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Forces on a boiling bubble in a developing boundary layer,
in microgravity with g-jitter and in terrestrial conditions

C. W. M. van der Geld,1,a) C. Colin,2 Q. I. E. Segers,1

V. H. Pereira da Rosa,1 and H. N. Yoshikawa2

1Department of Mechanical Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2Inst. de Mécanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502,
2 Avenue Camille Soula, 31400 Toulouse, France

Terrestrial and microgravity flow boiling experiments were carried out with the same

test rig, comprising a locally heated artificial cavity in the center of a channel near the

frontal edge of an intrusive glass bubble generator. Bubble shapes were in micrograv-

ity generally not far from those of truncated spheres, which permitted the computation

of inertial lift and drag from potential flow theory for truncated spheres approximat-

ing the actual shape. For these bubbles, inertial lift is counteracted by drag and both

forces are of the same order of magnitude as g-jitter. A generalization of the Laplace

equation is found which applies to a deforming bubble attached to a plane wall and

yields the pressure difference between the hydrostatic pressures in the bubble and at

the wall, 1p. A fully independent way to determine the overpressure 1p is given by

a second Euler-Lagrange equation. Relative differences have been found to be about

5% for both terrestrial and microgravity bubbles. A way is found to determine the

sum of the two counteracting major force contributions on a bubble in the direction

normal to the wall from a single directly measurable quantity. Good agreement with

expectation values for terrestrial bubbles was obtained with the difference in radii

of curvature averaged over the liquid-vapor interface, 〈(1/R2 − 1/R1)〉, multiplied

with the surface tension coefficient, σ . The new analysis methods of force compo-

nents presented also permit the accounting for a surface tension gradient along the

liquid-vapor interface. No such gradients were found for the present measurements.

I. INTRODUCTION

The general aim of much boiling research has been in the past, and still is today, the prediction

of histories of bubble size and shape.1 In particular, the bubble volume at detachment plays a role

in much mechanistic modeling of boiling and prediction of heat flux.2 Knowledge of the forces

acting on a bubble is not only essential to predict its trajectory; it may serve as a basis to build

correlations for heat transfer1 or mechanistic models3 upon. Force expressions are required to infer

accelerations from Newton’s second law of motion. The resulting second order differential equations

for the position of the bubble are subsequently integrated and supplied with an appropriate set of

initial positions and velocities in order to predict trajectories. Some of the forces involved result from

the flow field of the fluid around the bubble. These so-called hydrodynamic forces can in principle

be determined by solving local balances of mass and momentum in a numerical approach (CFD).

The hydrodynamic forces are alternatively determined from empirical correlations which are usually

expressions in terms of the local, instantaneous velocities of the bubble and the undisturbed flow

field.4 Axisymmetric bubble growth in pool boiling at a horizontal surface in an otherwise quiescent

a)Author to whom correspondence should be addressed. Electronic mail: c.w.m.v.d.geld@tue.nl.



liquid has successfully been predicted in the above Newtonian approach with analytical means with

the neglect of inertia.5 In this case, possible bubble shapes depend on the ratio of capillary to gravity

forces. Detachment occurs in axisymmetric pool boiling if no possible shapes for a given bubble

volume and a given foot radius exist.5 Bubble detachment in pool boiling has also been investigated

by direct numerical simulation.6

The present study is based on an alternative to the above-mentioned Newtonian treatment

of bubble dynamics. It utilizes Euler-Lagrange equations which have proven to be a convenient

approach if a bubble is deforming.7,4,8, 9 This Euler-Lagrange approach facilitates extension of the

above-mentioned Newtonian approach to bubbles without axisymmetry and to bubbles with an

axisymmetric shape in a uniform flow field. In this paper, the approach is used to analyze new

bubble growth measurements performed in flow boiling on earth and in parabolic flights, with the

same set-up in identical process conditions. The bubbles thus measured will be named terrestrial

and microgravity bubbles, respectively.

Ways will be explored to determine the sum of two major force contributions in the direction

normal to the wall directly from a single measured quantity, rather than from assessments of these

forces individually. Terrestrial bubbles with more or less known growth characteristics will be used

to examine solutions presented. Particular attention will be given to the determination of the pressure

inside the bubble, the so-called overpressure. Two independent ways to determine the overpressure

will result from the Euler-Lagrange analysis in a natural way and results will be compared for both

terrestrial and microgravity bubbles. In the literature, sometimes the Laplace equation is used to

assess the overpressure.10, 11 The present paper will present another expression, based on the first

Euler-Lagrange equation for the isotropic component of the contour, which is valid for deformed

bubbles. To satisfy a balance of estimated force components normal to the wall, a correction

parameter is often used to multiply the overpressure with.12, 13 The present analysis will be shown

to be accurate enough not to need such a correction parameter and is useful for the development of

point force models.

As for differences with our previous publications, the new analyzing method may appear to

be a straightforward extension of the analysis of previous publications, but it is not. The bubbles

studied in Ref. 8 were deforming in the proximity of a plane wall but were without a bubble foot

at the wall. In Refs. 10 and 11, the bubble was attached to the wall, but it was assumed to have a

spherical shape. The bubbles studied in Refs. 7 and 9 had exactly the shape of truncated spheres

while those of the present study do not. In Ref. 7, only one governing equation was considered and

in the present study more. In Refs. 7 and 9, the overpressure force exactly balances the capillary

force, which means that the sum of these two dominant forces vanishes identically to zero. This

is obviously impossible for terrestrial bubbles in the experiments of the present study and the new

analysis is therefore for arbitrary bubble shape of a bubble with a foot at a plane wall. Buoyancy

will be shown to be balanced by the sum of the two dominant forces and only slight deformation of

the bubble is necessary to resettle this balance during bubble growth.

II. EXPERIMENTAL

The experimental test rig was developed at Institut de Mécanique des Fluides de Toulouse

(IMFT) in France and the test section and bubble generator used for the experiments described

in this paper at Eindhoven University of Technology (TU/e). The experiments were conducted by

IMFT, with people of TU/e participating by invitation, during the 50th Parabolic Flight Campaign of

May 2009 at Novespace, Bordeaux in France. The same setup was used for terrestrial experiments

at IMFT. Microgravity during the elliptic top part of the airplane trajectory lasted for 21 sec.

The loop (Fig. 1) comprises a straight inlet section of 360 mm with a diverging and converging

test section and a honeycomb in between. The inlet section is followed by a straight channel of

600 mm to make the flow fully developed in the test section (170 mm length) positioned downstream.

Internally, the rectangular channels measures 5 × 40 mm2. A constant pressure volume compensator

is used to keep the system pressure constant with the aid of an air volume behind a membrane.

Fluid is HFE7000 that boils at 34 ◦C at 1 bar. System pressure was set at 1.1 bar corresponding to



FIG. 1. Schematic of test rig.

a saturation temperature of 37 ◦C. Inlet subcooling was 4 ◦C, so inlet temperature of the liquid was

33 ◦C. Fluid was degassed for 5 h before having it filling the test loop which was made vacuum.

Test section is made of stainless steel with the aid of electric discharge machining. A glass

bubble generator is positioned in the center of the test section such that an artificial cavity, with

a volume of about 1 mm3, ends in an elliptical mouth in the very center of the channel (Fig. 2).

The major axis of the ellipse was in flow direction and measured 0.17 mm, while the shortest axis

measured 0.033 mm; area of the cavity mouth is 0.018 mm2. This cavity mouth is positioned at a

distance of 0.493 mm of the sharp edge of the bubble generator (Fig. 2).

Thin films are sputtered with microwaves onto the glass to get an area of about 1 × 1 mm2 (0.947

× 0.789 mm2 to be precise) around the cavity mouth covered by a titanium coating, with a typical

thickness of 500 nm. Bubble radius is less than 1 mm so heat flux from the thin film to the bubble is

not hampered by size limitations of the heating area. The titanium coating has a good adherence to

the glass. The two leads towards the heated bubble generation site are made of titanium with a gold

layer on top, see Fig. 2 where the gold is shown as a lighter grey on line. Electric resistance is only

high at the heating area of 1 × 1 mm2. The leads are connected to a power supply.

The flow approaching the sharp edge of the glass bubble generator is as uniform as it can

be in the channel used. Downstream of the sharp edge a boundary layer starts developing. Two

FIG. 2. View from above onto the flat surface on which bubbles are created. The irregular rim in the top of this picture is the

edge of the coated glass bubble generator and below this edge the bubble generator is seen, with uncoated glass in black and

with golden leads (shown lighter grey on line) coming from left and right towards the dark square around the artificial cavity.

Heat is generated uniformly in the coating of the latter square (darker grey, bluish on line). The black bar on the top left of

the figure is a scale that measures 1 mm. Flow direction is from top to bottom, normal to the frontal edge. The artificial cavity

ends as an ellipsoidal hole with axis 0.17 mm and 0.033 mm.



FIG. 3. Photograph of the bubble generator mounted in the stainless steel test section. The slit on the left is the outlet and

measures 40 × 5 mm2.

polycarbonate (LexanTM, fabricated by SABIC Innovative Plastics, The Netherlands) windows

permit visual observations from the side (Fig. 3). Estimates, to be discussed in Sec. IV A, show

that while bubble nucleation occurs inside the boundary layer, most of the liquid-vapor interface is

outside it during bubble growth until the bubble detaches and moves downstream, see Fig. 4.

Bulk liquid flow rate is measured with a Coriolis flow meter, type Micromotion R025S

(Fig. 1). The measurements presented in this paper were performed with a liquid velocity that

amounted to 0.0120 ± 0.0004 m/s at the location of the bubble generator, with a profile that fairly

constant at the scale of bubble diameters measured. This profile was characterized by a series of

PIV measurements. The flow can be laminar or turbulent depending of the bulk Reynolds number.

For the results presented hereafter, it is a laminar fluid flow, with a bulk Reynolds number of about

300 based on a kinematic viscosity of 3.2 × 10–7 m2/s, a volume flow rate of 2.14 × 10–6 m3/s,

channel widths 5 and 40 mm. Accelerometers, to measure g-jitter (typically 0.045 m/s2), temperature

and pressure sensors were recorded at 2 kHz and video-recordings of bubble growth were made at

500 Hz. Diffuse background illumination with a halogen lamp was applied and each image was after

cropping, to save storage capacity, composed of 1280 × 700 pixels. Size calibration was done both

with a scale with equidistant lines of 0.1 mm and by moving the camera with the aid of a micrometer

FIG. 4. Bubble growing in a boundary layer in microgravity; approaching liquid velocity V = 1.2 cm/s, coming from the left.

Diameter of the bubble on the LHS is 0.2 mm. Asymmetry between front and rear of this small bubble is barely observed.

