defined
by their closed boundaries or, equivalently, by their characteristic function, which is binary. This
description is not very different from the signed distance function representation (see e.g. [6, 9]) to
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which it is directly related. Both representations share an important property: they do not constrain
shape topology. In other words, they can handle shapes made up of multiple connected components or
shapes with holes. Our representation is also not bound to any particular implementation. Level sets
[23] as well as spline snakes [20] implementations may thus be used. The originality of our approach
with respect to shape representation is that we encode the characteristic function using moments.
This provides a compact, parametric representation that can be made intrinsically invariant to
affine transformations and from which a shape prior can be naturally defined in terms of distance
or probability, as we will see in Sec. 3.

2.1 Encoding Shapes with Moments

Denoting by Ωin the inside region of a shape, the regular or geometric moments of its characteristic
function f are defined as:

Mp,q =

∫∫
f(x, y)xpyqdxdy =

∫∫

Ωin

xpyqdxdy, (1)

where (p, q) ∈ N
2, and (p + q) is called the order of the moment. Any shape, discretized on a

sufficiently fine grid, may be reconstructed from its infinite set of moments. Hence, when computed
from the characteristic function, moments naturally provide region-based shape descriptors. However,
as is well-known [25], a more tractable representation for reconstruction purposes is obtained by using
an orthogonal basis, such as Legendre polynomials:

λp,q = Cpq

∫∫

Ωin

Pp(x)Pq(y)dxdy, (2)

for (x, y) ∈ [−1, 1]2, where Cpq = (2p + 1)(2q + 1)/4 is a normalizing constant, and for x ∈ [−1, 1]:

Pp(x) =

p∑

k=0

apkxk =
1

2pp!

dp

dxp
(x2 − 1)p. (3)

In practice we limit this representation to a finite order N . We define the shape descriptor as the D-
dimensional vector of Legendre moments, {λp,q, p+q ≤ N}, where D = (N+1)(N+2)/2. Orthogonal
moments rather than regular moments have to be considered since reconstructing a shape from a
finite number of non orthogonal, geometric moments, involves inverting an ill-conditioned Gram
matrix [26]: it amounts to recovering a vector from its components on a set of nearly parallel vectors.
On the contrary, reconstruction from orthogonal moments does not suffer from ill-conditioning and
is given by a direct, closed-form expression:

f̂N(x, y) =

N∑

p=0

p∑

q=0

λp−q,qPp−q(x)Pq(y). (4)

Let us also notice that, since the number of moments gathered in the descriptor is finite, the re-
construction of the characteristic function is not exact. As a consequence, the representation is not
strictly reversible, but this is not required in the proposed method, because optimization is per-
formed by curve evolution (see Sec. 3). Reconstructions using eq. (4) may be useful for choosing the
order of the model (see Fig. 1) or for illustrating the accuracy of the representation (Fig. 2).
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Beyond their good numerical stability, orthogonal moments have another appealing property.
When approximating a function using eq. (4) at the order N , the optimal coefficients for the re-
construction, in terms of Minimal Mean Square Error, are the Legendre moments given by eq. (2).
As a consequence, Legendre moments define a hierarchical description of shape (see Fig. 1), whose
accuracy increases with N . This can be exploited to ease the optimization procedure: a rough repre-
sentation can be used in a first step and progressively refined by adding moments to the descriptor
in a coarse-to-fine optimization scheme.

Finally, note that there is a linear relationship between Legendre moments and regular moments:

λp,q = Cpq

p∑

u=0

q∑

v=0

apuaqvMu,v. (5)

Computing Legendre moments using eq. (5) is preferable to eq. (2) because replacing the Mu,v’s by
properly chosen expressions yields geometrically invariant Legendre descriptors, as explained in the
next subsection.

2.2 Handling Pose and Geometric Variability

A basic problem when using deformable shape models in image segmentation is shape alignment.
The shape pose with respect to the underlying image has to be determined. In 2D, this involves
transformations such as translation, scaling and rotation. The standard approach for shape alignment
is to introduce explicit pose parameters in the optimization, which complicates the segmentation
procedure. An alternative is to define intrinsically invariant shape descriptors. For this purpose, we
defined in [21] the so-called canonical representation by a change of variables in which two shapes,
differing by a given transformation, are represented by the same descriptor. This makes the model
invariant w.r.t. the transformation in question. Since affine transformations include translation,
scaling and rotation, this solves the alignment problem. Moreover, since transformations such as
skewing and reflection are also included, this introduces geometrical variabilities in the model. The
change of variables is given by closed-form expressions involving only geometric moments, i.e. the
data at hand, so no additional optimization over pose parameters is necessary. Note that the alternate
method of intrinsic alignment proposed in [16] has the same property.

