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We investigate numerically the two dimensional travelling waves of the Nonlinear Schrödinger Equation for a general nonlinearity and with nonzero condition at infinity. In particular, we are interested in the energy-momentum diagrams. We propose a numerical strategy based on the variational structure of the equation. The key point is to characterize the saddle points of the action as minimizers of another functional, that allows us to use a gradient flow. We combine this approach with a continuation method in speed in order to obtain the full range of velocities.

Through various examples, we show that even though the nonlinearity has the same behaviour as the well-known Gross-Pitaevskii nonlinearity, the qualitative properties of the travelling waves may be extremely different. For instance, we observe cusps, a modified (KP-I) asymptotic in the transonic limit, various multiplicity results and "one dimensional spreading" phenomena.

The (NLS) equation with nonzero condition at infinity

In this paper, we consider the Nonlinear Schrödinger Equation in two dimensions

i ∂Ψ ∂t + ∆Ψ + Ψf (|Ψ| 2 ) = 0, (NLS)
which is a fundamental model in condensed matter physics. The (NLS) equation is used as a model for Bose-Einstein condensation or superfluidity (cf. [START_REF] Roberts | Nonlinear Schrödinger equation as a model of superfluid helium[END_REF], [START_REF] Abid | Gross-Pitaevskii dynamics of Bose-Einstein condensates and superfluid turbulence[END_REF]) and a standard case is the Gross-Pitaevskii equation (GP) for which f ( ) = -1. However, for Bose condensates, other models may be used (see [START_REF] Kolomeisky | Low-Dimensional Bose Liquids: Beyond the Gross-Pitaevskii Approximation[END_REF]), such as the quintic (NLS) (f ( ) = 2 ) in one space dimension and f ( ) = d d ( 2 / ln(a )) in two space dimension. The so-called cubic-quintic (NLS) is another relevant model (cf. [START_REF] Barashenkov | Stability and evolution of the quiescent and travelling solitonic bubbles[END_REF]), for which f ( ) = α 1 -α 3 + α 5 2 ,

where α 1 , α 3 and α 5 are positive constants such that f has two positive roots. The cubic-quintic (NLS) also appears as a model for elongated Bose-Einstein condensates, see [START_REF] Khaykovich | Deviation from one dimensionality in stationary properties and collisional dynamics of matter-wave solitons[END_REF], [START_REF] Sinha | Friction and diffusion of matter-wave bright solitons[END_REF]. For superfluid helium II, the nonlinearity f ( ) = α -β 3.8 with α and β positive, is used to produce a quantitatively correct equation of state (cf. [START_REF] Dalfovo | Structure of vortices in helium at zero temperature[END_REF]). In Nonlinear Optics, the nonlinearity f represents the response of the medium to the intensity |E| 2 of the electric field, and Kerr media correspond to f linear (f ( ) = α ). For non Kerr media, several nonlinearities may then be found (see [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]):

f ( ) = µ + α ν -β 2ν , f ( ) = -α 1 + γ tanh 2 -2 0 σ 2
where all the parameters are positive, or (see [START_REF] Akhmediev | Hamiltonian-versus-energy diagrams in soliton theory[END_REF]),

f ( ) = -α ln( ), f ( ) = µ + α + β 2 -γ 3 ,
and when we take into account saturation effects, one may encounter (see [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF], [START_REF] Kivshar | Modulational instabilities and dark solitons in a generalized nonlinear Schrödinger-equation[END_REF]):

f ( ) = α 1 (1 + 0 ) ν - 1 (1 + 1 0 ) ν , f ( ) = exp 1 - 0 -1 (1) 
for some parameters ν > 0, 0 > 0. For these two nonlinearities, f has a finite limit for large . As a model for Bose-Einstein condensates, the natural condition at infinity is ( [START_REF] Roberts | Nonlinear Schrödinger equation as a model of superfluid helium[END_REF])

|Ψ| 2 → r 2 0 as |x| → +∞, (2) 
where r 0 > 0 is such that f (r 2 0 ) = 0. In Nonlinear Optics, this condition is also relevant for dark solitons (see [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF]), but one may also impose the more classical condition Ψ → 0 at spatial infinity. In the paper, we shall then assume the nonlinearity f quite general and work with the condition [START_REF] Akhmediev | Hamiltonian-versus-energy diagrams in soliton theory[END_REF]. Without loss of generality, we normalize r 0 to 1.

For solutions Ψ of (NLS) which do not vanish, we may use the Madelung transform Ψ = a exp(iφ) and rewrite (NLS) as an hydrodynamical system close to the Euler system for compressible fluids with an additional quantum pressure

     ∂ t a + 2∇φ • ∇a + a∆φ = 0 ∂ t φ + |∇φ| 2 -f (a 2 ) - ∆a a = 0, or      ∂ t ρ + 2∇ • (ρu) = 0 ∂ t u + 2(u • ∇)u -∇(f (a 2 )) -∇ ∆a a = 0
with (ρ, u) def = (a 2 , ∇φ). When neglecting the quantum pressure and linearizing this Euler type system around the particular trivial solution Ψ = r 0 = 1 (or (a, u) = (1, 0)), we obtain the free wave equation provided f (1) < 0 (that is the Euler system is hyperbolic in the region ρ 1), which we will assume throughout the paper. The speed of sound enters in a crucial way in the existence of travelling waves for (NLS).

   ∂ t ā + ∇ • ū = 0 ∂ t ū -2f ( 
The Nonlinear Schrödinger equation formally preserves the energy, which is the (formal) Hamiltonian, involving a kinetic term and a potential term

E(Ψ) def = R 2 |∇Ψ| 2 + V (|Ψ| 2 ) dx = E kin (Ψ) + E pot (Ψ),
where V ( ) def = -1 f (R) dR, and the momentum, associated with the invariance of (NLS) under space translation. In [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF], the expression for the momentum P is

P (Ψ) def = R 2 i(Ψ -1), ∇Ψ dx,
where •, • denotes the real scalar product in C. This expression has a meaning as an improper integral if Ψ converges to 1 at infinity with a suitable decay. For a definition of the momentum when Ψ is just in the energy space, see [START_REF] Mariş | Traveling waves for nonlinear Schrödinger equations with conditions at infinity[END_REF], [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF].

The travelling waves

For (NLS) with nonzero condition at infinity, the travelling waves play a fundamental role in the dynamics. These are particular solutions of the form

Ψ(t, x) = u(x 1 -ct, x 2 )
where c is the speed of propagation, and u is a solution to the elliptic equation ∆u + uf (|u| 2 ) = ic∂ x 1 u (TW c )

with the condition at infinity |u(x)| → 1 as |x| → ∞. We may assume c ≥ 0, since conjugation of (TW c ) changes the sign of c. The existence and qualitative properties of the travelling waves of the Gross-Pitaevskii equation (f ( ) = 1 -), that is

i ∂Ψ ∂t + ∆Ψ + Ψ(1 -|Ψ| 2 ) = 0, (GP)
have been studied by C. Jones and P. Roberts in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF] (see also [START_REF] Jones | Motions in a Bose condensate V. Stability of wave solutions of nonlinear Schrödinger equations in two and three dimensions[END_REF] and [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF]) in dimensions two and three. The study relies on numerical simulation and formal asymptotic expansion. For this particular nonlinearity, c s = √ 2 1.4142 and the function V is the parabola V ( ) = 1 2 ( -1) 2 .