The large bubble on the RHS is fully detached from the wall directly after its creation by coalescence of two smaller bubbles.

In the corresponding movie, the bubble is observed to grow and slide downstream, to the RHS of the figure.



screw gauge. Conversion factor is 0.00198 mm/pixel with an uncertainty of 2%. Each photograph

of a video-recording is separately analyzed, in a way described in Sec. III A.

III. FORCE ANALYSES

A. Determination of generalized coordinates

Each 2D-image of a bubble is in grayscale and inverted in grayscale to facilitate the subtraction

of a reference figure without a bubble but with the physical wall. The latter reference figure not

always exists if the solid wall is moving in the camera view (microgravity experiments). The resulting

image is cropped and rotated before a median filter is applied once and a Gaussian filter applied three

times in order to remove inaccuracies due to pixel resolution limitations. Then the zero-cross method

is used to determine points on the liquid-gas interface. These points are subsequently connected in

an edge-line determination procedure.

Since the fluid flow parallel to the wall might have caused asymmetry in the projected shape

of the bubble, the smoothed bubble contour is split into two halves in the following way. First, a

chosen wall is selected parallel to the actual, solid wall on which the bubble is attached, see Fig. 5.

The chosen wall could be on top of the actual wall but is usually selected to be positioned in the

fluid region at a small distance from the actual wall. This is possible since the force balances that

will be derived need to be satisfied for arbitrary bubble volume bounded by part of the measured

contour and a chosen wall. Only the estimates of the hydrodynamic forces to be presented decrease

in accuracy with increasing distance of the chosen wall to the actual wall. This, however, will be

seen to have hardly any consequence for the conclusions that will be drawn. The cross-section of the

bubble contour with the chosen wall is a line. Let the length of this line be 2rfoot, which defines rfoot.

Next, the top of the bubble is determined as the point furthest away from the chosen wall. Suppose

that ŷ is a unit vector of a Cartesian coordinate system in the projection plane pointing towards the

chosen wall and normal to this wall. If the chosen wall has coordinate ywall and the top of the bubble

has coordinate ytop then the maximum height of the bubble is given by ywall – ytop. The line through

the top of the bubble normal to the actual wall is the line on which the center of the bubble, O, will

be found and is also the line that splits the bubble in two halves. The right hand side of the bubble by

definition is the half which is downstream of the fluid flow. This right hand side is mirrored to the line

through the top and O in order to obtain a fully symmetrical bubble contour. The bubble is assumed
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FIG. 5. Measured contour points, fitted contour and chosen wall.



FIG. 6. Polar coordinate system with radial distance of the center to the bubble foot, Ř.

to be axisymmetric around the line through the top and O and the applicability of this assumption

is assessed in the following way. The cross-section of the present contour with the chosen wall has

a length, which is compared with 2rfoot. Differences turn out to be about 2%, which is considered

as acceptable in view of the difficulty to measure the bubble foot and the similarity to a sphere of

the top of the bubble (Fig. 5). This similarity is quantified in the next paragraph. The length rfoot is

retained in the following in order to increase accuracy of the determination of the area of the bubble

in contact with the chosen wall.

The center of the bubble is determined as follows. A circle with radius Rsphere is fitted through

contour points near the top of the bubble. When gravity is terrestrial, the shape of the bubble is

such that the radius of curvature of the bubble is continuously varying near the top and depends on

coordinate y. Because of this there is some arbitrariness in the determination of Rsphere. However,

the present analysis is aimed at a comparison of measured contours with those of truncated spheres

and a value of a circle radius is therefore needed which makes the arbitrariness unavoidable. It is

obvious that the fewer contour points are used to determine Rsphere, the closer its value will be to one

of the radii of curvature at the bubble top and the more unique the value of Rsphere. For comparison

with the truncated sphere shape it is better to select more points at the contour. The determination of

Rsphere is done by least square fitting of a circle through the selected contour points. Figure 5 shows

a typical result.

In the analysis of histories of boiling bubbles shaped as truncated spheres it is customary to

use (h, Rsphere) as the coordinates of the bubble. For this reason, distance h of the center O from

the chosen wall is considered a generalized coordinate in the present analysis. Inertia and drag

forces will be estimated using only h and Rsphere as coordinates, but only because no expressions

are available for inertia and drag that take further deformation into account. If gravity is terrestrial

and/or governing Reynolds numbers are big, however, deformation cannot be neglected. In our

experiments at microgravity, typical value of the Weber number, We = ρLV2 2Rsphere/σ , is 0.002

(V = 0.012 m/s, Rsphere = 0.15 mm, ρL is mass density of the liquid, and σ is surface tension

coefficient), which proves that the bubble deformation is negligible in this case. Governing Reynolds

numbers are based on length scale Rsphere and velocity scales Ṙsphere = dRsphere/dt or U, the time

rate of change of h, or V, the approach velocity parallel to the wall of the fluid at the center

O, which is taken to be a uniform approach velocity; t denotes time. Since deformation cannot

always be neglected, Legendre coefficients are determined as generalized coordinates further to h as

follows.

Define x = cos(θ ) with θ the polar angle measured from the top of the bubble in the polar

coordinate system centered at center O, see Fig. 6. Let θ1 be the angle corresponding to the foot

of the bubble at the chosen wall, corresponding to radial distance Ř of this foot, such that cos(θ1)

= – h/Ř. Only if for all θ radial distance R(cos(θ)) of the contour equals Rsphere the shape is that of

a truncated sphere with radius Ř = Rsphere and height h above the chosen wall.

Let the holonomic constraint r = R(cos(θ ), t) represent the measured contour on [cos(θ1), 1].

This constraint is applicable to all measured shapes. The extension Ŗ of R is defined by

Ŗ(x) = R(x) if x ≥ cos(θ1) and if x < cos(θ1) then

Ŗ(x) = Ř + d1(x − cos(θ1)) + d2(x − cos(θ1))2
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FIG. 7. Typical example of measured contour points (“Data points”) with second order extension to improve accuracy of

curvature determination at the bubble foot (x = –0.85) and Legendre fit (solid line).

with constants d1 and d2 such that the curvature at cos(θ1) can accurately be evaluated. This requires

a smooth, twice differentiable continuation at cos(θ1). Let Lej–1 denote the Legendre polynomial of

order j–1 (Le0 = 1). Fourier-Legendre coefficients of Ŗ, bj, are defined by

Ŗ = 6 j b̃ j Le j−1(cos(θ)) = 6 j b̃ j Le j−1(x), (1)

and the b̃ j are determined by integration in the usual way. Indices in the summation run from 1 to

25. For sake of brevity, » is defined by

» = cos(θ1).

Let

a1 = ∂ R/∂x |» and a2 = 1/2/2 ∂2 R/∂x2|».

The smooth continuation obviously requires that d1 = a1 and d2 = a2. Figure 7 shows a typical

example of an extended bubble contour R(x).

It turns out with properly selected distance h, b̃2 is much less than both b̃1 and h. The absolute

value of the ratio of ∂ b̃2

∂t
to ∂h

∂t
= ḣ = U is less than 2% in all measurements. Since for a free bubble

h and b̃2 are dependent, the following parameters are selected as generalized coordinates: b1 = b̃1,

b2 = h, b3 = b̃3, b4 = b̃4, b5 = b̃5, etc. The value of b1, or b̃1, can be seen as the mean distance

of the bubble contour to the center point. The value of b1 is close to that of Rsphere if the bubble is

nearly a truncated sphere. In integrals and other expressions involving contour fit R(x) or Ŗ(x), all

b̃ j -coefficients are taken into account. In one case this yields a correction coefficient c1 = 1 + ˙̃b2 /U

in an integral.

Two brackets will be used to indicate an average over the entire gas-liquid interface. For example,

the average 〈R〉 is given by

〈R〉 =
∫ 1

»

dx R(x)/(1 − ») = {
∫ θ1

0

dθ R(θ ) sin(θ)}/(1 − cos(θ1)).

B. Determination of the main force components

When the generalized coordinates defined in Sec. III A are used, Newton’s law of motion has

to be transformed and expressions for the corresponding generalized forces have to be derived. This

has been done in a derivation that starts from the so-called mechanical energy balance for the fluid

surrounding the bubble.9 The resulting time rate of change of the kinetic energy, T, can be given the



form

dT

dt
= 1p dVb/dt + σd Ab/dt + ...,

where the dots indicate expressions whose components are specified below. Volume and area of the

bubble are Vb and Ab, respectively, while σ is the surface tension coefficient and 1p the pressure

difference between the homogeneous pressure inside the bubble and the pressure in the liquid near

the solid wall on which the bubble is footed. There is no restriction on kinetic energy T in this stage;

it accounts for turbulence as well as for creeping flow. The RHS of this equation can be written as

the sum of products of generalized forces, Fj, and generalized velocities, qj = ḃ j : dT/dt =
∑

j Fj

qj. It is now assumed that the fluid flow is solenoidal which is, for example, satisfied if the fluid is

incompressible. The LHS of the above equation can then be written as the sum of the time rates of

change of a purely irrotational component, Tirrot, of a purely vector potential component, Tvort, and

of a mixed component, Tmixed. This is because the velocity field is the sum of an irrotational scalar

component and a solenoidal vector potential component.14 The component Tirrot can be expressed

in terms of added mass coefficients. In the general case, when the vorticity contribution cannot be

neglected, equations of the following form are derived (j runs from 1 to 25):

− F inertia
j − Fvort

j = F
1p

j + Fσ
j + F

g

j + F
drag

j , (2)

where force Fj
vort accounts for the purely vector potential and mixed components. On the RHS of

Eq. (2), each Fj represents a generalized force which will be defined below and which corresponds

to generalized coordinate bj. It is noted that the forces which are here denoted as inertia forces,

Fj
inertia, stem from Tirrot and retain their form whatever the values of Tvort and Tmixed. The reason for

this is that the added mass forces and added mass coefficients stay the same in viscous flows.4, 15 A

uniform approaching flow with velocity V parallel to the wall yields a potential flow lift contribution

to the force balance in the direction perpendicular to the solid wall (labeled with “2”), which is in

F2
inertia. Lift contributions to this force balance, which are related to vorticity are accounted for by

F2
vort. Lift and other hydrodynamic forces are further discussed below.

The gravitational forces, Fj
g, as well as the surface tension forces, Fj

σ , turn out to be expressible

as integrals over the gas-liquid interface. The surface integrals mostly can be expressed in quantities

prevailing at the bubble foot, the part of the bubble in contact with the solid wall. These quantities

are mostly familiar ones. However, the measurement accuracy of these quantities is usually not high

because of the so-called mirage effect16 and since the wall is not measured as a sharp line (Fig. 5).

This is important for the analysis of forces based on measured shapes of a bubble attached to a wall.

