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ABSTRACT

The Generalized Complex time distributions have been re-
cently introduced as a way for reducing the auto-terms of any
bilinear time-frequency representation that appear when deal-
ing with non-linear time-frequency structures. This concept
requires the definition of signal at complex times and this
abstract operation is achieved by the analytical continuation
principle. In the current version, this principle is efficient only
for narrow-band signals, restricting also the applicationof the
complex time distribution to more complicate signals. The
purpose of this paper is to propose a method to overcome the
limitations of the analytical continuation in the case of sig-
nals with a spread time-frequency variation. This method is
based on the compression of the signals spectrum to a band-
width that ensures the efficiency of the analytical continuation
technique. Then, the application of generalized complex time
distribution will allow an accurate estimation of the instanta-
neous frequency law. The spectrum expanding will bring this
estimation to the correct time-frequency location.

Index Terms— Time-frequency analysis, Signal repre-
sentation, Analytic continuation

1. INTRODUCTION

Time-frequency representations are very helpful to character-
ize the richness of the information contained in non-stationary
signals. It can help to monitor the appearance of short tran-
sient electrical signals and the beat of an heart for example.
The subject has already been well covered with the Wigner-
Ville representation, spectrogram, wavelet transform, etc...
However, it only helps us to characterize the frequency con-
tent of a signal, with some limitations like inner interferences,
cross-terms, artefacts, trade-off between time and frequency
resolutions, etc...
Recently, complex time distribution concept has been intro-
duced in [1] as a way to produce high concentrated distribu-
tions along the different phase derivatives of a signal. The
main idea is to use the high order moments of the signals cal-
culated for complex-time lags. It has also been shown that it
was possible to deal with multi-component signals [2]. This
technique has however some drawbacks as it involves the cal-

culation of signal samples at complex coordinates through an-
alytic continuation [3]. This estimation leads to poor repre-
sentations as it can produce a divergence. Numerical exam-
ple proves the efficiency of the modified analytical continu-
ation technique extending also the capacity of the complex
time distribution to deal with time-frequency structures with
larger bandwidth.
In this paper, we show that it is possible to overcome some
of the limitations introduced by the analytical continuation.
This is achieved by a contraction in the frequency domain of
the signal’s spectrum.
The paper is organized as follows. In Section 2, the complex
time distribution concept is presented. Section 3 describes
the limitations of this technique due to the analytical continu-
ation. A new technique is then introduced in Section 4 which
permits to overcome some of the limitations. The different
algorithms are then compared in Section 5. Section 6 gives a
short conclusion and some perspectives for future works.

2. THE COMPLEX TIME DISTRIBUTION CONCEPT

The complex time distribution concept has been introduced a
few years ago as a way to provide distributions that are con-
centrated along theK-th derivative of the phase for regular
signals [1]. Let consider the signal defined as:

s(t) = AejΦ(t) (1)

Assuming an analytical signal, and using the Taylor’s series
expansion of the phase, we can write:

s (t+ τ) = Aej
∑

k
Φ(k)(t) τk

k! (2)

Phase integration in the complex plane using the theory of
Cauchy’s integral theorem [4] allows the focusing on a par-
ticular phase derivative:

Φ(K)(t) =
K!

2πτK

∫ 2π

0

Φ
(

t+ τejθ
)

e−jKθdθ (3)

We now consider the discrete form of the equation for the
N-th roots of unity which is used in numerical computation.
Using the properties of the roots of unity,ωN,p = ej2πp/N



and the variable changeτ → K

√

τ K!
N the previous expression

becomes:

N−1
∑

p=0

Φ

(

t+ ωN,p
K

√

τ
K!

N

)

ωN−K
N,p = Φ(K)(t)τ +Q(t, τ)

(4)
whereQ is the spread function which contains only the deriva-
tives of orderNk+K, defined as:

Q(t, τ) = N

∞
∑

p=1

Φ(Np+K)(t)
τ

Np

K
+1

(Np+K)!

(

K!

N

)

Np

K
+1

(5)

We can now define the generalized complex-time moment
(GCM):

GCMK
N [s](t, τ) =

N−1
∏

p=0

sω
N−K
N,p

(

t+ ωN,p
K

√

K!