Scale and Translation Invariance In the case of scaling and translation, the canonical repre-
sentation of a shape is obtained by aligning its centroid, (x, y), with the center of the domain and
normalizing its area, |Ωin|, to a constant, 1/β. This amounts to using the normalized central moments

ηu,v instead of the Mu,v’s in (5), as proposed in [17]. The shape descriptor invariant to translation
and isotropic scaling, λ = {λp,q, p + q ≤ N}, will be defined by:

λp,q = Cpq

p∑

u=0

q∑

v=0

apuaqvηu,v, (6)

with:

ηu,v =

∫∫

Ωin

(x − x)u(y − y)v

(β|Ωin|)(u+v+2)/2
dxdy, (7)
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Fig. 1. Reconstructions of a mug shape from its Legendre moments made invariant w.r.t. scale and translation
(left) and corresponding reconstruction error curves (right).

and

with x =
M1,0

M0,0
, y =

M0,1

M0,0
and |Ωin| = M0,0. (8)

Fig. 1 illustrates the reconstruction of a shape from its normalized central Legendre moments. On
the left, we can notice that every reconstructed shape is centered in the reconstruction domain and
that for a fixed β, all shapes have the same area. On the right, curves representing the Normalized
Mean Square reconstruction Error (9) are presented.

NMSE(N) =

∫∫
(f̂N(x, y) − f(x, y))2dxdy∫∫

f(x, y)2dxdy
. (9)

The sources of errors in the numerical evaluation of image moments are analyzed in [27, 28]. As
illustrated by Fig. 1 right, two of them are dominant in our case. The first one is the truncation
error: the higher the order N , the better the reconstruction. The second one is related to numerical
accuracy: for large N , numerical approximation errors prevail. For all our experiences we have used
double-precision Matlabr implementations, representing numbers with 15 precision digits. Beyond
order 48, some coefficients of Legendre polynomials have more than 15 digits, which causes a sudden
increase in the reconstruction error (see Fig. 1 right). We can also notice that reconstruction is better
when β is small. Choosing a small value for β increases the area of the canonical representation,
thus smaller details can be described with less moments. However, the canonical representation has
to fit in the definition domain of Legendre moments, i.e. [−1, 1]2. As a consequence, for a given
shape, there is a lower bound for β. To our knowledge, there are no theoretical results to calculate
this bound. The value of β is not critical, however. We have determined it experimentally for each
shape. More examples are available in [29].

Affine Invariance In the case of affine invariance, the canonical representation is given by the
image normalization procedure [30]. The original shape and its normalized version are related by an
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Fig. 2. Reconstruction of shapes from their affine-invariant moments. Upper row: original shapes. Lower
row: shape reconstructions using affine invariant moments (these reconstruction correspond to the canonical
representations of the original shapes).

affine transformation, i.e. a translation followed by a linear transformation which can be decomposed
as: [

cos γ sin γ

− sin γ cos γ

]
.

[
l1 0
0 l2

]
.

[
cos θ sin θ

− sin θ cos θ

]
. (10)

As already mentioned, the parameters of the change of variables (γ, l1, l2, θ, x and y) are given by
closed-form expressions involving geometric moments (these can be found in [21]). Image normaliza-

tion, however, does not handle reflection. Since reflection only affects the sign of moments for p odd
(reflection w.r.t. y axis) or for q odd (reflection w.r.t. x axis), we choose, without loss of generality, to
fix the sign of the third-order moments. Finally, the affine-invariant descriptor, that will be denoted
by λ

A, is defined as [21]:

λA
p,q(Ωin) = Cpq

u≤p,v≤q∑

u,v

apuaqvη
A
u,v, (11)

where the affine-invariant moments are given by:

ηA
u,v =

(
sign

(
η̂A
3,0

))u
.
(
sign

(
η̂A
0,3

))v
.η̂A

u,v, (12)

and:

η̂
A
u,v =

(l1.l2)
u+v

4

(β|Ωin|)(u+v+2)/2

×
∫∫

Ωin

(
((x − x) cos θ + (y − y) sin θ)√

l1
cos γ +

((y − y) cos θ − (x − x) sin θ)√
l2

sin γ

)u

×
(

((y − y) cos θ − (x − x) sin θ)√
l2

cos γ − ((x − x) cos θ + (y − y) sin θ)√
l1

sin γ

)v

dxdy.