The present study will compare quantities measured at the bubble foot with values determined from

corresponding surface integrals.

Equation (2) is valid for j = 1 to 25, which implies that 25 governing equations exist. The

present analysis focuses on the isotropic component b1 and translational motion described by

b2 = h because of the wish to compare with truncated sphere bubbles described by the two length

scales Rsphere and h. This means that the system of equations given by (2) is reduced to two equations

in 25 generalized coordinates and 25 generalized velocities which can be given the following form:

−F inertia
1 (b j , ḃ j , b̈ j ) = Fvort

1 (b j , ḃ j ) + F
1p

1 (b j ) + Fσ
1 (b j ) + F

g

1 (b j ) + F
drag

1 (b j , ḃ j ),

−F inertia
2 (b j , ḃ j , b̈ j ) = Fvort

2 (b j , ḃ j ) + F
1p

2 (b j ) + Fσ
2 (b j ) + F

g

2 (b j ) + F
drag

2 (b j , ḃ j ).

Here, the occurrence of (bj, ḃ j , b̈ j ) indicates dependency on all generalized coordinates, generalized

velocities, and generalized accelerations; ḧ denotes the second order derivative of h with respect

to time. As the inertia force will be seen to be linear in the generalized velocities, the above are

two coupled second order differential equations in the generalized coordinates. Despite the fact that

Fj
1p, Fj

σ , and Fj
g (j = 1,2) are only dependent on the generalized coordinates, i.e., on the shape of

the bubble, they are the dominant forces that must be determined from experimental observations

with a high accuracy. This determination is the subject of the remainder of this section.



The first force on the RHS of (2) is F1p, the force due to the overpressure inside the bubble. The

overpressure is defined by 1p = (pb – pw), pb being the homogeneous pressure inside the bubble

and pw being the hydrostatic pressure in the fluid at the actual, solid plane wall. The overpressure

force components, Fj
1p, follow from

F
1p

j = 1p ∂Vb/∂b j , (3)

where Vb denotes the volume of the bubble. In expression (3) the overpressure 1p is an unknown

which occurs in each governing equation, labeled by j, of (2). The overpressure inside the bubble is

related to heat transfer and since the energy equation is not solved for the experimental conditions

at hand it is a time-dependent quantity, which must be determined from measurement data. Hydro-

dynamic stresses near a bubble can be estimated as 1/2 ρL Ṙ2
sphere which is typically about 0.07 Pa

for a microgravity bubble and 0.002 Pa for a terrestrial bubble. If hydrodynamic stresses near the

bubble foot at a chosen wall (see Sec. II) can be neglected, the so-called dynamic stress boundary

condition across the liquid-gas interface at the bubble foot gives the following expression for the

overpressure 1p:

1p = −2σ H |foot − ρL g hwall, (4)

where H|foot is the negative mean curvature at the bubble foot and hwall is the height of the chosen

wall above the actual wall. An expression of the mean radius of curvature will be given below. A

typical value of –2σH|foot is 200 Pa and of ρL g hwall is 0.1 Pa, which shows that the latter, hydrostatic

term is only a minor correction. Moreover, the above estimates of hydrodynamic stresses are even

less, and therefore negligible indeed. In the present study, the overpressure will be determined in

various ways in an attempt to increase the accuracy of the measurement result. Ways other than with

(4) to determine the overpressure are described below.

The partial derivatives ∂Vb / ∂bj in (3) are for j = 1 and j = 2 readily determined from the

measured shapes with the aid of the following measurable quantities:

〈R2〉 =
∫ 1

»

dx R2(x)/(1 − ») = {
∫ θ1

0

dθ R2(θ )sin(θ )}/(1 − cos(θ1)), (5a)

〈R3〉 =
∫ 1

»

dx R3(x)/(1 − »). (5b)

Note that » = cos(θ1) = – h/ Ř. The first quantity, 〈R2〉, is used to assess ∂Vb / ∂b1 from

∂Vb/∂b1 = 2π (1 − »)〈R2〉. (6)

For a truncated sphere, ∂Vb / ∂ b1 = 2π Ř(Ř+h), with Ř = Rshpere, since then 〈R2〉 = Ř2. The volume

of the bubble follows from

Vb = 2/3π (1 − »)〈R3〉 + 1/3πh(Ř
2 − h2). (7)

It can be shown that

F
g

2 = g ρL Vb

with ρL being the mass density of the liquid. The other partial derivative of the bubble volume, for

j = 2 in (3), is given by

∂Vb/∂b2=∂Vb/∂h=1/3 π Ř
2 − π h2= π r2

f oot (8)

with rfoot, in principle equal to Ř sin(θ1), evaluated as half the width of the chosen wall line crossing

the bubble contour (Sec. III A).



The following definition is convenient in the force analysis below and represents the average of

twice the mean curvature, 2H, over the entire gas-liquid interface:

〈2H〉 =
∫ θ1

0

dθ R2(θ ) sin(θ) 2H

/ ∫ θ1

0

dθ R2(θ )sin(θ ), (9)

where
∫ θ1

0
dθ R2(θ ) sin(θ) is equal to

∫ 1

»
dx R2(x) = (1 – ») 〈R2〉. The mean radius of curvature

is denoted with H and is given17 as

((1))−1/2[1/2(R′/R)ctg(θ) − 1 + 1/2(R R′′ − R′2)/((1))],

where ((1)) = R2 + R′2 with R′ = ∂R / ∂θ , by definition and R′′ by definition the second order

derivative of R with respect to θ . For a truncated sphere, H = –1/ Ř = –1/Rshpere. The generalized

force Fσ
2 corresponding to h is given by

Fσ
2 = 2πσ

∫ 1

»

dx 2H R (c1x R +
√

(1 − x2)R′)

with c1 = (1 + ˙̃b2/U) a correction to velocity U for the bubble motion as a whole; note that on the

relevant domain of the polar angle, sin(θ) =
√

(1 – x2). The ratio of time derivative ˙̃b2 to U is usually

less than 0.02 for terrestrial bubbles and about –0.02 for the microgravity bubbles we measured.

These values make c1 effectively equal to 1. Taking c1 = 1, the force Fσ
2 is given by

2πσ

∫ 1

»

dx((1))−1/2

× [x{R′2 − 2R2 + R((0))/((1))} + {R′((0))/((1)) − 2 R R′}
√

(1 − x2) + R R′ x2/
√

(1 − x2)]

(10)

with ((0)) = (R2R′′ – R R′2). It can be proven that this expression reduces to

− 2πr f ootσ sin(θc) (11)

with θ c the contact angle at the bubble foot measured in the liquid. The minus sign indicates action

into the direction opposite to h, so a force attracting the bubble towards the wall.

The generalized force Fσ
1 corresponding to the isotropic component b1 is given by

Fσ
1 = 2πσ

∫ 1

»

dx((1))−1/2[R R′x/
√

(1 − x2) − 2R2+R((0))/((1))]. (12)

It can be proven that this expression reduces to

σ 〈2H〉∂Vb/∂b1. (13)

This expression reduces to −4πσ (Ř +h) for the case of a truncated sphere, with Ř = Rshpere, since

〈2H〉 = –2/Ř then.

The definition

〈x R3〉 =
∫ 1

»

dx x R3(x)/(1 − ») (14)

makes it possible to express the gravity force F1
g as follows:

F
g

1 = g ρL2π (1 − ») (h〈R2〉 + 〈x R3〉). (15)

For a truncated sphere, (15) yields g ρL π Ř (h+Ř)2, with Ř = Rshpere.

Collecting (3) and (13) into (2), we obtain for the isotropic component the following equation

(16) that can be considered as an extended Rayleigh-Plesset equation for a bubble attached to a plane

wall. Expression (6) can be used to assess ∂Vb / ∂ b1 and (12) for F1
g,

− F inertia
1 − Fvort

1 = 1p ∂Vb/∂b1 + σ 〈2H〉 ∂Vb/∂b1 + F
g

1 + F
drag

1 . (16)



The drag force F1
drag will be specified in Sec. III C below. A good approximation for the

overpressure is seen to be given by –σ 〈2H〉, since other contributions in (16) are usually less than

this capillary term. This approximation is 2σ / Ř in the case of a truncated sphere. A more accurate

way to assess the overpressure 1p is easily obtained by rewriting (16),

1p = −σ 〈2H〉 − (F inertia
1 + F

g

1 + F
drag

1 )/(∂Vb/∂b1).

The difference (–2σH|foot + σ 〈2H〉) is given by the (F1
inertia + F1

g + F1
drag)-term on the RHS of

this equation.

Similarly, Eq. (17) for the second generalized coordinate, the distance of the center, h, to the

wall, is obtained from (8),

− F inertia
2 − Fvort

2 = 1p πr2
f oot − 2πr f oot σ sin(θc) + g ρL Vb + F

drag

2 . (17)

Capillary force Fσ
2 is for (17) determined with (11), but Eq. (10) yields more accurate values,

usually. It can be proven that at the chosen wall

2H | f oot = 1/R1 − sin(θc)/r f oot ,

with R1 a radius of curvature at the bubble foot while 1/R2 = –sin(θ c) / rfoot is the other radius of

curvature. As a result, the neglect of hydrodynamic stresses near the bubble foot, leading to (4),

yields

− F inertia
2 − Fvort

2 = πr2
f oot {σ (1/R2 − 1/R1)|foot − ρL g hwall} + g ρL Vb + F

drag

2 . (18)

This remarkable result shows that the sum of the two major force contributions, the overpressure

force and the capillary force, is a directly measurable quantity. The difference of the radii of curvature

at the bubble foot is equal to the square root of 4H2 – K, where K is the Gaussian curvature. The

difference can conveniently be determined from the measured contour and from

1/R2 − 1/R1 = ((1))−1/2 R−1{R′ ctg(θ ) − ((0))/((1))}. (19)

Although the gravity term – ρL g hwall in (18) is usually less than 1% of the capillary term it accounts

for much of the deformation of the interface, as can be observed by placing the chosen wall at various

heights above the actual wall. The local values at the bubble foot in (18) are usually difficult to be

measured accurately. For this reason another expression for F2
1p + F2

σ is now given.