N
τ

)

= ejΦ(K)(t)τ+jQ(t,τ) (6)

The Fourier transform of the GCM produces the generalized
complex time distribution:

GCDK
N [s](t, ω) = TFτ [GCMK

N [s](t, τ)]

= δ(ω − Φ(K)(t)) ∗
ω
TFτ [Ae

jQ(t,τ)] (7)

As stated by this definition, theK-th order distribution of the
signal, obtained forN complex-lags, highly concentrates the
energy around the Kth-order derivate of the phase law. This
concentration is optimal if theΦ s derivates of orders greater
thanN+K are0. Observing Equation 5, it can be noticed that
the first term appearing in the spreading function is the phase
derivative of orderK+N, the second one is of ordreK+2N,...
Thus the parameterN highly affects the spreading function.
We can conclude that a high value ofN reduces interferences,
sinceQ is reduced and distribution concentration will be less
sensitive to higher order phase derivatives. This theory has
been well developed in [1].
However, the computation of GCM implies the calculation of
signal samples at complex coordinates. The next section will
be dedicated to the study of the limitations introduced by this
abstract notion.

3. LIMITATIONS OF CLASSICAL ANALYTICAL
CONTINUATION

The analytical continuation of a signals(t) is performed as
defined in [3].

s(t+ jm) =

∫

∞

−∞

S(f)e−2πmfej2πftdf (8)

whereS(f) is the Fourier transform of the signals(t). It in-
volves the multiplication of the spectrum by the exponential

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

100

200

m
=

0

(a)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0

500

m
=

0.
02

(b)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
0

5000

m
=

0.
05

(c)

normalized frequency

Fig. 1. This Figure represents a spectrumS(f) multiplied by
an exponentiale−2πmf for different value ofm: (a)m = 0,
(b)m = 0.02, (c)m = 0.05.

e−2πmf which has different effects on the spectrum. Those
are shown in Figure 1 for different values ofm. When the
frequencies are positives, they are strongly attenuated due to
the fast decreasing exponential. In the meantime, negative
frequencies are strongly amplified, which can lead to a diver-
gence (Figure 1 (c )). It is really important to note thatm and
the bandwidth of the signal have a strong impact on the ana-
lytic continuation. The bandwidth is directly attacked by the
exponential. As form, a strong value considerably distorts the
spectrum. As a matter of consequence, it would be better to
use roots of unity weighted by1/N that are the closest to the
real axis in order to reduce the possible distortion during the
computation.
In order to illustrate using an example, let consider two sig-
nals defined as:

s1(t) = ej(6 cos(πt)+ 4
3 cos(3πt)+ 4

3 cos(5πt)) (9)

s2(t) = ej(18 cos(πt)+4 cos(12πt)+4 cos(40πt)) (10)

Figure 2 shows the theoretical instanteneous frequency laws
for s1 ands2, as well as the results of the complex time distri-
bution usingN = 6 andK = 1. We notice that if the DGTC
gives good results fors1 we can no longer estimate the first
phase derivative fors2. This is due to the computation of the
analytical continuation and the large bandwidth ofs2.

4. NEW METHOD

In this section, a way for reducing the effect of analytical con-
tinuation is introduced. It consists in modifying the frequency
support of the analyzed signal,s, in order to reduce the atten-
uation of the analytical continuation term.
Let consider a signalB(t) defined as:

B(t) = s (αt) (11)
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Fig. 2. This Figure represents the theoretical instantenous fre-
quency laws for (a)s1(t) and (b)s2(t) and the classical GCD
associated for (c)s1(t) and (d)s2(t).

with α > 1 a dilatation coefficient ands a signal defined as
Equation 1. The dilatation of the temporal signal leads in the
frequency domain to a contraction of the bandwidth. This is
actually the concept of the time-scale representation thatwe
use at this point [5].
Considering the complex-time moment ofB, we have:

GCMK
N [B](t, τ) =

N−1
∏

p=0

sω
N−K
N,p

(

αt+ αωN,p
K

√

K!

N
τ

)

(12)
We can clearly notice that the main impact directly concerns
the analytical continuation. We then focus on its calcula-
tion. According to the Taylor serie expansion (Equation 2),
we have:

s (αt+ jαm) =
∞
∑

k=0

s(k) (αt)

k!
(jαm)k (13)

Knowing the following Fourier ’s formula:

s(k)(t) =

∫

∞

−∞

(j2πf)
k
S(f)ej2πftdf (14)

we then deduce:

s(k) (αt) =

∫

∞

−∞

(j2πf)kS(f)ej2παftdf

Considering the variable changef ← αf , we obtain:

s(k) (αt) = |a|k
∫

∞

−∞

(

j2π
f

α

)k

S

(

f

α

)

ej2πft
df

α
(15)

Taking into account Equations 13 and 15, we deduce:

s (αt+ jαm) =
1

α

∫

∞

−∞

S

(

f

α

)

∞
∑

k=0

(−2πmf)k

k!
ej2πftdf

(16)
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Fig. 3. (a) and (b) represent the theoretical instantaneous fre-
quency laws ofs2 and its dilated version. (c) and (d) are the
respective GCD.