They represented the solutions in the (E, P ) diagram in figure 1, where P def = P 1 is the momentum in the direction x 1 of propagation. The blue curve is the curve [0, c s ] → (P (c), E(c)), where P (c) and E(c) are the momentum and energy of the travelling wave of speed c. In space dimension two, as c → 0, the solution possesses two vortices of degree +1 and -1 at distance 2/c, and for c → c s = √ 2, the solution is a rarefaction pulse described by the (KP-I) ground state: its modulus is close to one everywhere and it spreads out in the space variable, but much more in the x 2 direction than in the x 1 direction. We have represented in figure 2 the modulus |u| of the travelling waves corresponding to these two extreme cases. The numerical method they used was to start for small speeds with the ansatz of two vortices, and then to increase the speed step by step and solve the equation (TW c ) by Newton algorithm. In dimension three, the solutions are supposed axisymmetric around the x 1 -axis. The vortex is then now a vortex ring (a circle). When c → c s = √ 2, the solution looks qualitatively similar to figure 2 (b) with x 2 replaced by |(x 2 , x 3 )|. For the travelling waves of the Gross-Pitaevskii nonlinearity, C. Jones and P. Roberts ( [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF]) conjectured (through formal expansions at spatial infinity) an explicit algebraic decay. The paper [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF] provides a rigorous proof that finite energy travelling waves satisfy (up to a phase factor) the decay conjectured in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF]. Thanks to this decay, the momentum P is well-defined. The proof of [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF] certainly extends to more general nonlinearities.

Vortex solutions

Let us recall that the vortices of degree d ∈ Z for (NLS) are special solutions of (TW c ) which are stationary (hence c = 0) and of the form U (x) = a(r)e idθ , where we use polar coordinates. The function a is real-valued, verifies a(0) = 0 and a(+∞) = 1, is increasing and solves the ODE

a + a r - d 2 r 2 a + af (a 2 ) = 0 (3) 
in R + . We are interested only in degree ±1 vortices, and thus we shall restrict ourselves to the case d = 1, the case d = -1 being deduced by complex conjugation. The profile of the degree one vortex may be found by a shooting method, see figure 3. We have obtained a (0) ≈ 0.583 189 495 for the (GP) equation, which is slightly different from the value 0.582 781 187 8 given in [START_REF] Berloff | Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation[END_REF]. The travelling vortex solutions with small speed c as shown in figure 2 (a) consist in two vortices of degrees 1 and -1 at large distance from each other. A good approximation of this solution is given by the expression

a(|(x 1 , x 2 -c -1 )|) x 1 + i(x 2 -c -1 ) |(x 1 , x 2 -c -1 )| × a(|(x 1 , x 2 + c -1 )|) x 1 -i(x 2 + c -1 ) |(x 1 , x 2 + c -1 )| . (4) 
Here, × stands for complex multiplication. For mathematical justifications concerning these travelling vortex solutions for the Gross-Pitaevskii equation, see [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] (in space dimension two) and [START_REF] Béthuel | Vortex rings for the Gross-Pitaevskii equation[END_REF], [START_REF] Chiron | Travelling waves for the Gross-Pitaevskii equation in dimension larger than two[END_REF] for higher dimensions. These results may be generalized to any nonlinearity f such that V ( ) = -ρ 1 f is positive for = 1. The fact that, as c → 0, the distance between the two vortices is ∼ 2/c could be deduced from the arguments in [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF].

The transonic limit

We focus on the transonic limit c c s but c < c s , and thus define, for 0 < ε < c s small, c(ε

) def = c 2 s -ε 2 ∈ (0, c s ).
The formal convergence to the Kadomtsev-Petviashvili-I (KP-I) solitary wave in dimensions d = 2 or d = 3 is given in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF] for the Gross-Pitaevskii equation, i.e. (NLS) with f ( ) = 1 -, where the speed of sound is c s = √ 2. We refer to [START_REF] Kivshar | Dark optical solitons: physics and applications[END_REF], [START_REF] Kivshar | Self-focusing and transverse instabilities of solitary waves[END_REF] for the occurence of the two-dimensional (KP-I) in Nonlinear Optics, and to [START_REF] Zakharov | Multi-scale expansion in the theory of systems integrable by the inverse scattering transform[END_REF] and [START_REF] Kivshar | Modulational instabilities and dark solitons in a generalized nonlinear Schrödinger-equation[END_REF] for the one dimensional case (where (KP-I) reduces to the Korteweg-de Vries (KdV) equation). The argument is as follows (see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] for the one dimensional case). We insert the ansatz

u(x) = (1 + ε 2 A ε (z)) exp(iεϕ ε (z)) z 1 = εx 1 , z 2 = ε 2 x 2 (5) 
in (TW c(ε) ), cancel the phase factor and separate real and imaginary parts to obtain the hydrodynamical system

                   -c(ε)∂ z 1 A ε + 2ε 2 ∂ z 1 ϕ ε ∂ z 1 A ε + 2ε 4 ∂ z 2 ϕ ε ∂ z 2 A ε +(1 + ε 2 A ε ) ∂ 2 z 1 ϕ ε + ε 2 ∂ 2 z 2 ϕ ε = 0 -c(ε)∂ z 1 ϕ ε + ε 2 (∂ z 1 ϕ ε ) 2 + ε 4 (∂ z 2 ϕ ε ) 2 - 1 ε 2 f (1 + ε 2 A ε ) 2 -ε 2 ∂ 2 z 1 A ε + ε 2 ∂ 2 z 2 A ε 1 + ε 2 A ε = 0. ( 6 
)
On the formal level, if A ε and ϕ ε are of order ε 0 , we obtain

-c s ∂ z 1 A ε + ∂ 2 z 1 ϕ ε = O(ε 2 )
for the first equation of [START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF]. Moreover, since f (1) = 0 and c 2 s = -2f (1), using the Taylor expansion

f (1 + ε 2 A ε ) 2 = f (1) -c 2 s ε 2 A ε + O(ε 4 ), for the second equation implies -c s ∂ z 1 ϕ ε + c 2 s A ε = O(ε 2 ).
In both cases, we obtain the single constraint

c s A ε = ∂ z 1 ϕ ε + O(ε 2 ). ( 7 
)
We now add c(ε)/c 2 s times the first equation of ( 6) and ∂ z 1 /c 2 s times the second one. Using the Taylor expansion

f (1 + α) 2 = -c 2 s α - c 2 s 2 -2f (1) α 2 + f 3 (α), with f 3 (α) = O(α 3 ) as α → 0, this gives c 2 s -c 2 (ε) ε 2 c 2 s ∂ z 1 A ε - 1 c 2 s ∂ z 1 ∂ 2 z 1 A ε + ε 2 ∂ 2 z 2 A ε 1 + ε 2 A ε + c(ε) c 2 s (1 + ε 2 A ε )∆ z ⊥ ϕ ε + 2 c(ε) c 2
This is this type of solution that we have in figure 2 (b). Note that the modulus is O(ε 2 ) close to 1, and that the variations in x 1 and in x 2 are at the scale ε -1 and ε -2 respectively, which can be checked on the figure.

For rigorous mathematical results justifying the transonic limit and the convergence to a (KP-I) ground state, see [START_REF] Béthuel | On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves[END_REF] (in two space dimensions for the Gross-Pitaevskii nonlinearity), [START_REF] Chiron | Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit[END_REF] (in two and three space dimensions for a general nonlinearity) and [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] (in one space dimension, where the (KP-I) equation is replaced by the (KdV) equation). This supposes Γ = 0, and this is the case for instance for the Gross-Pitaevskii nonlinearity (Γ = 6).