Let the mean difference between the inverses of the radii of curvature be defined by

〈1/R2 − 1/R1〉 =
∫ θ1

0

dθ R2(θ ) sin(θ)(1/R2 − 1/R1)

/ ∫ θ1

0

dθ R2(θ ) sin(θ). (20)

As long as 1p = –σ 〈2H〉 is a sufficient approximation of the pressure difference between the bubble

and the liquid at the chosen wall, the sum of the two major force contributions can be obtained from

F
1p

2 + Fσ
2 = πr2

f oot {σ 〈1/R2 − 1/R1〉 − ρL g hwall}. (21)

Because of the averaging over the gas-liquid interface above the chosen wall, (21) is expected to give

more accurate results from measured bubble contours than the formally more accurate following

expression:

F
1p

2 + Fσ
2 = πr2

f oot {−σ 〈2H〉 − (F inertia
1 + F

g

1 + F
drag

1 )/(∂Vb/∂b1) − ρL g hwall + 2σ/R2|foot}.
(22)

Here, averaging 〈2H〉 is above the chosen wall and the radius of curvature 1/R2|foot can be determined

from –sin(θ c)/rfoot or from

1/R2 = −((1))−1/2{1 − R−1 R′ ctg(θ )}. (23)

One of the main aims of the present study is to increase the measurement accuracy of force

determinations. For this reason, the sum of the dominant forces F2
1p + F2

σ is assessed with the

aid of (18), (21) and (22) and compared with “ideal” values (1p2 πrfoot
2 + Fσ

2), where 1p2 is the

pressure drop that makes (17) an identity.



C. Hydrodynamic forces including drag

The remaining force components of Eq. (2) that need to be quantified are Fj
inertia, Fj

vort, and

Fj
drag. The inertia forces are given by the Lagrange equation

d

dt

∂T irrot

∂ ḃ j

−
∂T irrot

∂b j

= −F inertia
j .

The hydrodynamic force Finertia is computed from potential flow over truncated spheres. Up to this

point in the analysis, general deformation of an axisymmetric bubble has been considered although

the analysis was limited to the force balances corresponding to the first two generalized coordinated,

b1 and h. Since all three force components, Fj
inertia, Fj

vort, and Fj
drag, will be seen to have small

contributions and since the experimentally observed shapes of bubbles are close to that of truncated

spheres, inertia, and drag forces will only be determined for that of the truncated sphere closest to

the actual shape. This means that the governing equations are given by

−F inertia
1 (b1, ḃ1, b̈1, b2, ḃ2, b̈2) = Fvort

1 (b1, b1, b2, b2) + F
1p

1 + Fσ
1 + F

g

1 + F
drag

1 (b1, b1, b2, b2),

−F inertia
2 (b2, ḃ2, b̈2, b2, ḃ2, b̈2) = Fvort

2 (b1, b1, b2, b2) + F
1p

2 + Fσ
2 + F

g

2 + F
drag

2 (b1, b1, b2, b2),

where the forces F1p, Fσ , amd Fg depend on all 25 generalized coordinates and are determined in

ways presented in the above Sec. III B.

A bubble with the shape of a truncated sphere (distance h and radius R) in a uniform flow field

with velocity V experiences a lift force resulting from the induced pressure field. This lift force

is part of F2
inertia. To determine the inertia forces and viscous potential drag, the kinetic energy is

written as a second order polynomial of the two prevailing generalized velocities

T irrot/(1/2ρL V0) = αU 2 + υ Ṙ2
sphere + ψ Ṙsphere U + α2 V 2. (24)

Here, V0 = 4
3
π Rsphere

3. Each coefficient occurring on the RHS of this expression is an added mass

coefficient; coefficient υ was written as tr(β) in Ref. 4. Each coefficient depends on generalized

coordinates but not on generalized velocities. The coefficient α is familiar and has the value 0.5

far away from the wall. Values of added mass coefficients have been obtained both for spheres and

truncated spheres.7,4 In the present study, these added mass coefficients yield an estimate of Finertia

by using Rsphere and h as parameters that characterize the truncated sphere with a shape closest to

the actually measured bubble shape. Convenient expressions to evaluate the added mass coefficients

are given in the Appendix.

Viscous drag forces for truncated spheres can be determined from the potential flow field by the

Levich approach.18,4 Similar to the above determination of Finertia, drag force Fdrag is overestimated

with the aid of measured parameters Rsphere and h that characterize the truncated sphere shape closest

to the actual bubble. The accuracy of the inertial lift and viscous potential drag will be discussed

below. In the following equations, parameter Rsphere is written as R for sake of brevity and U is

written as ḣ to highlight similarity in the equations with respect to Ṙ and ḣ. The Euler-Lagrange

equation for the first generalized coordinate, Rsphere, yields

4

3
π ρL R3

0(1/2ψ ḧ + υ R̈ + M1) = Fvort
1 + F

1p

1 + Fσ
1 + F

g

1 − W11 Ṙ − W12 ḣ (25)

(R0 = R(t = 0), the initial value of b1) with inertia lift given by

M1 =
1

2
Ṙ2

(

∂υ

∂ R
+ 3υ/R

)

−
1

2
ḣ2

(

∂α

∂ R
−

∂ψ

∂h
+ 3α/R

)

+ ḣ Ṙ
∂υ

∂h
+

1

2
V 2

(

∂α2

∂ R
+ 3α2/R

)

.

The Euler-Lagrange equation for h renders the second governing equation to the form

4

3
π ρL R3

0(α ḧ + 1/2ψ R̈ + M2) = Fvort
2 + F

1p

E + Fσ
2 + Vbg ρL − W21 Ṙ − W22ḣ, (26)

with inertia lift given by

M2 =
1

2
Ṙ2

(

∂ψ

∂ R
−

∂υ

∂h
+ 3ψ/R

)

+
1

2
ḣ2 ∂α

∂h
+ ḣ Ṙ

(

∂α

∂ R
+ 3α/R

)

−
1

2
V 2 ∂α2

∂h
. (27)



Coefficients Wij are drag coefficients which only depend on the generalized coordinates (R = Rsphere

and h). For a sphere far away from the wall, both W11 and W22 reduce4, 7 to 12π µ Rsphere. In Ref.

7, it was shown that literature results for the added masses for a touching sphere (λ = 1
2
) and for

either Ṙ = 0 or Ṙ = U are in agreement with those obtained with the above approach. Convenient

expressions to evaluate W11 and W22 for a truncated sphere at a plane wall are given in the Appendix.

In the measurements of this study, bubble shapes are found to be close to those of truncated spheres.

The range of applicability and the accuracy of the inertial lift and viscous potential drag for the

measurements of this study will be discussed in Sec. III E below.

D. Dimensionless form of the governing equations

The governing equations can be written in dimensionless form by dividing the dimensional

equations by ρL R0
2 Ṙ2

0 , where Ṙ0 is defined as the time rate of change of b1 at initial time zero,

ḃ1(t = 0), ḣ0 is that of h at time zero, and R0 is the initial value of b1. In boiling, Ṙ0 is bound to

be nonzero and positive which makes it a good reference velocity. The velocities ḣ and Ṙ = ḃ1 are

coupled by the governing equations, but velocity of the approaching flow at the center of the bubble,

V, is an independent velocity. Three Reynolds numbers exist:

Re1 = Ṙ0 R0 ρL/µ, Re2 = ḣ0 R0 ρL/µ, ReV = V R0 ρL/µ. (28)

Other dimensionless numbers are the Weber, Froude and dimensionless pressure numbers which

are, respectively, defined by

W e = ρL R0 Ṙ2
0/σ, Fr = Ṙ2

0/(g R0), 1P0 = 1P(t = 0)/(ρL Ṙ2
0). (29)

With Wij = Ŵij b1 π µ, the dimensionless governing equation corresponding to h becomes

4

3
π R0((Re2/Re1)2αḧ/h2

0 + 1/2 ψ R̈/Ṙ2
0) = −

4

3
π

⌣

M2 +
⌣

F
vort

2 + π(r2
f oot/R2

0)1P0 − 2π

sin(θc)(r f oot/R0)/W e +
4

3
π (Vb/V0)/Fr − Ŵ22π (b1/R0)(ḣ/ḣ0)(Re2/Re1)/Re1−

Ŵ21π (b1/R0)(ḃ1/Ṙ0)/Re1

(30)

with the inertia forces given by

⌣

M2 = 1/2(R0

∂ψ

∂b1

− R0

∂υ

∂h
+ 3ψ R0/R)(ḃ1/Ṙ0)2 + 1/2(Re2/Re1)2(ḣ/ḣ0)2 R0

∂α

∂h
+ (Re2/Re1)

(ḣ/ḣ0)(ḃ1/Ṙ0)(R0

∂α

∂b1

+ 3α R0/R) − 1/2 R0

∂α2

∂h
(ReV /Re1)2. (31)

Dimensionless vorticity force, F̃vort
2 , equals Fvort

2 /(ρL R0
2 Ṙ2

0). Note that (ḣ/ḣ0), (ḃ1/Ṙ0) and (b1/R0)

are initially 1 while both (Re2/Re1) and (Vb/V0) are of order 1.

These expressions not only make clear how the Reynolds numbers determine the importance of

viscous Levich drag, as usual, but also that capillary forces are controlled by the Weber number and

body forces by the Froude number. The pressure term with dimensionless pressure 1P0 is usually the

source of high-frequency oscillations, depending on the equation of state of the gas in the bubble.8

The gradients of added mass coefficients, such as ∂α
∂h

, are also familiar contributions.7, 9 The various

inertia forces depend on two Reynolds number ratios. The last contribution, with (ReV/Re1),2 is the

familiar inertia lift due to uniform approaching flow. Note that ∂α2

∂h
is positive which implies that

this lift force pushes the bubble away from the wall. In the experiments of this study, the Froude

number is small which makes the contribution of the Froude term to the force balance less important.

In addition, in the experiments of this study the Reynolds number Re1 is of order 1 which renders

the contribution of the drag components to the force balance more important than in high-Reynolds

number experiments, which are more common. It will be shown in Sec. III E that the viscous

potential drag yields overestimations of the actual drag. If the drag contributions will nevertheless

be found to be negligible it can safely be assumed that drag plays a negligible role in bubble growth

in the boiling conditions of the present study (low Ja-number).



In the same manner the extended Rayleigh-Plesset equation for a bubble attached to a plane

wall can be given the following dimensionless form:

4

3
π R0(υ R̈/Ṙ + 1/2(Re2/ReE )2ψ ḧ/ḣ2

0) = −
4

3
π

⌣

M1 +
⌣

F
vort

1 + 2π(1 − »)〈R2〉R−2
0 1P0

−2π(1 − »)〈R2〉R−1
0 〈2H〉/W e + 2π(1 − »)(h〈R2〉 + 〈x R3〉)R−3

0 /Fr − Ŵ11

π (b1/R0)(ḃ1/Ṙ0)/Re1 − Ŵ21π (b1/R0)(ḣ/ḣ0)(Re2/Re1)/Re1

(32)

with the inertia forces given by

⌣

M1 = 1/2(R0

∂υ

∂b1

3υ R0/R)(ḃ1/Ṙ0) − 1/2(Re2/Re1)2(ḣ/ḣ0)2(R0

∂α

∂b1

− R0

∂ψ

∂h
+ 3αR0/

R) + (Re2/Re1)(ḃ1/Ṙ0)(ḣ/ḣ0)R0

∂υ

∂h
+ 1/2(R0

∂α2

∂ R
3α2 R0/R)(ReV /Re1)2.