(13)

To illustrate the invariance of the proposed descriptor, we show on Fig. (2) examples of shape
reconstruction with affine invariant descriptors. The initial shapes (512 × 512 images) shown on
the upper row are affine-transformed versions of the “stag” and “K” shapes. While large affine
deformations are considered, the reconstructions (N = 47, 128 × 128 images), are similar for each
shape and correspond to their canonical representation.
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Similarity Invariance A simpler model that only handles similarities may readily be obtained by
setting γ = 0 and l1 = l2 = 1 in (13):

λS
p,q(Ωin) = Cpq

u≤p,v≤q∑

u,v

apuaqvη
S
u,v, (14)

with:
ηS

u,v =
(
sign

(
η̂S
3,0

))u
.
(
sign

(
η̂S
0,3

))v
.η̂S

u,v, (15)

and

η̂S
u,v =

∫∫

Ωin

((x − x) cos θ + (y − y) sin θ)u.((y − y) cos θ − (x − x) sin θ)v

(β|Ωin|)(u+v+2)/2
dxdy. (16)

3 Multi-Reference Shape Priors

In this section, we define a shape prior based on Legendre descriptors. This prior takes into account
either a single reference shape or a set of reference shapes. Depending on the choice of the descriptor
λ, λ

S or λ
A, the proposed constraint is able to handle several levels of geometric invariance, as

described in Section 2. The derivation of the evolution equation corresponding to the minimization
of the prior is detailed first in the case of the single-reference model and then in the multi-reference
case.

3.1 Definition of the prior

Let us first consider the case where the active contour, Γ , is constrained to evolve toward a single

reference shape. It is natural to define a shape constraint as a distance d in terms of shape descriptors.
Equivalently, in a probabilistic framework, we define a shape prior energy as:

Jprior(Ωin) = − log (P(λ(Ωin))) , (17)

where Ωin is the inside region of Γ , and:

P(λ) ∝ exp
(
−d(λ, λref )

)
, (18)

where λ
ref is the set of moments of the reference object. In the simplest case d is a quadratic

distance. Of course, more elaborate expressions can be used to model arbitrarily complex priors. In
particular, when Nref reference shapes are simultaneously considered, the above model is extended
by defining P(λ) as a mixture of pdf’s. When d is quadratic and all shapes are equiprobable, this
leads to a mixture-of-Gaussians:

P(λ) =
1

Nref

1

σ
√

2π

Nref∑

k=1

exp

(
−
‖λ − λ

ref
(k) ‖2

2σ2

)
. (19)

In this paper, we will consider multiple-reference models involving different fixed shapes. Let us
notice that eq. (19) is close to the classical Parzen density estimator, thus the model readily extends
to the definition of statistical shape variabilities, in the spirit of [16].
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3.2 Active Contour Evolution Equation for the Single-Reference Model

The evolution equation for the boundary of Ωin can be derived from the minimization of Jprior using
the shape derivative framework [22]. Let us first focus on the case where the shape constraint is a
quadratic distance to a single reference shape, described by λ

ref , i.e.:

Jprior(Ωin(t)) =

p+q≤N∑

p,q

(λp,q(Ωin(t)) − λref
p,q )2. (20)

Scale and Translation Invariance When the descriptor is invariant w.r.t. location and scale, i.e.

when λ and λ
ref are computed from normalized central moments, applying the strategy described

in [22] to minimize Jprior leads to the following flow (see [31] for details):

∂Γ

∂t
=

u+v≤N∑

u,v

Auv

(

Huv(x, y,Ωin) +

2∑

i=0

Buvi.Li(x, y)

)

︸ ︷︷ ︸
Vprior

N , (21)

where N is the inward unit normal vector of the evolving active contour Γ and:

Auv = 2

p+q≤N∑

p,q

(λp,q − λ
ref
p,q )Cpqapuaqv, (22)

Huv(x, y,Ωin) =
(x − x)u(y − y)v

(β|Ωin|)(u+v+2)/2
, (23)

Buv0 =
u.x.ηu−1,v + v.y.ηu,v−1

β
1
2 |Ωin|

3
2

− (u + v + 2).ηu,v

2|Ωin|
, (24)

Buv1 =
−u.ηu−1,v

β
1
2 |Ωin|

3
2

, Buv2 =
−v.ηu,v−1

β
1
2 |Ωin|

3
2

, (25)

L0 = 1, L1 = x, L2 = y. (26)

Fig. 3 illustrates the ability of the proposed shape prior to constrain an evolving shape to resemble
a reference one, and to allow free changes of topology while the warping proceeds.