As in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], the case where Γ vanishes is also of interest, and gives rise to a modified (KP-I) equation (mKP-I) with cubic nonlinearity. For the nonlinearities we have mentioned, the case Γ = 0 occurs for instance for the saturated nonlinearities (1) under the condition ν + 1 = 3( 0 + 1) and 0 = 1/3 respectively. More generally, this may happen for nonlinearities which are polynomials of degree three. Note that when Γ = 0, (SW) becomes linear and thus has no nontrivial solitary wave. When Γ = 0, which occurs only in the particular case 2f (1) = 3c 2 s , we may then insert the ansatz

u(x) = (1 + εA ε (z)) exp(iϕ ε (z)) z 1 = εx 1 , z 2 = ε 2 x 2 , (10) 
for which, compared to (5), we have increased the size of the amplitude A and the phase ϕ in order to see nonlinear terms. Plugging this in (TW c(ε) ), we obtain similarly the system

         -c(ε)∂ z 1 A ε + 2ε∂ z 1 ϕ ε ∂ z 1 A ε + 2ε 3 ∂ z 2 ϕ ε ∂ z 2 A ε + (1 + εA ε ) ∂ 2 z 1 ϕ ε + ε 2 ∂ 2 z 2 ϕ ε = 0 -c(ε)∂ z 1 ϕ ε + ε(∂ z 1 ϕ ε ) 2 + ε 3 (∂ z 2 ϕ ε ) 2 - 1 ε f (1 + εA ε ) 2 -ε 2 ∂ 2 z 1 A ε + ε 2 ∂ 2 z 2 A ε 1 + εA ε = 0. ( 11 
)
Here again, as ε → 0 we infer for both equations c s A ε = ∂ z 1 ϕ ε + O(ε). However, we shall need a higher order expansion. We thus Taylor expand f to next order

f (1 + α) 2 = -c 2 s α - c 2 s 2 -2f (1) α 2 + 2f (1) + 4 3 f (1) α 3 + O α→0 (α 4 ).
To the order O(ε 2 ), the system ( 11) is (recalling

c 2 (ε) = c 2 s -ε 2 )        ∂ 2 z 1 ϕ ε -c(ε)∂ z 1 A ε + 2ε∂ z 1 ϕ ε ∂ z 1 A ε + εA ε ∂ 2 z 1 ϕ ε = O(ε 2 ) c 2 (ε)A ε -c(ε)∂ z 1 ϕ ε + ε(∂ z 1 ϕ ε ) 2 + ε c 2 s 2 -2f (1) A 2 ε = O(ε 2 ). Taking into account c s A ε = ∂ z 1 ϕ ε + O(ε)
and since Γ = 0 implies 2f (1) = 3c 2 s , we infer for both equations in the above system

∂ z 1 ϕ ε -c s A ε = - 3ε 2 c s A 2 ε + O(ε 2 ). ( 12 
)
Adding c(ε)/c 2 s times the first equation of [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF] and ∂ z 1 /c 2 s times the second one and dividing by ε 2 , we get

1 c 2 s ∂ z 1 A ε - 1 c 2 s ∂ z 1 ∂ 2 z 1 A ε + ε 2 ∂ 2 z 2 A ε 1 + εA ε + c(ε) c 2 s (1 + ε 2 A ε )∂ 2 z 2 ϕ ε - 1 c 2 s 6f (1) + 4f (1) A 2 ε ∂ z 1 A ε + 1 ε 2 c(ε) c 2 s ∂ z 1 ϕ ε ∂ z 1 A ε + c(ε) c 2 s A ε ∂ 2 z 1 ϕ ε + 1 c 2 s ∂ z 1 [(∂ z 1 ϕ ε ) 2 ] + 1 2 - 2f (1) c 2 s ∂ z 1 (A 2 ε ) = -2ε c(ε) c 2 s ∂ z 2 ϕ ε ∂ z 2 A ε - ε c 2 s ∂ z 1 [ (∂ z 2 ϕ ε ) 2 ] - 1 c 2 s ε 3 ∂ z 1 [((εA ε ) 4 )]. (13) 
When Γ = 0, we have 2f (1) = 3c 2 s and, using (12) and c 2 (ε) = c 2 s -ε 2 , the second line in (13) seems singular in view of the factor ε -1 but is actually equal to

1 ε 2 c s ∂ z 1 A ε c s A ε - 3ε 2 c s A 2 ε + 1 c s A ε ∂ z 1 c s A ε - 3ε 2 c s A 2 ε + 1 c 2 s ∂ z 1 [(c s A ε - 3ε 2 c s A 2 ε ) 2 ] -5A ε ∂ z 1 A ε + O(ε) = -15A 2 ε ∂ z 1 A ε + O(ε),
since the quadratic terms cancel out. As a consequence, passing to the (formal

) limit ε → 0 in (13) yields 1 c 2 s ∂ z 1 A - 1 c 2 s ∂ 3 z 1 A + Γ A 2 ∂ z 1 A + ∂ 2 z 2 ∂ -1 z 1 A = 0, (SW')
where we have set

Γ def = - 4f (1) c 2 s -24,
which is the solitary waves equation for (mKP-I) with cubic nonlinearity. The solitary wave equation (SW') does have nontrivial solutions if and only if Γ < 0, which is the focusing case, see [START_REF] De Bouard | Remarks on the stability of generalized KP solitary waves[END_REF].

We may observe that equation (SW') is odd in A, hence the solutions arise by pairs (A, -A).

Let us point out that in two space dimension, a function u given by the ansatz (5) with A a nontrivial solution of (SW) and ϕ given by ( 9) is such that E(u) ∼ c s P (u) ≈ ε and E(u) -c s P (u) ≈ ε 3 . On the other hand, for a function u given by the ansatz [START_REF] Berloff | Vortex Splitting in Subcritical Nonlinear Schrödinger Equations[END_REF] where A is a nontrivial solution of (SW') and ϕ ε given by (see [START_REF] Béthuel | On the KP-I transonic limit of two-dimensional Gross-Pitaevskii travelling waves[END_REF])

∂ z 1 ϕ ε = c s A - 3ε 2 c s A 2
and not only (9), we have E(u) ∼ c s P (u) ≈ ε -1 and E(u) -c s P (u) ≈ ε. This means that if Γ = 0, both E and P are small as c → c s and the straight line E = c s P is the tangent to the curve at the origin in the (E, P ) diagram (see figure 1 (a)), but when Γ = 0 > Γ , we expect travelling wave solutions with high energy and momentum. Morever, the straight line E = c s P is an asymptote in the (E, P ) diagram: we have then a situation rather close to the transonic limit of the Gross-Pitaevskii equation in three dimension (see figure 1 (b)). In the one dimensional case, we refer to [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] for the convergence of the travelling waves in the transonic limit to the (mKdV) solitary wave (when Γ = 0 > Γ ), with indeed the existence of two branches of travelling wave solutions for c near c s . In [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF], the authors follow the approach in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF] to compute numerically the travelling waves to a Landau-Lifshitz model (see section 3.1). It turns out that the transonic limit is also formally governed by the (mKP-I) solitary wave equation, and that the travelling waves look close to "the" (mKP-I) ground state as c → c s .

In [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], we have studied the travelling waves in dimension one for a general nonlinearity, in particular some f 's for which Γ vanishes. We have put forward some behaviours that are rather different from what is obtained for the standard Gross-Pitaevskii nonlinearity, despite the fact that the nonlinearity f and the potential V have qualitatively the same shape. The purpose of this paper is to study the travelling waves for (NLS) with the nonlinearities considered in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF].

Variational properties

The PDE (TW c ) has a variational structure: the solutions are the critical points of the action functional

F c (u) def = E(u) -cP (u)
on a suitable energy space X that we shall not define here (see [START_REF] Mariş | Traveling waves for nonlinear Schrödinger equations with conditions at infinity[END_REF], [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF]). It is well-known that the solution to an elliptic PDE such as (TW c ) (satisfying some decay properties at infinity) verifies virial (or Pohozaev) identities. These are obtained by taking the (real) scalar product of (TW c ) by x 1 ∂ x 1 u and x 2 ∂ x 2 u and performing various integration by parts (see [START_REF] Mariş | Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]). In dimension 2, these identities are

         E(u) -cP (u) = 2 R 2 |∂ x 2 u| 2 dx E(u) = 2 R 2 |∂ x 1 u| 2 dx,
and we can combine them to give

cP (u) = 2 R 2 V (|u| 2 ) dx = R 2 |∂ x 1 u| 2 -|∂ x 2 u| 2 dx. (14) 
We shall check (as in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF] and [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF]) that the numerical solutions we obtain verify these two identities up to a reasonable error. From the computations in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF], it is natural to believe that the travelling wave is a smooth function of the speed c, although no mathematical proof of this fact has been given. Furthermore, the travelling waves are known to verify the standard Hamilton group relation (see e.g. [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF])

c * = ∂E ∂P |c=c * ,
where the derivative is taken along this (local) branch or, more precisely,

dE dc |c=c * = c * dP dc |c=c * . ( 15 
)
Given a smooth family of travelling waves c → U c , this relation is formally shown by taking the (real) scalar product of (TW c ) with dU c dc and integrating by parts, assuming good decay properties at infinity. On the (E, P ) diagrams in figure 1, this means that the speed c is the slope of the curve P → E. In dimension one, the smooth dependence of U c on c is easy to show and the Hamilton group relation [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] holds true (see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF]), provided we suitably define the momentum. Indeed, in one space dimension, the travelling waves have different phases at +∞ and -∞ and the phase shift enters in the definition of the momentum (see for instance [START_REF] Kivshar | Perturbation-induced dynamics of dark solitons[END_REF]).