(33)

The two governing equations are clearly two coupled differential equations of the same kind.

Note that the factors multiplying the dimensionless numbers We, Fr, and 1P0 are different in the

two dimensionless equations above. The terms with We, Fr, and 1P0 are applicable to any case of

axisymmetric bubble deformation. The other terms, the inertia and drag terms, are exact for truncated

spheres and take slightly different values in the case of more general deformation.8 With general

deformation, each of the added mass and drag coefficients used above depends on all generalized

coordinates; for example: υ = υ(b1, h, b2, b3, b4, . . . ). In the case of a truncated sphere, the added

mass coefficients turn out9 to be dependent on only one geometrical parameter, λ = b1/(2h). The

Appendix gives convenient fit functions that describe dependencies of α, υ, ψ , α2 and W11, W12,

W22 on λ.

E. Range of applicability of derived drag and lift forces for boiling bubbles

Two facts are often overlooked in estimating the lift force on a boiling bubble:

r The inertial contribution to the lift, i.e., those corresponding to the potential flow part of the

flow, prevail at small Reynolds numbers.
r There is a finite time for vorticity generation and built-up of boundary layers and the domain

where vorticity may occur is decreasing in the course of time.

The validity of added mass coefficients computed for flows at low or intermediate Reynolds

number has been discussed in the above.4, 15 As a result of their general validity, all terms computed

from added mass coefficients and collected in M2 contribute to temporal changes in distance h of

the center of the bubble to the wall, whatever the Reynolds number. Traditionally, often only the

term related to the uniform approach velocity, V, is denoted with “lift force,” but all added-mass

terms contribute to motion of the bubble center away from or towards the wall. We therefore prefer

to group inertia forces not involving generalized accelerations (M2) and name them the potential

flow lift on the bubble. This grouping avoid the naming of individual terms of the potential lift,

such as “unsteady growth force”12, 13 and “hydrodynamic force.”12 Whatever the Reynolds number,

potential lift occurs and the only lift force contribution missing in our analysis stems from the

vorticity contribution F2
vort. At high-Reynolds number flows, only potential lift is important since

the vorticity is confined to thin boundary layers with a thickness inversely proportional to the square

root of the Reynolds number.14 In previous publications,7, 8 it has been shown that well-known results

for high-Reynolds number flow are consistent with the present computations of inertia forces. The

finite time of existence, the second point above, is important for the estimation of F2
vort which will

be discussed after a digression about the drag force.

It is instructive to combine the information concerning the drag force coefficient of a hemisphere

in uniform flow at a plane wall19 for ReV > 0.1 with the available information concerning the time

dependency of the drag coefficient for a sphere with a growing radius20 in an effort

r to elucidate the competition of diffusion time scale with time of growth and
r to estimate the errors of the estimates of lift and drag employed in this study.



A good fit of the CD-data of the hemisphere in quasi-steady conditions is given19 by

CD = (48/ReV ){1 − (5/12)(1 − tanh(ReV /70))}, (34)

where the term proportional to (5/12) goes to zero in the limit of ReV going to infinity. The asymptotic

limit of CD is already practically reached at ReV = 200. With decreasing ReV the drag force coefficient

decreases from 48/ReV to 28/ReV since 1–5/12 = 28/48. The reason for this decrease is the gathering

of vorticity especially at places where the potential flow solution predicts large velocity gradients,

i.e., near the foot of the hemisphere. Pressure differences are reduced within these regions and in

addition the energy dissipation is reduced at these locations. The resulting drag reduction explains

the minus sign in the second term of the above expression. For the same reason the drag of a full

sphere is reduced14 from 48/ReV to (48/ReV)(1 – 2.2 / ReV
0.5).

If a sphere with radius R0 is at time zero suddenly put in a uniform flow with velocity V, and if

the sphere grows in time according to R(t) (a situation closely resembling the boiling bubbles of the

experiments here reported, except for the shape), the drag force is in the course of time given20 by

− FD = 12 π µ R(t) V + 8 π µ(−R(t)V + R0 V f1(t) + R(t)V f2(t)). (35)

At time zero, f1 equals 1 and f2 is zero, making the second term on the RHS of the above expression

equal to zero. Whatever the Reynolds number, initially the drag force is given by the viscous potential

drag of the first term on the RHS.21 The viscous dimensionless time scale ν t R−2
0 is replaced by

0

∫

t ν R(t)−2dt. If the derivative of the radius with respect to time is nonzero, the f2-term is a nonzero

history force contribution. If this derivative is positive, as for our boiling bubbles, also the f2-term

is positive. The limit for t going to infinity of both f1 and f2 is zero, making the quasi-steady drag

equal to 4πµ R V. For sake of completeness, the functions f1 and f2 for a sphere are given20 by

(ν = µ/ρL),

f1(t) = exp(9 ν

∫ t

0

R(t ′)−2dt ′) erfc({9 ν

∫ t

0

R(t ′)−2dt ′}0.5), (36a)

f2(t) = (1/R(t))

∫ t

0

exp(9 ν

∫ t

τ

R(t ′)−2dt ′) erfc({9 ν

∫ t

τ

R(t ′)−2dt ′}0.5)
∂ R(τ )

∂τ
dτ. (36b)

For ReV < 1, at large times the kernel of the memory integral corresponding to the history force is

not of the above form any more. This is because far from the particle, the advection terms neglected

in the derivation of f1 and f2 become significant in the transport of the vorticity field.22 Application

is therefore recommended only for ReV ≥ 1.

If Re1 ≫ 1, Reynolds number Re1 is the relevant ratio of inertia to viscous effects involved,

and drag may be20 close to the viscous potential drag whatever the value of ReV. The time scale

corresponding to bubble expansion is in competition with the diffusion time scale and the quasi-

steady viscous drag force is therefore an underestimation of the actual drag on a growing boiling

bubble. For a growing hemisphere at a plane wall the same competition occurs but the quasi-steady

drag is different. We therefore postulate that the time dependent drag on is in this case approximately

represented

− FD = 12 π µ R(t) V + 5π µ V (1 − tanh(ReV /70))(−R(t) + R0 f1(t) + R(t) f2(t)), (37)

where f1 and f2 are in principle different from those given above but with the same asymptotic

behavior. When the growth rate of the hemisphere is small and the diffusion time scale dom-

inates the expansion time scale, the above expression reproduces the correct value of 12π µ

R(t)V{1 – (5/12) (1 – tanh(ReV /70))}. When bubble growth is fast and/or the lifetime of the

bubble is short, the correct asymptotic value given by viscous potential drag, 12 π µ R(t) V, is

reproduced. The above expression is expected to be a reasonable approximation of the drag force

on a hemisphere for Re1 ≥ 1 and ReV ≥ 1.

The above drag acts in a direction parallel to the approaching flow. In the present study, drag

perpendicular to the wall, connected to W22, and drag opposing bubble expansion, connected to W11,

as well as a mixed term, connected to W12, is computed. Both W11 and W22 have the asymptotic



value of 12 π µ R(t) for a sphere in an unbounded fluid. We may therefore postulate that the drag on

a growing truncated sphere at a plane wall is approximately represented by an equation of the form

− F
drag

11 = W11 ḃ1 + W11 ḃ1(5/12)(1 − tanh(ReV /70))(−1 + (R0/R(t)) f1(t) + f2(t)), (38)

− F
drag

22 = W22 ḣ + W22 ḣ (5/12)(1 − tanh(ReV /70))(−1 + (R0/R(t)) f1(t) + f2(t)), (39)

where once again functions f1 and f2 may depend on the shape at hand but possess the same

asymptotic behavior as in (36a) and (36b). As before, asymptotic values for Re1 and Re2 going to

infinity are correct if the viscous potential drag terms, W11 and W22, are computed for the shape of

the truncated sphere at hand. There is no equivalent of a drag force connected to W12 in the literature,

but we may expect a similar expression to hold for this drag contribution; F
drag

1 = F
drag

11 + F
drag

12 ;

F
drag

2 = F
drag

22 + F
drag

12 .

The main conclusions to be gathered from these drag force expressions are

1. the faster bubble growth or the shorter the lifetime of a boiling bubble, the more close actual

drag is to viscous potential drag;

2. the presence of a plane wall increases the quasi-steady drag on a hemisphere as compared to

that of a sphere, and a similar increase is expected for bubbles with the shape of a truncated

sphere;

3. if anything, the potential drag yields an overestimation of the actual drag for a boiling bubble

with a deviation that can be estimated with the aid of the above equations.

Typical times of growth that have been observed in our experiments up to detachment from

the wall is for microgravity bubbles 0.03 s (radius grows from 0.05 to 0.09 mm) and for terrestrial

ones 0.05 s (radius grows from 0.12 to 0.19 mm). With the aid of the above expression for −F
drag

22

and the f1 and f2 functions of a sphere given by (36a) and (36b), the drag W22 ḣ is computed to

be reduced to about 0.73W22 ḣ(microgravity) and to about 0.76W22 ḣ(terrestrial) at the end of the

time of growth. These values 0.73 and 0.76 required the computation of the integrals in (36a) and

(36b), of course. In the remainder of this study, computations will be made with viscous potential

drag only, so, for example, with –F
drag

22 = W22ḃ1, in the expectation that despite the overestimation

drag will be found to be negligible. This expectation shall a posteriori be validated. If it turns out

not to be fully satisfied, the maximum error occurring at the end of the growth time is estimated, on

basis of the above computations, to be about 25%. Making allowance for the effect of advection of

vorticity by the approaching flow, which invalidates the assumption of a uniform approaching flow,

the maximum error in the viscous drag estimate of drag is estimated to about 40%. This error occurs

at the time the bubble starts leaving the artificial nucleation site and is less at previous times. The

same error is assumed for W11 and W12-contributions. Even though this is a rough estimate, it is

sufficient in our conservative approach with a posteriori validation of the expectation that drag and

lift contributions are negligible.

The building up of a vorticity layer in the vicinity of the liquid-vapor interface affects lift in

a similar manner. In quasi-steady flow over a hemisphere at a plane wall and for ReV exceeding 1,

the lift force coefficient has recently been asssesed.19 After some algebraic manipulation, the lift

coefficient turns out to be represented by

CL = (11/8){1 − (0.3 + 0.0232 Re0.5
V )/(1 + 0.02 ReV )},

where 11/8 is the potential flow solution for the inertia lift corresponding to approach velocity V.

There is no account of the effect of the time-dependency of the bubble radius on lift in the literature.