Similarity Invariance When taking into account similarity transforms in the prior,i.e.using λ
S,

we obtain (see [29] for details):

∂Γ

∂t
=

u+v≤N∑

u,v

A
S
uv.
(
sign

(
η̂

S
3,0

))u

.
(
sign

(
η̂

S
0,3

))v

.

(
H

S
uv +

9∑

i=0

B̂
S
uvi.Li

)

︸ ︷︷ ︸
Vprior

N , (27)

where the expressions of all necessary coefficients are given in [31].
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(a) (b) (c) (d)

Fig. 3. Curve evolutions using the single-reference shape prior invariant with regard to translation and
scaling: (a) initial curves, (b) intermediate evolutions, (c) final results and (d) reference shapes.

Affine Invariance When taking into account affine invariance in the prior,i.e.using λ
A, we obtain

(see [29] for details):

∂Γ

∂t
=

u+v≤N∑

u,v

A
A
uv.
(
sign

(
η̂

A
3,0

))u

.
(
sign

(
η̂

A
0,3

))v

.

(
H

A
uv +

9∑

i=0

B̂
A
uvi.Li

)

︸ ︷︷ ︸
Vprior

N , (28)

where the expressions of all necessary coefficients are given in [31].

3.3 Evolution equation for the Multi-Reference Model

Let us now consider the multi-reference case. For the sake of conciseness, we present the case of
translation and scale invariance, the cases of similarity and affine invariance being similar. Taking
the log in eq. (19), the functional to be minimized is:

Jmulti
prior (Ωin(t)) = − log




Nref∑

k=1

exp

(
−
‖λ(Ωin) − λ

ref
(k) ‖2

2σ2

)

+ cst. (29)
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Using elementary differentiation rules, we have (omitting Ωin for conciseness):

∂Jmulti
prior

∂t
=

1

2σ2

Nref∑

k=1

exp

(
−
‖λ − λ

ref
(k) ‖2

2σ2

) .

Nref∑

k=1

∂J
(k)
prior

∂t
. exp

(
−
‖λ − λ

ref
(k) ‖2

2σ2

)
, (30)

where
J

(k)
prior = ‖λ − λ

ref
(k) ‖

2 (31)

corresponds to the quadratic prior in the single-reference case, for the k-th reference shape. Its
derivative is given by:

∂J
(k)
prior

∂t
=

u+v≤N∑

u,v

A(k)uv .δE(ηu,v), (32)

where

A(k)uv = 2

p+q≤N∑

p,q

(λp,q − λref
(k)p,q)Cpqapuaqv. (33)

Incorporating eq. (32) into (30) and exchanging summations, we obtain:

∂Jmulti
prior

∂t
=

u+v≤N∑

u,v

A
multi
uv .δE(ηu,v), (34)

with Amulti
uv defined as in eq. (36). The rest of the derivation is similar to the single-reference case

and we obtain an expression similar to (21), but with a different Au,v factor:

∂Γ

∂t
=

u+v≤N∑

u,v

A
multi
uv

(

Huv(x, y, Ωin) +

2∑

i=0

Buvi.Li(x, y)

)

︸ ︷︷ ︸
Vprior

N , (35)

where the expressions of Huv, Buvi and Li are given by equations (23) to (26). The Amulti
u,v factor

is a weighted average of the individual factors, A(k)uv computed for each reference shape descriptor

λ
ref
(k) from (22):

A
multi
uv =

1

2σ2

Nref∑

k=1

exp

(
−||λ − λ

ref
(k)

||2

2σ2

)
Nref∑

k=1

A(k)uv exp

(
−||λ − λ

ref
(k) ||2

2σ2

)

. (36)

In other words, the force induced by the minimization of Jprior in the multi-reference case is
a weighted average of the individual forces directed toward each reference shape. Note that the
weights decay exponentially with the distance in terms of shape descriptors between the evolving
curve and the reference shape.