The dynamical stability of the travelling waves of (NLS) is related to the sign of dP dc , computed on the local branch. Here is a precise statement in one space dimension. In view of the Hamilton group relation [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] (which holds true in dimension one), we have

d 2 E dP 2 |c=c * = dc dP |c=c * ,
so that the stability criterion dP dc < 0 precisely means that the (local) function P → E is concave, and that we have instability when the (local) function P → E is convex. This type of stability criterion appears also in [START_REF] Vakhitov | Stationary solutions of the wave equation in a medium with nonlinearity saturation[END_REF] in the study of positive bound state solutions to a Nonlinear Schrödinger equation (see also [START_REF] Barashenkov | Stability Criterion for Dark Solitons[END_REF] for related results). A general mathematical framework, which is not restricted to the one dimensional case, for the analysis of stability has been given within the Grillakis-Shatah-Strauss theory [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF], and relies on suitable spectral assumptions. Part of the argument in [START_REF] Lin | Stability and instability of travelling solitonic bubbles[END_REF] (see also [START_REF] Chiron | Stability and instability for subsonic travelling waves of the Nonlinear Schrödinger Equation in dimension one[END_REF]) is to verify the spectral assumptions required in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF].

In the three dimensional setting, a similar statement to Theorem 1 holds true in a space1 slightly smaller than the energy space and provided that we have a C 1 curve of solutions c → u c and the following spectral assumption (A) the spectrum of the hessian of the action F c is of the form {λ} ∪ {0} ∪ I + , where λ < 0 is simple, 0 has multiplicity three (the space dimension), and I + is closed and ⊂ (0, +∞) is verified. This statement follows from a direct application of [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF] combined with the study of the Cauchy problem in [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] (Appendix A). We are not aware of any rigorous verification of the spectral assumption (A) in dimension different from one.

Concerning the two dimensional situation, in addition to the verification of the spectral assumption (A), there is another obstacle that prevents us from using so directly the result in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF]. The mathematical difficulty is to find a suitable space2 containing the travelling waves and where the Cauchy problem is locally well-posed. This is due to the slow decay of the travelling waves R 2 |u -1| 2 dx = +∞ (see the algebraic decay in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF] and the rigorous justification in [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF]).

Nevertheless, we shall adopt the sign of dP dc as a good criterion for stability, even though it does not rely on a rigorous mathematical proof. Consequently, in view of the diagrams in figure 1, for the Gross-Pitaevskii nonlinearity (f ( ) = 1 -), we expect all the travelling wave solutions to be stable in dimension two and, in dimension three, to be stable only for speeds 0 < c < c cusp corresponding to the cusp, that is for the lower part of the diagram. In dimension three (cf. figure 1 (b)), the upper part of the curve is not expected to be such a local minimum, and not expected to be stable (see [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF], [START_REF] Berloff | Evolution of rarefaction pulses into vortex rings[END_REF]).

Another natural way to obtain at least some of the solutions is to minimize the energy under the constraint that the momentum is fixed, that is to consider, for p > 0,

E min (p) def = inf E(u), u ∈ X , P (u) = p .
Since both E and P are invariant by the Schrödinger flow, it is natural to think that any minimizer for this problem is orbitally stable. This idea originates in the work of J. Boussinesq [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF] and was rigorously justified by T. Benjamin [START_REF] Benjamin | The stability of solitary waves[END_REF] for the stability of the (KdV) solitary wave. For a general approach in this direction, see [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. This result does not rely on spectral assumptions as in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF] but is suitable for stability only. The link between the two approaches is the minimization property of E at fixed P , locally or globally. Since we expect that when

d 2 E dP 2 |c=c * = dc dP |c=c * < 0, the travelling
wave is a local minimizer of E for fixed P , it is natural to hope that on the one hand, the solution to this constraint minimization (if they exist) are orbitally stable, and that on the other hand, the function E min is concave. The properties of the function E min are summarized in the following proposition, where [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF] has to be related with the Hamilton group relation [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF].

Proposition 1 ([13], [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF]) We assume that the potential function V is nonnegative.

(i) The function E min is concave and increasing. In particular, E min has a derivative for all p except possibly for an at most countable set.

(ii) If p * > 0 is such that E min has a derivative at p * and E min (p * ) has a minimizer u * , then u * solves (TW c * ) where the speed c * is the Lagrange multiplier given by

c * = dE min dp (p * ). (16) 
Existence of at least one minimizer to the problem E min (p), and thus of a solution to (TW c ), have been proved for the (GP) nonlinearity (see [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF]) for any p > 0 in space dimension two. In the case of a general nonlinearity such that the potential function is nonnegative (i.e. V ≥ 0), we have shown in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF] that E min (p) is indeed acheived for any p > 0 if Γ = 0 but if Γ = 0, there exists p 0 > 0 such that E min (p) is acheived only for p ≥ p 0 (the space dimension is still equal to two). For the two dimensional (GP) equation, we expect to obtain all the travelling waves in the (E, P ) diagram (figure 1 (a)) through the constraint minimization E min (p) for p ∈ (0, +∞). However, in dimension three (figure 1 (b)), this is no longer the case since E min (p) is not acheived for small p. Therefore, if Γ = 0, we are in a situation somehow similar to the three dimensional case for (GP), the value p 0 being the abscissa of the intersection of the blue curve with the straight line E = c s P (see [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF]). In [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF], we have shown that the solutions we obtain from the constraint minimization E min (p) are indeed orbitally stable. In particular, the constraint minimization E min (p) does not provide the orbitally unstable travelling waves corresponding to the convex part of the (E, P ) diagram in but p < p 0 ) are orbitally stable but are not (cf. [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF]) global minimizers for E min (p): they are instead local minimizers. We are also interested in considering cases where the potentiel V achieves negative values, as it is the case for the cubic-quintic nonlinearity. This situation has been considered in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF], and another minimization problem has been proposed, namely to impose the constraint that the kinetic energy E kin (u) = R 2 |∇u| 2 dx is fixed and perform the minimization of E(u) -c 0 P (u), or equivalently G c 0 (u) def = E pot (u) -c 0 P (u). More precisely, for k ∈ R + , we consider

G c 0 min (k) def = inf G c 0 (u) = E pot (u) -c 0 P (u), u ∈ X , E kin (u) = k .
Similarly to Proposition 1, we have the following properties of the function G c 0 min , which do not require the potential to be nonnegative. Statement (iii) below shows that the minimization problem G c 0 min contains the minimization problem E min . Proposition 2 ( [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF]) (i) The function G c 0 min is concave, negative and decreasing. In particular, G c 0 min has a derivative for all k except possibly for an at most countable set. Remark 1 At first glance, the parameter c 0 seems to introduce an additional indeterminacy in the problem. However, by a simple scaling argument, the minimization properties of G c 0 are easily derived from those of G 1 . The latter, G 1 , is the functional studied in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF]. The freedom in choosing c 0 = 1 reveals its interest during numerical simulations: we will choose c 0 as close as possible to c * so that the afore mentioned scaling parameter c 0 /c * is close to one.

(ii) If k * > 0 is such that G c

Relaxed functionals

We were motivated by finding a numerical strategy for computing the travelling waves that preserves the variational strucure of the problem (TW c ). We thus looked for methods based on minimization arguments.