In analogy to the drag force treatment we therefore postulate for the hemisphere with radius R(t)

that in first order approximation

F
li f t

2 = 1/4(11/8)π ρ R(t)2V 2 + 1/4(11/8)π ρ R(t)2V 2((0.3 + 0.0232 Re0.5
V )/1 + 0.02ReV ))

× (−1 + (R0/R(t)) f1(t) + f2(t)). (40)



For an expanding bubble with the shape of a truncated sphere the V2-lift becomes

F
li f t

2 = 2/3π ρ
∂α2

∂h
R(t)3V 2 + 2/3π ρ

∂α2

∂h
R(t)3V 2((0.3 + 0.0232 Re0.5

V )/(1 + 0.02 ReV ))

× (−1 + (R0/R(t)) f1(t) + f2(t)). (41)

Despite the fact that the time-dependent functions f1 and f2 may differ from the functions f1
and f2 given above,20 the trends predicted by the latter functions will be the same. Similarly, the

low-Reynolds number correction factor ((0.3 + 0.0232 ReV
0.5) / (1 + 0.02 ReV)) may be somewhat

different for shapes deviating from that of a hemisphere, the trend in the ReV-dependency predicted

will be the same. The benefit of the above expression is therefore that it predicts the correct limiting

values and the proper trends, in particular, the tendency of vorticity to decrease the lifting action of

the potential flow.19 The reason for this action is that pressure differences are reduced within the

regions where vorticity is gathered, as mentioned above, leading to a reduced pressure difference

between bubble foot and top of the bubble. Lift is the pressure difference integrated over the bubble

surface, and is therefore also decreased with increasing importance of vorticity. In the remainder

of this study, computations will be made with inertia lift 2/3π ρ ∂α2

∂h
R(t)3V 2 in the expectation that

despite the overestimation lift will be found to be negligible. This expectation shall a posteriori be

validated.

Terms in the inertia lifts M1 and M2 other than those proportional to V2, i.e., terms with ∂υ
∂h

, for

example, are pure inertia terms and unaffected by the presence of vorticity. They retain their value

whatever the values of the three Reynolds numbers.4, 15

To the best of our knowledge, the expressions given above are the most appropriate ones for

the terrestrial and microgravity bubbles measured in our experiments. However, other expressions

for Fvort and Fdrag could easily be combined with the expressions for Finertia, F1p, Fσ , and Fg given

above, following Eq. (2). In addition, more complex deformation is easily accommodated by taking

all (25) generalized coordinates into account in the assessment of F2
inertia (bj, ḃ j , b̈ j ), F2

vort(bj, ḃ j ),

and F2
drag(bj, ḃ j ). The other forces already take account of these full dependencies in the present

study. The expressions for drag and lift given above are recommended for growing boiling bubbles

if either Re1 ≫ 1 or Re2 ≫ 1, or if both Re1 ≥ 1 and Re2 ≥ 1 and if either ReV ≫ 1 or the lifetime

of bubbles is short.

IV. RESULTS

A. Effect of (micro)gravity on heat transfer

More heating power has been required to create boiling bubbles in terrestrial gravity than in

microgravity. In our experiments, bubbles grow slower in microgravity. Since subcooling and velocity

of the approaching fluid flow have been the same in the terrestrial and microgravity experiments,

the necessity of a higher heating power on the ground is probably due to enhancement of heat

transfer by natural convection. Typical bulk Reynolds number is 330, at approach velocity 1.2 cm/s,

and the boundary layer at distance 0.493 mm from the frontal edge of the bubble generator is

laminar (kinematic viscosity vL = 3.2 × 10–7 m2/s). The velocity boundary layer thickness is there

estimated23 as the square root of ((1260/37) vL 0.493 × 10–3/V), which is 0.6 mm. The temperature

boundary layer thickness is less, 0.24 mm, because of the Prantl number of 7.8. Bubbles grow in

the boundary layer. Since bubbles are fully embedded in the thermal plume over the heater, bubble

growth evolution is to sufficient degree described24 by

R(t) = Ja
√

(aL t), (42)

where aL = λL/(ρL cp,L), the heat diffusivity of the liquid (typically 4.121 × 10–8 m/s2, λL is

heat conductivity of the liquid and cp,L its heat capacity, ρV is mass density of the vapor), and the

Jacob number depends on the vaporization enthalpy, 1H (typically 1.42 × 105 J/kg): Ja = ρL cp,L

(Tw – Tsat)/(ρV1H). Saturation temperature is denoted as Tsat and the temperature of the wall as

Tw. The radius in the above equation has to be the volume-equivalent radius. The histories of the
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FIG. 8. Comparison of length scale histories for a terrestrial bubble.

volume-equivalent radii of 12 bubbles have been fitted with high accuracy to Ja
√

(aL (t – t0)) with t0
the time of growth before the first observation of the bubble with the camera. With 95% confidence

interval the results of all bubbles are given by (1T = Tw – Tsat),

terrestrial : Ja = 3.22 ± 0.13; 1T = 2.00 ± 0.08 ◦C; tleave = 0.088 ± 0.006 s,

microgravity : Ja = 1.92 ± 0.13; 1T = 1.19 ± 0.08 ◦C; tleave = 0.055 ± 0.02 s.

The time of leaving the nucleation site, tleave, is in the terrestrial case equal to the time of

detachment but has in the microgravity case to be estimated from the observations as the time the

bubble starts leaving the site by moving parallel to the wall in downstream direction. Bearing in

mind that subcooling of the approaching liquid is 4 ◦C, a total temperature difference of about 6◦

has to be overcome by the power to the bubble generator in the terrestrial case.

Froude number, equal to Re2/Gr, is for a typical length scale of 5 mm and typical driving

temperature differences of 5 and 6 K estimated to be about 0.7 in on-ground experiments and

about 154 in microgravity experiments at minimum (g-jitter of 0.045 m/s2 at maximum; expansion

coefficient 2.19 10−3 1/K). Boundary layer development is therefore affected by mixed convection

in on-ground measurements, but merely by forced convection in microgravity.

On ground, the Jacob number is highest and bubble growth is more rapid. This is confirmed

by time histories of length scales measured, as those given by Fig. 8. Notice that at later times in

this bubble growth history the shape is not that of a truncated sphere as distance h exceeds radius

Rsphere. Since heat transfer rate in terrestrial conditions is higher because of natural convection, a

higher superheating of the wall is required to create boiling. It is therefore hard to get identical

bubble growth histories in terrestrial and microgravity conditions. The present study applies a force

balance analysis to assess the major agents involved and to allow for a prediction of forces in case

bubble growth rates in microgravity would be as high as on ground. This analysis is presented in

Secs. IV B–IV F.



FIG. 9. Comparison of histories of Fσ
2 computed in two ways, one with the aid of the contact angle θc and (11) and the

other with the integral equation (10).

The mean detachment radius, Rleave, for the two body force conditions is given by

terrestrial : Rleave = 0.1945 ± 0.0018 mm, contact angle 38◦ ± 4◦;

microgravity : Rleave = 0.091 ± 0.016.

Development of an improved criterion for the prediction of the bubble radius at time of leaving the

nucleation site is beyond the scope of the present investigation.

B. Assessment of accuracies of various methods to determine force components

The important force that attracts a bubble to the wall is the capillary force Fσ
2. Figure 9 shows

that the integral equation (10) yields about the same values as (11) for a low chosen wall. For a

higher chosen wall differences are negligible because of the improved accuracy of the contact angle

θ c necessary for (11). The decrease in absolute value of the attracting capillary force with increase

of time in later stages of bubble growth is easily understood from the decrease in apparent contact

angle and from (11). The apparent contact angle decreases from about 60◦ to about 40◦ in the course

of time. The variation in the course of time of the capillary force is about the same in both ways of

computing it. The accuracy of both ways is expected to be the same.

The b1-equation for a bubble attached to a plane wall, the first Euler-Lagrange equation (16),

can be considered as an extended Rayleigh-Plesset equation valid for bubbles of any shape. At each

instant of time it contains only one unknown, the overpressure 1p. Figure 10 shows the time history

of the resulting values of the overpressure, at each instant of time given by 1p = −σ 〈2H〉 − (F1
inertia

+ F1
g + F1

drag) / (∂Vb / ∂b1). The approximation 1p = −σ 〈2H〉 is found to be very close at all

times, as expected. Discrepancies are primarily due to the gravity term F1
g. Drag is overestimated

but turns out to be negligible and inertial lift is contributing in later stage of bubble growth, but

only little. Although this lift is estimated, using expressions only valid for a truncated sphere, the

estimates are sufficiently well to be able to state that the overpressure depends merely on the mean

curvature term, −σ 〈2H〉, and on gravity which is measured via the measured bubble volume. The

definition-based approximation 1p = −2σH|foot − ρL g hwall of (4) depends on the accuracy of the

measurement of the bubble foot and is found to vary less smoothly in the course of time than the
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FIG. 10. Comparison of four computed histories of the pressure inside the bubble minus the hydrostatic pressure in the liquid

at the wall for a terrestrial bubble.

previous solutions for this case of a wall chosen close to the actual wall. A fully independent way

to determine the overpressure 1p is given by the second Euler-Lagrange equation (17) which also

comprises the overpressure as the only unknown. The 1p-values that make (17) satisfied identically,

named 1p2 in the following:

1p2 = −(Fσ
2 + F inertia

2 + F
g

2 + F
drag

2 )/(∂Vb/∂b2), (43)

are shown in Fig. 10 as well. The value of the relative difference (1p2 + σ 〈2H〉)/( −σ 〈2H〉) has

for terrestrial bubbles been determined for 7 bubbles with typically 30 measured contours each. The

average difference is found to be 4.3% with a standard deviation of 4%.

The decrease in pressure inside the bubble with increasing time corresponds to a decrease in

saturation temperature, Tsat, of the vapor in the bubble. This saturation temperature is equal to

the temperature of the liquid at the interface, Tint. Since the pressure in the liquid is 1.1 bar with

saturation temperature 37 ◦C, histories of Tint can be computed from histories of 1p as the one given in

Fig. 10 with the aid of the Clausius-Clapeyron equation,

(Tint − 37 ◦C) = 1p (273.15 + 37) (1/ρv(273.15 + 37) − 1/ρL )/1H.

The molar mass of HFE7000 is 0.2 kg/mol from which the mass density at 310.15 ◦C, ρv(273.15

+ 37), is computed with the ideal gas law. In the terrestrial case of Fig. 10, Tint is initially 37.06 ◦C

and decreases to 37.03 ◦C. In the microgravity case, Tint will be seen to be initially 37.13 ◦C and

decreasing to 37.05 ◦C. These values are consistent with the small wall superheating deduced from

the growth histories above (about 1.2 ◦C and 2.0 ◦C). These values also show that only a small

decrease in saturation temperature, by 0.07 ◦C in the microgravity case, accompanies the decrease

in pressure inside the bubble.