To summarize, the shape constraint we have proposed in this section handles complex topologies,
simultaneously takes into account several reference shapes and is intrinsically invariant w.r.t affine
transformations: the prior, as well the equation evolution, has a closed-form expression depending
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only on moments. Moreover, both the model and the derivation of the curve evolution equation
are independent from any implementation consideration. Consequently, (21), (28) or (35) may be
implemented using either a parametric approach, such as spline-snakes [20], or the non-parametric
level sets formalism [23]. We use here the latter, which naturally handles changes of topology.

4 Application to Image Segmentation

To illustrate the behavior of the novel prior term in the general problem of two-class segmentation,
we choose a standard data functional which was first introduced by Chan and Vese in [32]:

Jdata(Ωin, Ωout) =

∫∫

Ωin

(I(x, y) − µin)2dxdy +

∫∫

Ωout

(I(x, y) − µout)
2
dxdy, (37)

where µin (resp. µout) is the (unknown) average intensity in the inside (resp. outside) domain, Ωin

(resp. Ωout), and I(x, y) is the intensity value of the pixel. Its differentiation may be cast in the
general framework presented in [22], which yields the following equation:

∂Γ (t)

∂t
= (I − µin)2 − (I − µout)

2

︸ ︷︷ ︸
Vdata

, (38)

where µin and µout are updated after each iteration [32]. The global energy functional that we use
for segmentation is then defined by:

J(Ωin, Ωout) =

(
1

1 + α

)
Jdata(Ωin, Ωout) +

(
α

1 + α

)
Jprior(Ωin), (39)

which leads to equation (40) for the evolution of the contour.

∂Γ (t)

∂t
=

[(
1

1 + α

)
Vdata +

(
α

1 + α

)
Vprior

]
N , (40)

where Vprior is defined in (21), (27), (28) or (35), depending on the required level of invariance for
the application and on the considered number of reference images. The geometric parameters are
also updated after each iteration, using the appropriate expressions, e.g. eqs. (8) for invariance to
scaling and translation, or the closed-form expressions given in [31] for invariance to similarity or
affine transformations. Hence, pose parameters are obtained as a by-product of the method.

To illustrate how the model can take into account several reference shapes in a segmentation
application, we first consider a reference set consisting of Nref = 26 letters, as shown in Fig. 4.

The parameter σ is computed from the set {λref
(k) } in order to bound the probability of classification

error, Pe, between the two closest reference shapes in terms of descriptors, where:

Pe =
1

2
erfc



min
k 6=l

√
||λref

(k) − λ
ref
(l) ||2

2σ
√

2



 . (41)

In practice, σ is chosen so that Pe < 3%.
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We first consider six synthetic images (Fig. 5, first row). In these experiments, the model is
invariant to scaling and translation i.e. we use Vprior defined by eq. (35). The order N of the model
is chosen such that the Normalized Mean Squared reconstruction Error (NMSE) given by (9) is less
than 10%. The six segmentation results on the fourth row are obtained with the same curve evolution
equation for the contour, i.e. the same value of α in eq. (40), with Vprior given by eq. (35). Note that
there is no need for any curvature term in this case: the multi-reference constraint is robust enough
against the noise present in images. Also we can we can use (31) to identify each segmented letter.
More results are given in Fig. 6, with the same set of reference shapes, the same level of geometric
invariance and different images of synthetic letters featuring large occlusions.

Fig. 4. Set of reference shapes used with the multi-reference model, eq. (19).

In Fig. 8, we present results on real data, using a different set of reference shapes: the twelve
mugs shown on Fig. 7. Several kinds of initialization are used (first column). In the second column,
we show the result of an evolution without shape prior, but with a standard additional curvature
component. Then, starting from these results, we replace the curvature term by the shape prior up to
the order 20 (third column). Last, we refine the results obtained at the order 20, using a model with
moments up to the order 40 (fourth column). Note that when applying the shape prior, the same
set of parameters (α coefficient in eq. (40) and evolution step) is used for all experiments. On Fig. 8,
we also give, for each segmentation stage, the computation time (including intermediary file savings
and level sets-specific computations such as re-initialization of the host function) and the number of
iterations using eq. (40), for this stage. All images have the same size: 474 × 348. The experiment
was run under Matlabr 7.3 on a laptop PC computer with an Intelr Core2TM T7400 CPU at
2.16GHz. Actually, a study of the complexity of the method, that was confirmed by measurements
of computational times with various sets of parameters, shows that the computational burden is
dominated by terms involving spatial coordinates such as the computation of regular moments or
the computation of Vprior . The other computations, e.g. Legendre moments from regular moments,
A and B coefficients, have a negligible impact on the overall complexity, which is O(S2N2), where
S2 denotes the total number of pixels in the image and N is the order of the model. Let us notice
that using multiple references instead of a single reference shape [21] has little impact on the overall
computation time since the only modification is the expression of the Au,v factors. For example,
running the same experiment as on the third row of Fig. 8, but with the single-reference model
results in a global computation times of 285s instead of 310s for the multi-reference model (the
number of iterations remains identical).