In the (E, P ) diagrams given in figure 1, some of the solutions are minimizers, or even local minimizers, for the problem E min (p). Therefore, it is natural to believe that these solutions are saddle points of the action functional F c . However, finding numerically a saddle point of a functional is not so easy. In [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF] and [START_REF] Barashenkov | Stability Criterion for Dark Solitons[END_REF], respectively, the functionals

L P S (u, µ) def = E(u) + 1 2 µ -P (u) 2 ,
where µ ∈ R is some parameter, and

L B (u, U * ) def = E(u) + M 2 P (u) -P (U * ) 2 ,
where U * is a travelling wave and M > 0 is given, have been introduced. In [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF], this was for finding travelling waves to a two dimensional Landau-Lifshitz equation, whereas in [START_REF] Barashenkov | Stability Criterion for Dark Solitons[END_REF], this was for the stability analysis of one dimensional travelling wave in the cubic-quintic (NLS), and in both cases "P " is the momentum. This type of functional can be seen as a kind of relaxation of F c , the parameter µ for the functional L P S being here to have some control on the momentum P . The interest for these functionals is that in some cases, a saddle point U * for F c is translated to a local minimizer for L B (•, µ), for some particular µ = µ(U * ), or for L B (•, U * ). This allows to use heat flow techniques in order to capture numerically these local minima. The condition for the saddle point U * to become a local minimum for L B (•, U * ) has been given in [START_REF] Barashenkov | Stability Criterion for Dark Solitons[END_REF]: it suffices to assume

dP dc < 0 and M > - 1 dP dc . (18) 
This means that only orbitally stable travelling waves can be obtained in this way. In dimension one (or more generally under spectral assumptions similar to those in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry I[END_REF]), a rigorous proof to the fact that a travelling wave U * is a local minimizer of L B (•, U * ), provided ( 18) is satisfied, is given in [START_REF] Chiron | Stability and instability for subsonic travelling waves of the Nonlinear Schrödinger Equation in dimension one[END_REF] in a general framework. Actually, the functional L B (•, U * ) becomes a Lyapounov functional for proving orbital stability (see [START_REF] Chiron | Stability and instability for subsonic travelling waves of the Nonlinear Schrödinger Equation in dimension one[END_REF]). In [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF], no such sufficient condition has been given to ensure that the functional L P S does have a local minimum. Moreover, we see from [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] that the constant M plays a role in the functional L B whereas it has been fixed to 1 for L P S , so that we do not expect to capture with L P S travelling waves with dP dc > -1. Since U * is clearly not known, functionals of the type of L P S seem more adapted to our problem. Therefore, we have chosen to define, for some parameters µ ∈ R, P 0 ∈ R and E 0 ∈ R, the following functional:

L(u, µ) def = E(u) + E 0 2P 2 0 (µ -P (u)) 2 .
The constant

E 0 P 2 0
plays the same role as M for the functional L B ; we have written it under this form in order to emphasize on its homogeneity. Let us then consider the minimization problem

L min (µ) def = inf L(u, µ), u ∈ X .
We may also consider the problem of finding not a global minimizer but a local minimizer, with an obvious meaning. The properties of the functional L min are given in the following proposition (see section 4.1 for the proof), where we stress the link between the problems E min (p) and L min (µ).

Proposition 3 Let E 0 , P 0 , µ * and p * be four positive constants.

(i) If u * ∈ X is a minimizer for the problem L min (µ * ), then u * is a solution of (TW c * ) with c * = c * (u * , µ * ) def = E 0 P 0 µ * - P (u * ) P 0
. Moreover, u * is a minimizer for the problem E min (P (u * )).

(ii) Assume that E min has a second order derivative at p * . If u * ∈ X is a minimizer for the problem

E min (p * ), then u * is a solution of (TW c * ) with c * = dE min dp (p * ). Furthermore, if the constant E 0 P 2 0 verifies E 0 P 2 0 > - d 2 E min dp 2 (p * ) then u * is a local minimizer for the problem L min (µ * ) with µ * = p * + c * P 2 0 E 0 .
Remark 2 A similar statement holds for local minimizers instead of global minimizers.

The advantage of working with the relaxed functionals is to transform the minimization under constraint into a minimization without constraint, which is of great interest numerically. In particular, heat flow techniques (as in [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF]) can be applied. However, we do not have a direct control on the quantities of interest: energy, momentum, speed, but only on the parameter µ. Let us remark that minimizing L min (µ * ) (or even locally minimizing) captures only minima (or local minima) of the energy under the constraint of fixed momentum, which is a strong indication of stability for the Schrödinger flow. In three dimensions (cf. figure 1 (b)), the upper part of the curve is not expected to be such a local minimum, and not expected to be stable (see [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF], [START_REF] Berloff | Evolution of rarefaction pulses into vortex rings[END_REF]).

Concerning the other constraint minimization, namely G c 0 min , we may also propose a relaxation by considering

I(u, κ) def = E pot (u) -c 0 P (u) + 1 2E 0 E kin (u) -κ 2
and finally consider the minimization problem

I min (κ) def = inf I(u, κ), u ∈ X .
Similarly to Proposition 3, the function I min enjoys the following properties (the proof is given in section 4.2).

Proposition 4 Let E 0 , c 0 , κ * and K * be four positive constants. (i) If u * ∈ X is a minimizer for the problem I min (κ * ), then u * is a minimizer for the problem

G c 0 min (E kin (u * )). Moreover, ũ * = u * ( c 0 c * •) is a solution of (TW c * ) with c * def = c 0 E 0 κ * -E kin (u * ) . (ii) Assume that G c 0 min has a second order derivative at K * . If u * ∈ X is a minimizer for the problem G c 0 min (K * ), then the rescaled function ũ * def = u * ( c 0 c * •) solves (TW c * ) with c * = - c 2 0 dG c 0 min dk (K * ) . Furthermore, if the constant E 0 verifies d 2 G c 0 min dk 2 (K * ) + 1 E 0 > 0.
then u * is a local minimizer for the problem

I min (κ * ) with κ * = K * - c 2 0 c 2 * E 0 .
Remark 3 Here again, a similar statement holds for local minimizers instead of global minimizers.

Stability and function G c 0 min . In [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF], we have shown that every minimizer for E min is also a minimizer for G c 0 min (k) (see Proposition 2 (iii)). Moreover, we also know from [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF] that every minimizer for E min is also an orbitally stable solution to (NLS). Therefore, it is natural to try to give a criterion relative to the function G c 0 min for the orbital stability of the solution, that is the sign of dP dc . The proof of the following Proposition is provided in section 4.3.

Proposition 5

We make the assumptions of Proposition 4. Assume moreover that G c 0 min has a second order derivative at

K * . If u * ∈ X is a minimizer for the problem G c 0 min (K * ), then sgn dP dc (ũ * ) = sgn G c 0 min (K * ) d 2 G c 0 min dk 2 (K * ) -2 dG c 0 min dk (K * ) 2 . ( 19 
)
where ũ * = u * ( c 0 c * •).

We recall (cf. Proposition 2) that the function G c 0 min is concave, negative and decreasing, hence dP dc (ũ * ) changes sign when

d 2 G c 0 min dk 2 (K * ) = 2 dG c 0 min dk (K * ) 2 G c 0 min (K * )
, which is a negative value. This means that G c 0 min remains strictly concave when

dP dc (ũ * ) changes
sign, and this is in agreement with the fact that the minimization problem G c 0 min contains the minimization problem E min .

Numerical methods

We have worked combining two approaches: finding (local) minimizers to functionals associated with the variational structure of the problem and continuation with respect to the speed c.