Finally, we obtain the contracted analytical continuation:

s (αt+ jαm) =
1

α

∫

∞

−∞

S

(

f

α

)

e−2πmfej2πftdf (17)

We can see that this leads to a contraction of the spectrum, and
as a matter of fact, it will be less affected by the attenuation
terme−2πmf . We definedsα as the signals whose frequency
support is contracted by the dilatation coefficientalpha, ie

Sα(f) = S
(

f
α

)

. We obtain:

s (αt+ jαm) =
1

α
sα(t+ jm) (18)

As we can notice, the two signals are related. The GCM then
becomes:

GCMK
N [B](t, τ) =

N−1
∏

p=0

(

1

α
sα

(

t+ ωN,p
K

√

K!

N
τ

))ωN−K

N,p

(19)

=

(

1

α

)

∑N−1
p=0 ωN−K

N,p

GCMK
N [sα](t, τ) (20)

Two scenario then need to be studied:

• When N = K(moduloN), ie when the number of
roots of unity is equal to the order of phase derivative.
Then we have:

GCMK
N [B](t, τ) =

1

αN
GCMK

N [sα](t, τ) (21)

• Otherwise:

GCMK
N [B](t, τ) = GCMK

N [sα](t, τ) (22)



−0.5 0 0.5
−800

−600

−400

−200

0

200

400

600

800

time

am
pl

itu
de

Fig. 4. The blue curve represents the theoretical instanteneous
frequency law ofs2 meanwhile the red cruces represent its
contracted version

In both cases, we can conclude that the GCD gives the same
results with a different intensity when the factor1αN appears.
Equation 22 shows that it is possible to extract theK-th phase
derivative order distribution of a signal by using its dilated
version. We then need to expand the distribution to obtain the
real distribution for signals.
Next Section is then dedicated to the study of an example.

5. RESULTS

In this section, we apply the GCD algorithm tos2(t) and
s3(t) = s2(t/α) with α = 4 for K = 1 using 6 roots of
unity. Figure 3 represents the different theoretical instanta-
neous frequency laws of the two signals, as the results of the
GCD implementations. It is easy to note that the dilatation of
the temporal support leads to a contraction of the bandwidth
of s3. The GCD fails to represents2, this is due to its large
bandwidth and the analytic prolongation. Meanwhile, the di-
lated version ofs2 shows very good results as its bandwidth
has been reduced, the continuation remains possible.
The frequency law obtained fors3 is as stated by Equation 22
a contraction of the one ofs2, to obtain the last one,it is nec-
essary to dilate the frequency law obtained with the dilatation
coefficientα.
Figure 4 shows the comparaison between the theoretical in-
tantaneous frequency law ofs2 and the dilated frequency law
of s3. We can notice that they match almost perfectly.Figure
5 shows the DGTC ofs3 after dilatation.
We have seen that it was possible to overcome one of the lim-
itation of the analytic continuation for the GCD method using
a dilation coefficient.
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Fig. 5. This Figure represents the GCD ofs3 after dilatation.
It is equal to the one ofs2

6. CONCLUSION

This paper proposes a new analytical continuation technique
that will allow the generalized complex time distribution to
deal with time-frequency structures having larger frequency
variation. This technique is based on the compression of the
signals bandwidth and, then, the application of the general-
ized complex distribution. This transformation allows accu-
rately estimating of the IFL. In the future, works will propose
an adaptive approach for the selection of the optimal scale
parameter with respect of the bandwidth variation of the ana-
lyzed signal. Another future work direction will focus on the
application of this analytical continuation technique fortran-
sient signals. The combination of the time-scale theory and
the complex-time distribution will be also generalized provid-
ing a new way to analyze high speed time-frequency varying
signals.
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Quinquis, and Ljubisa Stankovic, “Generalized Repre-
sentation of Phase Derivatives for Regular Signals,”IEEE
Transactions on Signal Processing, vol. 55, no. 10, pp.
4831–4838, Oct. 2007.

[2] Bertrand Gottin, Cornel Ioana, Srdjan Stankovic, Ljubisa
Stankovic, and Jocelyn Chanussot, “On the concept of
time-frequency distributions based on complex-lag mo-
ments,” in16th European Signal Processing Conference
EUSIPCO-2008 EURASIP, 2008.

[3] S. Stankovic and L. Stankovic, “Introducing time-
frequency distribution with a complex-time argument,”
Electronics Letters, vol. 32, no. 14, pp. 1265, 1996.

[4] W. Rudin, Real and Complex Analysis, McGraw Hil,
Boston, Mass, USA, 1987.

[5] S. G. Mallat, A wavelet tour of signal processing, Aca-
demic Press, San Diego, 2nd edition, 1999.