Fig. 9 shows a segmentation example using for the first time a multi-reference shape prior along
with affine-invariance. The segmented image is the same as on the third line of Fig. 8 and the
initialization is also identical. To show the ability of the multi-reference model to also handle affine
invariance, we have modified the first reference shape (corresponding to the actual shape of Fig. 9a)
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Fig. 5. Segmentation of synthetic images. First row: initial image, second row: initial contours, third row:
segmentation results without shape prior, fourth row: segmentation result using the multi-reference prior
invariant to scaling and translation: moments up to the 40th-order (β = 1.5).

by applying an anisotropic scaling to this reference (compare Fig. 9b to Fig.7). As can be observed
(Fig. 9f), the final segmentation result is similar to the one in Fig. 8, though the exact shape is not
present in the reference set in this case.

Fig. 10 illustrates the difficulty of the optimization problem, when combining both multiple
references and affine invariance to constrain the evolution of a contour. For this most comprehensive
model, the optimization problem naturally becomes intricate, due to the presence of many local
minima in the objective function. Depending on the complexity of the observed image and of the
reference shapes set, unexpected solutions may then occur, that often correspond to different relevant
interpretations of the image to be segmented. On Fig. 10 the observed image corresponds to the letter
“A” of the 26 letters alphabet, on which a partial occlusion has been superimposed. The first result,
column (a), is obtained with the set of 26 reference shapes: the whole alphabet of Fig. 4. As can
be seen, the model (and the optimization algorithm) favors in this case an evolution of the initial
curve towards an inverted “V” rather than to the “desired” solution “A”. Notice that even a human
observer might interpret this silhouette as a deformed, bottom-up version of letter “V”. Next, in
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Fig. 6. Segmentation of five images of letters featuring large occlusions. First row: original images. Second
row: initialization. Third row: results without shape constraint (no standard curvature component). Fourth
row: final results, adding the multi-reference prior invariant to scaling and translation, up to the order 40
(β = 1.5). The same set of parameters is used for all the experiments.

Fig. 7. Set of reference shapes used for the experience of Fig. 8.

column (b), the deformable model evolves using a representation that only takes into account scale
and translation. This time, the final curve corresponds to a “A” letter, as expected, since the bottom-
up “V” letter does not belong to the solution space in this case. However, inspecting the final curve
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superimposed with the shape to be segmented, we notice that the two letters do not match perfectly
because this simpler model does not handle rotation. In column (c), starting from the same initial
curve, we evolve the contour using the affine-invariant model again, but this time the letter “V” is
simply excluded from the reference alphabet (containing 25 letters in this case). As expected, the
final curve correspond to the “desired” solution and matches accurately the original shape. Results
presented columns (d) and (e) are obtained with the same experimental setting as in column (c),
showing the ability of the model to handle large affine deformations and, in particular, reflections.

A last example (Fig. 11) shows the segmentation of a road sign on a color traffic image. The
observation (Fig. 11b) is obtained from the RGB image (Fig. 11a) by computing the red coefficient
r = R

R+G+B for every pixel. The road sign appears partially occluded and is rotated by approx-
imately 27◦ counterclockwise. The set of reference images includes rotated versions of the “stop”
sign silhouette under 6 different angles: −60◦,−30◦, 0◦, 30◦, 60◦, 90◦. Note that the exact observation
angle is not present in the reference set. In this case, the invariance of the model has been limited
to translation and scaling. As can be seen on Fig. 11g, the final segmentation is satisfactory and
correspond to the desired solution. A similar experiment (which is not illustrated in this paper) was
performed on this image with the same algorithm, using an extended reference set: one image every
2◦ between −88◦ and 90◦. The distance between every reference image and the final solution was
computed according to (31). The closest reference image was the 58-th one, which corresponds to a
26◦ angle. These experiments show that it is possible to handle rotations through the definition of
an appropriate set of reference images, while a lower level of geometric invariance is used, which nat-
urally eases the optimization. This strategy is well suited to applications where the set of admissible
geometric deformations is limited and known in advance.