Discretization framework

Symmetries. Following [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF], [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF], we look for solutions that respect two symmetries of the problem: u is thus assumed to satisfy

u(x) = u(x 1 , x 2 ) = u(x 1 , -x 2 ) = ū(-x 1 , x 2 ). ( 20 
)
This allows us to work on the domain R + × R + instead of R 2 . Domain mapping. We then map this domain onto the square (x 1 , x2 ) ∈ [0, π/2] 2 using the stretched variables

R 1 x 1 = tan(x 1 ), R 2 x 2 = tan(x 2 ),
where R 1 and R 2 > 0 are adapted to the lengthscales of the solution we are interested in. This mapping avoids to work on a bounded computational domain and thus to consider artificial type of boundary conditions. But this comes at the price of two arbitrary constants, R 1 and R 2 , that have to be fixed along the computation. The continuous problem is then expressed and solved numerically in this set of streched variables. Indeed, we write (TW c ) in these variables using the formulas for h(x) = ĥ(x), x = arctan(Rx), for R > 0, and

∂h ∂x = R cos 2 (x) ∂ ĥ ∂ x and ∂ 2 h ∂x 2 = R 2 cos 4 (x) ∂ 2 ĥ ∂ x2 -2 sin(x) cos 3 (x) ∂ ĥ ∂ x .
Discretization. We discretize the computational domain, the square [0, π/2] 2 , by a cartesian grid, with N x1 points in the direction x1 and N x2 points in the direction x2 . We choose to work here with a uniform dicretization with N := N x1 = N x2 . The size of the mesh is denoted by h; here h = π 2N . We choose to work in the Finite Difference framework, using central approximations of derivatives. These approximations are of order 2. Numerical computation of energies and momentum. We are interested in the energy-momentum diagrams. These quantities are integral quantities that have to be approximated. They will be computed numerically simply using a trapezoidal rule for the integral.

Minimization of the relaxed functionals

Heat flow technique

We would like to solve the minimization problems like L min (µ) for µ > 0 given. Solving this problem leads to solve the equation

∆u + uf (|u| 2 ) -i(µ -P (u))∂ x 1 u = 0.
Due to the variational structure of this equation and since we look for a (local) minimizer, we choose to use heat flow techniques. In other words, we start with an initial condition and let it evolve along the heat flow

∂u ∂t = ∆u + uf (|u| 2 ) -i(µ -P (u))∂ x 1 u.
As already described, this equation is recast in the streched variables setting. Then the spatial part is discretized using second-order Finite Difference scheme. The Ordinary Differential Equation in time resulting from this spatial discretization is solved by a classical explicit Euler scheme, with time step δt. Due to the explicit nature of the scheme, we have to face a CFL type condition that ensures the stability of the scheme. In the sequel, we will choose the time step small enough in order to be numerically stable.

Remark 4 To enhance the reading, we choose to present equations here in the real variables, instead of the streched ones; the exact expressions of discrete equations and discrete operators will thus not be detailed here. We will rather implicitely assume that the change of variable has been performed before discretizing and present the result in the real variables.

The scheme writes

u n+1 h = u n h + δt ∆ h u n h + u n h f (|u n h | 2 ) -i(µ * -P h (u n h ))∂ h x 1 u n h , n ∈ N * (21) 
u 0 = u 0 h ( 22 
)
with ∆ h and ∂ h x 1 respectively the discrete finite difference operators associated to ∆ and ∂ x 1 . Same notation holds for P h , approximate moment for P . u n h stands for the approximation at fictive time t n := nδt. The choice of the initialization ( 22) will be detailed in next paragraph and next subsection. The numerical scheme is stopped when the convergence criterion

η := ∆u n h + u n h f (|u n h | 2 ) -i(µ * -P h (u n h ))∂ h x 1 u n h L ∞ (R 2 ) (µ * -P h (u n h ))∂ x 1 u n h L ∞ (R 2 )
≤ tol is verified.

Remark 5

In what follows tol = 4.10 -4 will in general be sufficient to have an accurate solution. This tolerance can be made smaller to adapt to each situation if necessary.

Numerical strategy. We compute numerically continuous branches of solutions proceeding as follows (see Fig. 4). For c 0 for instance, say c = 0.2, we expect vortices for the travelling waves: we can get an approximate solution u 0 by using Padé approximants for a single vortex (see subsection 2.3.1 below); the momentum is then large and we expect E min ≈ 4π ln p (cf. [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF], [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF]), hence

d 2 E min dp 2 ≈ - 4π p ,
which allows us to choose the constant

E 0 P 2 0 in order to have E 0 P 2 0 > - d 2 E min dp 2 ≈ 4π p (see Proposition
3); we then fix the value of µ as µ = P (u 0 ) + c P 2 0 E 0 (see Proposition 3) (with c = 0.2); we then use the iterations (21) until numerical convergence. We then iterate in µ (µ ← µ + δµ) and start the iterations (21) from the previously computed solution. The same procedure can be employed starting from c c s , provided we have a good approximation of the (KP-I) or (mKP-I) solitary wave. The way we obtain Padé approximants or a numerical approximation of the (KP-I) solitary wave is given in subsections 2.3.1 and 2.3.2.

The accuracy of the scheme is also tested by evaluating the Pohozaev or virial identities, as in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF], [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF]. For the solutions we have obtained, the relations ( 14) are verified up to 2%. 

Choices for the initialization

To initiate our algorithm, we may choose to begin either from c ≈ 0 or from c ≈ c s (or both), depending on the nonlinearity and the theoretical knowledge we have for these two respective asymptotic behaviours.

Padé approximants for the vortices

We determine a Padé approximant of the profile a of the vortex following the strategy of [START_REF] Berloff | Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation[END_REF]. We look for an approximate solution a Padé of (3) with d = 1 under the form

a Padé (r) def = r α 1 + α 2 r 2 1 + β 1 r 2 + β 2 r 4 ,
for some coefficients α 1 , α 2 , α 3 , β 1 , β 2 to be determined, and where we choose β 2 = α 2 in order to have a Padé (+∞) = 1. The coefficients α 1 , α 2 , α 3 , β 1 are determined as in [START_REF] Berloff | Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation[END_REF]: we plug this form of a Padé into (3), perform a Taylor expansion near the origin of the left hand side of (3) up to O(r 7 ) (the expansion is odd). By cancelling the coefficients of r, r 3 and r 5 , we may eliminate α 2 , then β 1 , and finally solve numerically the remaining equation on α 1 . It turns out that there may exist several solutions, but we find one and only one which provides a function increasing from 0 to 1. The corresponding Padé approximant is given for each nonlinearity we study. In view of (4), we may use this Padé approximant of a single vortex to construct the approximate solution

a Padé (|(x 1 , x 2 -c -1 )|) x 1 + i(x 2 -c -1 ) |(x 1 , x 2 -c -1 )| × a Padé (|(x 1 , x 2 + c -1 )|) x 1 -i(x 2 + c -1 ) |(x 1 , x 2 + c -1 )| .
We obtain in this way a good numerical error for speeds c typically ≤ 0.2, and this approximate solution is a good initial point for starting heat flows.

Ground state solutions for the (KP-I) and (mKP-I) equations

As already seen, the travelling waves for (NLS) are expected to be close, after rescaling, to a travelling wave of the (KP-I) equation, and more precisely a ground state. For the standard quadratic (KP-I) equation, the ground state is expected to be the well-known lump solitary wave (see [START_REF] Manakov | Two-dimensional solitons of the Kadomtsev-Petviashvili equation and interaction[END_REF])

W(z) def = -24 3 -z 2 1 + z 2 2 (3 + z 2 1 + z 2 2 ) 2 = -24∂ z 1 z 1 3 + z 2 1 + z 2 2 = ∂ z 1 φ,
which solves the adimensionalized version of (SW)

∂ z 1 W -∂ 3 z 1 W + W∂ z 1 W + ∂ 2 z 2 ∂ -1 z 1 W = 0.
To our knowledge, no mathematical proof of the fact that W is indeed a (or the) ground state of (KP-I) has been given. Using the scaling properties of the (KP-I) equation, we then see that

A(z) def = 1 c 2 s Γ W z 1 , z 2 c s solves (SW): 1 c 2 s ∂ z 1 A - 1 c 2 s ∂ 3 z 1 A + ΓA∂ z 1 A + ∂ 2 z 2 ∂ -1 z 1 A = 0.
The (mKP-I) equation is however presumably not completely integrable, and hence no explicit solution is known. An efficient way to compute numerically "the" ground state of the focusing (mKP-I) is given by the Petviashvili iteration algorithm [START_REF] Petviashvili | Equation of an extraordinary soliton[END_REF]. On the adimensionalized version of (SW') (where the constants have been set to 1 for simplicity)

∂ z 1 W -∂ 3 z 1 W -(W ) 2 ∂ z 1 W + ∂ 2 z 2 ∂ -1 z 1 W = 0,
this consists in performing the iterations