The comparison of Fig. 10 is typical for all measurements and shows an agreement which

is fair in view of the measurement accuracies. To the best of our knowledge this is the first time

that the pressure inside a boiling bubble is determined from experiments in two independent ways

simultaneously, with consistent values. Previous approximations in the literature at best invoked the



FIG. 11. Comparison of histories of curvature differences measured only at the foot (stars) with those measured at the entire

liquid-gas interface (circles).

Laplace equation as a crude approximation to the governing equation (16). The above approximation

1p = −σ 〈2H〉 can be seen as a first improvement of the Laplace equation and a way to account for

deformation of the bubble.

When two force contributions are measured and are nearly compensating, the relative error in

their sum is usually large. The term (1/R2 − 1/R1)|foot appears in the expression (18) which is an

alternative for the sum of two major force contributions to the second Euler-Lagrange equation, the

familiar force balance perpendicular to the wall in the direction of h. Figure 11 compares values of

this term with the alternative 〈1/R2 − 1/R1〉 which appears in (21). It is clearly seen that the scatter

which occurs due to measurement difficulties near the foot in (1/R2 – 1/R1)|foot is strongly reduced

in 〈1/R2 – 1/R1〉. The latter values are therefore expected to be more accurate and it will be shown

in Sec. IV C that this is indeed the case.

Histories of 1/R2|foot as determined from (23) have been compared with those of –sin(θ c)/rfoot

and essentially the same values have been found. The change in the course of time is gradual for

high-chosen walls and shows some scatter if the chosen wall is close to the actual wall. Once

again the measurement accuracy in the proximity of the solid wall is found to be less. If values

can alternatively be determined from interface-averaged quantities, such as 〈2H〉 and 〈1/R2 – 1/R1〉,
the method based on the entire interface is to be preferred. This is further demonstrated by the

comparison of force components in h-direction below.

C. Force balance normal to the wall for terrestrial bubbles

In view of the accuracies found in Sec. IV B it stands to reason to consider the overpressure as

determined from (16), or from 1p = –σ 〈2H〉, as the most accurate one. The resulting overpressure

can be put into the h-equation (17), which also contains 1p as the only unknown, yielding (22).

However, the sum of the dominant forces, F2
1p + F2

σ , is alternatively assessed with the aid of (18)

or (21). As these two dominant forces are nearly compensating one another, the comparison of force

components in h-direction of Fig. 12 only comprises the sum of these forces. In this figure, results

for F2
1p + F2

σ of (18), (21) and (22) are compared with the solution of (17) with 1p2 as defined

in (43) of Sec. IV B: F2
1p + F2

σ = – F2
inertia – F2

g – F2
drag.

Figure 12 shows that the contributions from drag and inertia are negligible for this terrestrial

case. This is as expected and makes the fact that these two contributions are slightly overestimated

irrelevant. Of the three ways to determine the sum F2
1p + F2

σ , the one based on the difference

in radii of curvature 〈1/R2 – 1/R1〉, so on (21), is clearly closest to the values determined with

1p2, in particular, at later times of the bubble growth process, i.e., for larger bubbles. Partly this is

because of the increasing accuracy of measured parameters with increasing bubble growth. If the
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FIG. 12. Typical force component histories in the direction normal to the wall, anti-parallel to gravity, of a terrestrial bubble;

the line indicated with open squares in the legend has been computed with (22). Note that if drag F
drag
2 = F

drag
22 + F

drag
12

= −W21 Ṙ – W22ḣ would have been computed with equations of the type (39) the same result would have been obtained.

height of the chosen wall above the actual wall is increased, the averaging involved in (20) to obtain

〈1/R2 – 1/R1〉 is performed over a reduced area. This usually reduces the accuracy of (F2
1p + F2

σ )

a bit. For this reason, merely force balances with a chosen wall close to the actual wall are presented

here.

D. Force balances of microgravity bubbles

All microgravity bubbles were found to detach the artificial cavity at an early stage during their

growth and to move downstream close to or at the wall in the developing boundary layer there

(Fig. 4). All microgravity bubbles were small as compared to terrestrial bubbles (Fig. 13). This

happened due to different heating conditions of the bubble generator, although approaching velocity

and temperature profiles of the liquid were kept the same. The area in the vicinity of the bubble foot

is consequently difficult to be measured. The automated contour determination finds a bubble foot at

the wall, i.e., rfoot 6= 0, but the mirage problem and/or other light refraction problems might be hiding

an actual bubble shape, which is nearly spherical. At later stages of bubble growth, large bubbles are

actually found to detach from the wall after being formed by coalescence of two smaller bubbles,

see Fig. 4. If the bubble foot is actually zero, the sum of the two dominant forces in h-direction,

F2
1p + F2

σ , must be zero. In addition, both the gravity constant and the volume are small which

makes that the main force which is compensating the body force, F2
1p + F2

σ , must also be small.

Small values of this sum are therefore anticipated, as is further discussed below.

Gravity in the form of g-jitter is found to have values of the same order of magnitude than the

inertia and drag estimates, both in the b1 and h-equation. Note that the g-jitter values were actually

measured and used in the analysis via a time-dependent g-value. The g-jitter was measured to have

a mean value of zero and maximum values of about ±0.5 m/s2. Inertia and drag are counteracting

and both are small in the governing b1-equation, and consequently the overpressure as determined

by –σ 〈2H〉 is nearly the same as the overpressure 1p2 determined from the full governing equation

(16), see Fig. 14.
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FIG. 14. Comparison of four computed histories of the pressure inside the bubble minus the hydrostatic pressure in the liquid

at the wall for a microgravity bubble.



0 0.02 0.04 0.06 0.08 0.1 0.12

−6

−4

−2

0

2

4

6

x 10
−9

Time [s]

F
o
rc

e 
co

m
p
o
n
en

t 
[N

]

Force component normal to the wall

 

 

F
g

2

F
inertia

2

F
drag

2

F
sigma

2
 + F

∆ p

2
 =  −(F

inertia

2
 + F

g

2
 + F

drag

2
)    (see 43)

FIG. 15. Typical histories of force component normal to the wall in microgravity showing the significance of drag; the same

symbols as in the terrestrial case of Fig. 12 are used. The acceleration g of the gravity component (g ρL Vb) is measured

with acceleration meters, inertia is computed for a truncated sphere shape (minus the LHS of (26)) and drag is slightly

overestimated in the Levich approach for the truncated sphere shape by F
drag
2 = –W21 Ṙ – W22ḣ. The sum F2

1 p + F2
σ is

only shown for the 1p2-case of (43); the other experimental assessments of this sum (see legend of Fig. 12) are fluctuating

around zero but are too inaccurate to be shown.

The relative difference (1p2 + σ 〈2H〉)/(–σ 〈2H〉) has been determined for 6 microgravity

bubbles, each with about 50 measured contours, with an average result of –6.0% with a standard

deviation of 9%. The scatter in the overpressure determination is in the case of microgravity obviously

higher than in the case of terrestrial bubbles due to a higher measurement inaccuracy because of the

smaller size of the bubbles.

In the force balance normal to the wall (Fig. 15), inertia is estimated to be mainly due to lift

related to the approaching velocity since bubble growth is slow and other inertia terms consequently

small. Note that the estimates of inertia contributions are fairly accurate since the actually measured

shapes are close to those of truncated spheres. Due to the small size of the bubbles, the measuring

accuracy of F2
1p + F2

σ with (21) or with other expressions is not high. Moreover, in (18) or similar

expressions for the h-equation, for example, the one employing (22), the estimates of drag and inertia

appear to be counteracting although drag is not particularly small at early times (Fig. 15). As a result,

F2
1p + F2

σ is nearly compensating g-jitter at all times and hence fluctuating around zero. Lift on

microgravity bubbles is smaller than g-jitter and nearly negligible as anticipated. However, at early

times of bubble growth, when the drag error estimates are less than 20%, our drag computations

turn out to be exceeding both g-jitter and the sum (F2
1p +F2

σ ). Even allowing for a 40% error at

later times of bubble growth, drag is contributing then and both drag and g-jitter induced buoyancy

are found to be important during bubble growth in microgravity. This might seem surprising at first

sight, but it merely shows how small the sum (F2
1p +F2

σ ) is and how close the bubble shape is to

that of a truncated sphere. The importance of drag normal to the wall implies that drag also parallel

to the wall might become important, see Sec. III E. The sliding away of the bubbles, despite the



possibility of staying pinned at the cavity mouth as measured in the on-ground experiments, is a

clear indication of this.

Bigger bubbles with a clear footing at the wall are required to make the force assessment of

the h-force component F2
1p + F2

σ accurate. Only with measurements of such bigger bubbles a

meaningful comparison can be made of measured and predicted values of the sum (Finertia+ Fdrag

+ Fg), with the gravity force Fg based on measured g-jitter histories. Within the present measurement

accuracy, bubbles could well be detached from the wall already during their growth, while sliding

downstream along the bubble generator. The authors believe this to be the case as capillary forces

with such high curvatures are high and motion of a dry patch at the wall is difficult to imagine at the

low liquid velocity employed. Interpretation of measurements of sliding bubbles in the literature25

is hampered by the same observation difficulties.

In case a bubble is found to jump away from the wall, momentarily after coalescence (Fig. 4), it

will immediately go back to the wall. As there is no preferred direction in parabolic flights related to

gravity, the direction of the main flow and the geometry must account for the systematic preference

of bubbles to stick to the wall. Since bubble growth is slow and bubbles exist for quite some time

in the boundary layer, sufficient time is available for bubbles to collect vorticity in their wake. The

reason why bubbles that grow and move downstream in the boundary layer stay close to the wall of

the bubble generator is therefore believed to be a pressure gradient due to inhomogeneous vorticity

distributions, although there is no direct evidence for this.

E. Absence of inert gases proven from the force balances

An interesting feature of the equations presented in Sec. III is the possibility to accommodate

for variations in surface tension coefficient due to variations in interfacial temperature. Such a

variation might occur in case degassing would not have been performed properly and gas remnants

would occur in the content of the gas/vapor bubble. Variation in partial pressure along the interface

would then cause variation in interfacial saturation temperature and Marangoni flows would occur

in the liquid. Instead of σ 〈2H〉, the average 〈σ2H〉 is used in the first Euler-Lagrange equation now.

Equation (10) is adapted in a similar way to yield another version of the second Euler-Lagrange

equation. This procedure seems to be a natural way to take the force due to Marangoni convection

into account.