5 Conclusion

In this paper, we have presented a novel approach for the integration of multiple prior shape models
in active contour-based image segmentation. Our multi-reference prior shape model relies on affine-
invariant shape descriptors related to Legendre moments. These descriptors are used to constrain
the evolution of the contour towards a set of different possible reference shapes. A unique evolution
equation for the active contour is derived, using the formalism of shape derivative. The corresponding
geometric flow may be implemented with any contour evolution algorithm.

Experimental results obtained with the level sets implementation have shown that the proposed
evolution equation introduces noticeable robustness to background clutter and occlusions in two-
class image segmentation problems. The proposed approach naturally handles pose variations, affine
deformations and complex changes of topology. It is also suited to different kinds of initializations,
which may be tailored to the application at hand.

As stated in Sec. 3, the mixture-of-Gaussian model that we use readily extends to Parzen density
estimation. This paves the way for modeling statistical shape variabilities, which is an immediate
perspective of this work.

Some issues remain open. A standard problem of active contour-based image segmentation is the
choice of an adequate initialization, converging toward the “desired” solution. Another question is
the determination of the model parameters. Two parameters had to be tuned manually here: the
usual parameter α weighting the prior model and the data term, and the the step in the gradient
descent. We noticed that the final solution was quite robust with respect to the choice of these
parameters and the same parameters were used when segmenting different competing shapes in
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the same image using the multi-reference model. These parameters had however to be adapted
from one image to the other. Another limitation of the proposed approach is that it only enables the
segmentation of one single shape at the same time (even if multiple references are taken into account).
An extension toward simultaneous (multiple) shapes segmentation is an intricate problem, which has
been addressed recently by Cremers et al. [33] in the level sets framework, using multiple competing
shape priors. Finally a 3D extension of this approach, in applications such as 3D computer vision
or 3D medical imaging, would certainly stir large interest. Although such an extension seems quite
straightforward from a mathematical point of view, difficulties may be expected in the optimization
process, due to significant additional complexity in the energy landscape.
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39 iterations, 21s 40 iterations, 52s 8 iterations, 27s

90 iterations, 65s 50 iterations, 122s 17 iterations, 97s

106 iterations, 56s 108 iterations, 134s 30 iterations, 120s

182 iterations, 97s 85 iterations, 109s 16 iterations, 64s

110 iterations, 58s 39 iterations, 59s 13 iterations, 58s

(a) (b) (c) (d)

Fig. 8. Segmentation of real images. (a) Initial contours, (b) segmentation results without shape prior
(standard curvature component used), segmentation result using the multi-reference prior invariant to scaling
and translation: (c) moments up to the 20th-order and (d) to the 40th-order (β = 0.8). The number of
evolution iterations performed at each stage and the corresponding computation time are given underneath
each result.
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(a) (b)

(c) (d) (e) (f)

Fig. 9. Segmentation of a real image. (a) Initial curve ; (b) set of reference images ; (c) segmentation without
shape constraint (standard curvature component used) ; segmentation result using the multi-reference, affine-
invariant shape prior: (d) moments up to the 18th order, (e) to the 30th order and (f) to the 40th order.
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(a) (b) (c) (d) (e)

Fig. 10. Segmentation of synthetic images with the multi-reference prior using different levels of invariance
and different set of reference shapes. First line: original images ; second line: initial curves ; third line:
segmentation results without any prior ; fourth line: final segmentation results (N = 45). (a) the multi-
reference shape prior is affine-invariant and simultaneously takes into account the 26 letters of the alphabet
presented in Fig. 4. (b) the same set of reference shapes is used but invariance is limited to translation and
scale. (c), (d), (e) the multi-reference shape prior is affine-invariant but the set of reference shapes does not
include the “V” letter.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 11. First row: (a) original RGB image ; (b) corresponding normalized red component, r = R
R+G+B

,
and initial curve ; (c) reference images. Second row: (d) segmentation result without shape prior (no curva-
ture component) ; (e)-(g) refinement of the segmentation using the multi-reference shape prior invariant to
translation and scaling (β = 0.5). A progressively increasing order of representation is used : (e) N = 10, (f)
N = 30 and (g) N = 42.