W n+1 = √ 3 R 2 (W n ) 2 + (∂ z 1 W n ) 2 + (∂ z 2 ∂ -1 z 1 W n ) 2 dz R 2 (W n ) 4 dz 3/2 1 -∂ 2 z 1 + ∂ 2 z 2 ∂ -2 z 1 -1 (W n 3 ).
It turns out that, numerically, taking as starting point the lump of the quadratic (KP-I)

W 0 (z) = W(z) = -24 3 -z 2 1 + z 2 2 (3 + z 2 1 + z 2 2 ) 2 ,
we obtain convergence. For a justification of convergence when one starts close to the ground state of the (mKP-I), see [START_REF] Pelinovsky | Convergence of Petviashvili's iteration method for numerical approximation of stationary solutions of nonlinear wave equations[END_REF]. A natural way to implement this algorithm is to work in Fourier space and use the FFT algorithm. However, for our problem, we shall use this numerical solution in a finite differences scheme. Moreover, we have imposed the symmetry [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], which is not completely satisfied when using the FFT algorithm. Finally, we shall need to compute ∂ -1 z 1 W , which needs an extra computation requiring the exact cancelation of some Fourier coefficients of W n . Therefore, we have implemented the Petviashvili iterations directly in terms of

φ def = ∂ -1 z 1 W , that is φ n+1 = √ 3 R 2 (∂ z 1 φ n ) 2 + (∂ 2 z 1 φ n ) 2 + (∂ z 2 φ n ) 2 dz R 2 (∂ z 1 φ n ) 4 dz 3/2 ∂ 2 z 1 -∂ 4 z 1 + ∂ 2 z 2 -1 ∂ z 1 (∂ z 1 φ n ) 3 ,
starting here again with the lump

φ 0 (z) = φ(z) = - 24z 1 3 + z 2 1 + z 2 2 .
We do not use Fourier transform, but compute the inverse of the negative definite matrix associated to the discretization of the operator

∂ 2 z 1 -∂ 4 z 1 + ∂ 2 z 2 .
When Γ < 0, we may obtain an approximation of the ground state of (SW') through the following scalings

A(z) def = ± 1 -c 2 s Γ W z 1 , z 2 c s .
If Γ > 0, the (KP-I) equation is defocusing and has no (nontrivial) solitary wave (see [START_REF] De Bouard | Solitary waves of generalized Kadomtsev-Petviashvili equations[END_REF]). The typical graph of a rarefaction pulse is given in figure 2 (b).

Continuation with respect to the speed c

The variational method based on relaxed functionnal is very efficient and systematic. However, as discussed before, they suffer from not being able to capture the whole range of speed c ∈ [0, c s ]. Indeed, the gradient flow method converges (see Propositions 3 and 4) only in the regions where

• for the functional L, d 2 E dP 2 < 0, or dP dc < 0, i.e. when the curve P → E is concave.

• for the functional I, dE kin dc < 0.

Thus, we are compelled to find another way to compute solutions in the remaining range of speeds.

Inspired by [START_REF] Menza | Numerical computation of solitons for optical systems[END_REF], we choose to work with a continuation method for the speed c; we compute a solution for speed c then use it to compute the solution at speed c + δc. Principle. The equation (TW c ) writes:

∆u(c) + u(c)f (|u(c)| 2 ) = ic∂ x 1 u(c), (23) 
where we emphasize the dependency on c of the solution u = u(c). When differentiating with respect to c, this formally gives:

Υ c ∂u ∂c (c) = i∂ x 1 u(c) (24) 
where Υ c (v)

def = ∆v + 2u(c) u(c), v f (|u(c)| 2 ) + f (|u(c)| 2 )v -ic∂ x 1 v (25) 
is the linearized operator. We view this as an ODE in c, provided we may invert Υ c . It should be noticed that the travelling wave we compute are presumably non degenerate, that is the kernel of Υ c is spanned only by ∂ x 1 u(c) and ∂ x 2 u(c). Since the problem (TW c ) is invariant by translation, it follows that ∂ x 1 u(c) and ∂ x 2 u(c) belong to the kernel of Υ c , and assuming non degeneracy of u(c) precisely means that we have no other element in ker(Υ c ). On the other hand, we impose the symmetries [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] and may observe that if u(c) verifies (20), then

∂ x 2 u(c) is odd in x 2 and ∂ x 1 u(c) verifies ∂ x 1 u(c)(x 1 , x 2 ) = -∂ x 1 ū(c)(-x 1 , x 2 )
. Therefore, it is natural to believe that Υ c becomes invertible when imposing the symmetries [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF].

Discretization. Using finite differences setting, one can write the associated discrete operator Υ h using centered approximations. In the iterative procedure, we initiate the algorithm with an initialization: an approximate solution at speed c 0 . From a solution at speed c k , u h (c k ), a solution at speed c k+1 , u h (c k+1 ), is computed in the following way:

(a) Computation of ∂ h c k u with ∂ h c k u = Υ -1 h i∂ h x 1 u h (c k ) . Computing Υ -1
h in the finite differences framework amounts to solve a linear system. We choose to use a qmr (quasi minimal residual) method to solve it. This step is, of course, the most expensive in computational time.

(b) Then update u h (c k+1 ) with equation ( 24) by using a classical ordinary differential equation scheme (e.g. Euler scheme, Centered scheme). In the case of Euler scheme, this leads to compute u h (c k+1 ) with the iteration scheme:

u h (c k+1 ) = u h (c k ) + δc ∂ h c k u, with δc > 0 the chosen step size. ( 26 
)
Remark 6 In the variational approach, we decide to stop the simulation for a given criterion η < tol. In the continuation method, solution at speed c is directly given by the numerical resolution of [START_REF] Dalfovo | Structure of vortices in helium at zero temperature[END_REF]. We can not impose the value of η a priori, but we expect the usual error estimate for approximations of ODE depending on the method. Furthermore at each step, one has to solve a linear system (but only once), that in the transonic limit can be hard to solve (see the discussion in section 2.5).

Remark 7

We could also have chosen to use Newton's method that has the advantage to be very efficient (when it converges) with a control on the residual of the equation. However, Newton's method can require several iterations to converge (which in turn implies to solve the linear system several times) and can also fail to compute a solution especially in the transonic limit. Thus, even if we do not impose η directly with the continuation method, it allows, with a good initial residual (i.e. at the begining of the iteration procedure), to compute an accurate solution everywhere and especially in regions where Newton's method may fail to give one.

Discussion on the choice of R 1 , R 2 . Although the change of variable induced by the choice of R 1 and R 2 has virtually no influence on the continuous setting, the precision of the numerical computations can be however influenced by this choice. Indeed a uniform grid in the mapped domain (here [0,

π 2 ]×[0, π 2 ] 
) is transformed in a non-uniform one in the real domain (here R + ×R + ). The mesh is dilated as we approach infinity, leading to bigger cells at infinity. If the solution does not present a significant variation at infinity (recall that ψ → 1 as (x 1 , x 2 ) → ∞), this has not a big influence on the computation. This is the case for vortex solutions for example, where we can take typically R 1 = R 2 = 0.2. However, if this is not the case, one has to take a special care in the choice of R 1 and R 2 in order to keep a good accuracy. For instance, in some of the transonic limits that we consider in the sequel, we know the asymptotic behaviour ((KP-I) or (mKP-I)) and the space variations should be considered in the scaling (εx 1 , ε 2 x 2 ), with ε = c 2 s -c 2 , see section 1.3: the solution tends to spread out (more in the transverse direction x 2 than in the direction of propagation x 1 ). Choosing R 1 and R 2 respectively close to ε and ε 2 seems to be appropriate in these contexts. In practice, some typical values we had for the transonic limit are (R 1 = 0.1, R 2 = 0.1), (R 1 = 0.2, R 2 = 0.015). These values are rather different from the values for vortex solutions. More generally, R -1

1 and R -1 2 are typical lengthscales of variations for the travelling wave of interest, hence may vary with c. Thus we will have to adapt R 1 and R 2 along the computations. Doing so with the variationnal strategy is not a problem, since one iterates the procedure until a convergence criterion is reached. However, if one brutally changes the values of R 1 and R 2 in the continuation procedure, this may result in a degradation of the residual. To solve this problem, we have chosen to extend the continuation strategy: one can similarly construct a continuation algorithm, by considering that R 1 and R 2 are themselves regularly depending on the speed c. The resulting equations are derived in the same manner than the simple continuation (they will not be detailed here) and the numerical resolution follows naturally the same ideas. In [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF] and [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF], the values of R 1 and R 2 are kept fixed during all the computations.