We investigated the consequences of possible gas remnants by prescribing a linear variation

of temperature with x along the interface, which is a linear variation with height in the case of a

truncated sphere. Surface tension coefficient was assumed to vary linearly with temperature from

11.4 mN/m at 34 ◦C to 9.36 mN/m at 56 ◦C. The capillary term (10) turned out to be more sensitive

to variations in surface tension than the term 〈σ2H〉 of the other Euler-Lagrange equation. Only

a moderate variation in surface tension coefficient, from 0.0119 to 0.0108 mN/m over the height

in the last stage of growth of a (large) terrestrial bubble, sufficed to give a notable difference in

overpressure 1p of about 5% at all times. However, with the highest temperature at the wall the

overpressure was increased as compared to overpressure values for a homogeneous surface tension

coefficient. A not realistic negative gradient, with a lowest temperature at the wall, would be required

to annihilate remaining differences between 1p2 and –σ 〈2H〉 for terrestrial bubbles. It is concluded

that degassing was done properly and that pure vapor bubbles have been measured during the

terrestrial measurements. The scatter in the values of the difference (1p2 + σ 〈2H〉) is high for

microgravity bubbles and is not reduced by invoking a realistic surface tension gradient along the

interface. As the degassing procedure was the same for parabolic flights as on earth it is concluded

that pure vapor bubbles have been measured in all measurement conditions.

F. Force balance parallel to the wall in microgravity

In principle, the motion of a boiling bubble parallel to the wall after detachment from the artificial

site can be described by a force balance parallel to the wall. The obvious additional generalized

coordinate is the distance of the center to the frontal edge of the bubble generator. In order to estimate

the drag force in this direction, the shape asymmetry between upstream and downstream halves of



the bubble needs to be taken into account as well as boundary layer development and interaction

between neighboring bubbles. The last interaction is even in fully developed channel flow a laborious

task. The measurements in microgravity reported in the present paper have revealed a sometimes

erratic motion of bubbles parallel to the wall, partly connected to g-jitter. Even motion upstream has

been observed. The sum of the two counteracting overpressure and capillary forces, F1p + Fσ , may

accommodate also in flow direction for g-jitter and other effects via minor bubble deformations.

There is no method available in the literature to estimate the drag force parallel to the wall for all

these bubble shapes. Computations of this drag force require knowledge of the flow field and in

particular the vorticity field which is strongly affected by the erratic motion due to g-jitter and the

presence of wakes downstream of neighboring bubbles. The computation of inertia forces must take

full account of the asymmetry of the bubble shape in flow direction, and is therefore essentially 3D.

Lastly, the experimental assessment of F1p + Fσ requires a high spatial resolution of the recorded

images. For all these reasons, no attempt is made to assess the force balance parallel to the wall here.

V. CONCLUSIONS

Terrestrial and microgravity experiments were carried out with the same test rig, comprising a

locally heated artificial cavity in the center of a channel near the frontal edge of an intrusive glass

bubble generator. The approaching liquid flow velocity is laminar (1.2 cm/s) and parabolic and a

boundary layer develops downstream from the frontal edge of the bubble generator. Bubbles in

microgravity were found to leave the cavity and move downstream in the boundary layer developing

at the bubble generator; the terrestrial bubbles grew only at the cavity. Bubble shapes were generally

not far from those of truncated spheres, which provoked the usual wish to set up an analysis of forces

on the bubble in a way that comparison with the analysis of a truncated sphere is facilitated. This

necessitated the definition of a “sphere radius,” Rsphere, and required careful handling of fit parameter

b̃2. The reward was the possibility to limit the analysis to only two governing equations whereas

more complex analysis involves8 more governing equations.

A generalization of the Laplace equation is found: 1p = –σ 〈2H〉, which applies to a deforming

bubble attached to a plane wall. Here, 1p is the difference in static pressures inside the bubble and

in the liquid close to the wall, 2H denotes local mean curvature and 〈 〉 averaging over the gas-

liquid interface. This generalization stems from the first Euler-Lagrange equation for the isotropic

component of the radial distance of the bubble contour to the center of the bubble. A fully independent

way to determine the overpressure 1p is given by the second Euler-Lagrange equation for the distance

h of the center of the bubble to the wall, Eq. (17). The 1p-values that make (17) satisfied identically

have been named 1p2 and relative difference (1p2 + σ 〈2H〉)/( –σ 〈2H〉) has for terrestrial bubbles

measured been found to be 4%. For microgravity bubbles measured this difference was about –

6%. To the best of our knowledge this is the first time that the pressure inside a boiling bubble is

determined from experiments in two independent ways simultaneously, with values in agreement to

within 5%.

A way is found to determine the sum of the two counteracting major force contributions on

a bubble in the direction normal to the wall, overpressure force F2
1p and capillary force F2

σ ,

from a single, directly measurable quantity, σ (1/R2 – 1/R1)|foot. This is the difference of the two

radii of curvature at the bubble foot. The value of the difference in radii of curvature averaged

over the liquid-vapor interface is 〈σ (1/R2 – 1/R1)〉. Measurement accuracy obtained with the aid of

〈σ (1/R2 – 1/R1)〉 is far better than that of other methods. For larger terrestrial boiling bubbles the

resulting measurement accuracy if found to be sufficient to find values for (F2
1p +F2

σ ), which are

neatly compensating the buoyancy force, i.e., which are in agreement with (F2
1p +F2

σ )-values as

determined with the aid of 1p2.

The new analysis methods of the main force components (overpressure, capillary, body forces)

permit the accounting for a surface tension gradient along the liquid-vapor interface. As realistic gra-

dients would increase the difference between the overpressures determined in the above-mentioned

two independent ways it is concluded that no such gradients occurred. This confirms the thoroughness

of the degassing procedure.



To the best of our knowledge, the expressions presented for lift and drag are the most appropriate

ones for the terrestrial and microgravity bubbles measured in our experiments. However, other

expressions for Fvort and Fdrag could easily be combined with the generally valid expressions

derived for F1p, Fσ , and Fg, following Eq. (2). In addition, more complex deformation is easily

accommodated by taking more generalized coordinates into account in the assessment of F2
inertia

(bj, ḃ j , b̈ j ) and F2
drag(bj, ḃ j ). The other forces already take account of these full dependencies in

the present study. The expressions for drag and lift are recommended for growing boiling bubbles if

either Re1 ≫ 1 or Re2 ≫ 1, or if both Re1 ≥ 1 and Re2 ≥ 1 and if either ReV ≫ 1 or the lifetime of

bubbles is short.

Bubble shapes of microgravity bubbles were generally close to those of truncated spheres. For

these bubbles, lift is smaller than g-jitter, and therefore nearly negligible as anticipated. However, at

early times of bubble growth drag our drag computations turn out to be exceeding both g-jitter and the

sum (F2
1p +F2

σ ), while the drag error estimates are less than 20%. Even allowing for a 40% error

at later times of bubble growth, the findings show that both drag and g-jitter are important during

bubble growth in microgravity. On earth, gravity is dominant, bubble deformation is somewhat

stronger and both lift and drag are negligible as expected.

Summarizing, the main results of the paper are:

1. A rigorous method to assess capillary, overpressure, and body forces during bubble growth

from recorded images taking full account of arbitrary deformation. The method followed to

assess inertial lift and viscous potential drag can be extended to arbitrarily deforming bubbles

but is here limited to the two main components, h and b1. This is appropriate in view of the

measured bubble shapes being close to those of truncated spheres.

2. A generalization of the Laplace equation to connect the pressures in the bubble and at its foot

for deformed bubbles at a wall.

3. A new solution for the problem of determining the sum of the two dominant force components

while in convective boiling the bubble foot is difficult to be observed and one of the these two

forces is critically dependent on this bubble foot. These two force components are counteracting

such that the sum is several orders of magnitude smaller than each individual component.

The sensitivity to the bubble shape is such that the bubble easily accommodates to external

disturbances by tiny adaptations of its shape.

4. A determination, from new experiments and with the above analyzing method, of histories of

bubble pressure in two independent ways, with values in agreement to within 5%.

5. The findings that both drag and the body force due to g-jitter are important in parabolic

flights.

6. A way to determine whether surface tension gradients occur during bubble growth in experi-

ments or not.

7. The experimental finding that in identical flow conditions different superheats required for

incipience of boiling at an artificial nucleation site in microgravity and on ground. In micro-

gravity, bubbles start sliding but are probably fully detached, whereas in terrestrial experiments

bubbles directly lift off from the artificial nucleation site. Boundary layer development is af-

fected by mixed convection in on-ground measurements, but merely by forced convection in

microgravity.
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APPENDIX: ADDED MASS AND DRAG COEFFICIENTS

The following fits of computed data are on a finite domain in order to have a high-accuracy fit for

each coefficient, with r2-values of typically 0.9995 and F-values of typically 75 000. By definition,

Wij = π µ b1 Ŵij and λ = b1/(2h); the value of λ goes to infinity if the truncated sphere approaches

that of a hemisphere.

If λ ≥ 0.5 and λ < 0.52, then

Ŵ11 = –53 80 203.17695 λ3 + 83 00 488.103047 λ2 – 42 68 331.30233 λ + 731 589.643606,

Ŵ12 = 40 55 714.74201 λ3 – 62 59 115.82719 λ2 + 32 19 715.931029 λ – 5 52 049.750722,

Ŵ22 = –27 20 491.72838 λ3 + 42 00 956.306963 λ2 – 21 62 358.20635 λ + 3 71 016.142295.

If λ ≥ 0.52 and λ ≤ 1, then

Ŵ11 = (–93 059.475156 + 7 10 538.111722 λ – 22 46 394.17527 λ2 + 37 73 911.729744 λ3

– 35 53 791.26722 λ4 + 17 78 050.692458 λ5 – 3 69 154.914859 λ6)0.5,

Ŵ12 = exp(184.303261 – 1178.375359 λ + 3130.822666 λ2 – 4438.214264 λ3 + 3550.461665

λ4 – 1521.598072 λ5 + 273.123658 λ6),

Ŵ22 = 1 /(– 32.531609 + 257.429857 λ – 839.643949 λ2 + 1452.543662 λ3 – 1404.648165 λ4

+ 719.734252 λ5 – 152.651839 λ6).

If λ ≥ 0.5 and λ ≤ 1, then

α = 111.62137 – 844.131315 λ + 2678.058461 λ2 – 4534.349913 λ3 + 4311.889654 λ4

– 2180.345705 λ5 + 457.591961 λ6,

ψ = – 220.824854 + 1639.114567 λ – 5130.691427 λ2 + 8625.857798 λ3 – 8169.91248 λ4

+ 4121.492877λ5 – 863.784836 λ6,

υ = 104.601303 – 736.214699 λ + 2293.784611 λ2 – 3857.878559 λ3 + 3659.955261 λ4

– 1849.854303 λ5 + 388.412909 λ6,

α2 = 0.359528 + 1.341274 λ – 1.973813 λ2 + 0.796613 λ3.

A matlab file to compute these functions is available on request.
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