Discussion on the transonic limit

The transonic limit turns out to be quite difficult to capture numerically, and we shall give some explanations of this fact. We recall that the small parameter ε is defined through the relation

c(ε) = c 2 s -ε 2 or c 2 s = c 2 + ε 2 .
The first observation is that when c → c s , using the long wave (KP-I) ansatz given by ( 5), we have, by straightforward computations

ic∂ x 1 u = e iεφ -ε 2 c s ∂ z 1 φ + O(ε 2 ) and ∆u + uf (|u| 2 ) -ic∂ x 1 u = e iεφ -ε 2 c s ∂ z 1 φ + f ((1 + ε 2 A) 2 ) + iε 3 e iεφ ∂ 2 z 1 φ -c s ∂ z 1 A + O(ε 4 ) = ε 2 e iεφ -c s ∂ z 1 φ + c 2 s A + iε 3 e iεφ ∂ 2 z 1 φ -c s ∂ z 1 A + O(ε 4 ).
Therefore, as soon as (A, φ) verifies the constraint [START_REF] Berloff | Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation[END_REF], that is c s A = ∂ z 1 φ, we have a good approximate solution:

∆u + uf (|u| 2 ) -ic∂ x 1 u L ∞ ic∂ x 1 u L ∞ ≈ O(ε 4 ) ε 2 = O(ε 2 ).
Clearly, this prevents us from computing a precise solution numerically, since the information leading to (SW) is hidden in the higher order terms. The same computations can be carried out with the ansatz [START_REF] Berloff | Vortex Splitting in Subcritical Nonlinear Schrödinger Equations[END_REF] and, this time, the preparedness assumption (12) (and not only [START_REF] Berestycki | An ODE approach to the existence of positive solutions for semilinear problems in R N[END_REF]).

On the other hand, for the continuation in speed c (see section 2.4), one needs to inverse the operator Υ c(ε) . As we shall see, this operator has a rather bad behaviour as ε → 0. Since we know that the asymptotic behaviour of the solutions to (TW c(ε) ) as ε → 0 is approximated (through suitable rescalings) by the solitary waves to (KP-I) (or (mKP-I)), we may expect to infer a bound on the linearized operator Υ c(ε) as ε → 0 if we have some information on the spectrum of the linearization of (SW).

Proposition 6 We assume that Γ = 0 and that a family of travelling waves u c(ε) of (NLS) converge to a solitary wave A of (KP-I) through the scaling [START_REF] Benjamin | The stability of solitary waves[END_REF], that is

u c(ε) (x) = (1 + ε 2 A ε (z))e iεϕε(z) with (z 1 , z 2 ) = (εx 1 , ε 2 x 2 ) and A ε → A, ∂ z 1 ϕ ε → c s A as ε → 0.
Then, the linearization of (TW c(ε) ) around u c(ε) admits a negative eigenvalue ∼ ε 4 λ KP as ε → 0, where λ KP is the negative eigenvalue of the linearization of (SW) around A.

Remark 8

In [START_REF] Berloff | Motions in a Bose condensate: X. New results on stability of axisymmetric solitary waves of the Gross-Pitaevskii equation[END_REF], a similar computation is made to relate the plausible unstable eigenvalue σ KP ∈ R * + of the linearized (KP-I) equation (for the time dependent problem) in three space dimension to an unstable eigenvalue of the linearized (NLS) equation. This led the authors to the conjecture that this last unstable eigenvalue should behave like ε 3 σ KP for ε small. Note however that, to our knowledge, no rigorous proof has been given that the ground state of the three dimensional (KP-I) equation is linearly unstable.

We could envisage using Newton's method to compute the travelling waves solutions in the transonic limit. However, due to the rather bad behaviour of the linearized operator Υ c(ε) , Newton's algorithm does not converge in practice in this region if we start from the (KP-I) ansatz. Indeed, either ε is very small so that the linear system is very difficult to solve and the iterates diverge; either ε is not very small and then we are too far from the solution for Newton's algorithm to converge. Another difficulty is that we have two travelling wave solutions which are close: u = 1 that is always a trivial solution and the rarefaction pulse given by the (KP-I) ansatz that tends to 1 in L ∞ as c → c s . This is a further argument in favor of the use of both the variational and the continuation method. Indeed, contrary to Newton's method, the variational approach is able to compute solutions even if we start far from the solution and the continuation method is able to deal with the computation of the travelling waves close to the speed of sound. Let us point out that the continuation increases the residual (but it is kept at a reasonable value) as we approach the speed of sound: this no surprise in view of Proposition 6. Furthermore, the use of Newton's method fails to capture the mKP solutions (see example 1, section 3.1). Thus, if we had used Newton's method only, we would have missed some intervals of velocities for several of the examples that follow (sections 3.1 to 3.5).

Study of some model cases

For each one of the examples below, we have computed numerically some branches of solutions to (TW c ), with scilab software. For the first three examples, the smooth nonlinearity f has a qualitative behaviour similar to the Gross-Pitaevskii nonlinearity f ( ) = 1 -, namely f is decreasing, vanishes for = r 2 0 = 1 and tends to -∞ for 1, which means that the potential function V ( ) is convex and tends to +∞ for large . We then study a nonlinearity with saturation effect and finally the cubic-quintic nonlinearity. For a study of the travelling waves in dimension one for these nonlinearities, we refer to [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], where we may also find the graphs of the functions f and V . In order to see more clearly the behaviour of the solutions as the velocity varies, we have plotted only the modulus |u| and only on the half-plane {x 2 ≥ 0} (recall the symmetries (20)). Furthermore, for a better visualization, we plotted only one mesh point over three.

Example 1: a cubic-quintic-septic nonlinearity (i)

We consider the nonlinearity

f 1 ( ) def = -3( -1) + 9 2 ( -1) 2 - 5 2 ( -1) 3 .
Then, we compute A peculiarity of this nonlinearity is that Γ = 0 < Γ . Therefore, from the computations of section 1.3, we expect a transonic limit given by the focusing (mKP-I) equation and not the usual (KP-I) equation. The (E, P ) diagram we have obtained is given in figure 5 and consists in two distinct branches of solutions we have singled out in figures 6.

V 1 ( ) = 3 2 ( -1) 2 - 3 2 ( -1) 3 + 5 8 ( -1) 4
The lower branch (figure 6 (a)) has been obtained as follows. We start with the approximation with the two vortices that we expect as c ≈ 0. We then use the variational method to obtain the concave part of the diagram up the cusp which has parameters (c = 1.995, P = 6.69, E = 17.45), and for this, both minimizations based on E min or on G min work. The former permits to compute only solutions that are orbitally stable (as explained previously), so that only G min is able to compute the solutions (slightly) after the cusp and to reach the values (c = 2.159, P = 6.89, E = 17.87). The variational approach has the advantage of being able to capture a solution in the middle of the curve, like the solution for (c = 0.556, P = 25.752, E = 33.384) that we have obtained from the vortex ansatz with c = 1 and imposing µ = 25 despite the fact that we were not so close to the solution we wanted (whereas the Newton algorithm requires to start close to the solution we look for). The variational technique based on G min does not cover, however, the whole range of speeds until the speed of sound. Indeed, we only compute numerical solutions that verify dE kin dc < 0. To complete the branch we have used the continuation method as described in section 2.4.

On the qualitative level, we observe in figure 7 that, as the speed increases, the two vortices get closer, then merge for the parameters (c = 1.998, P = 6.69, E = 17.45) (which is almost the 6 (a), and we expect from the computations in section 1.3 an approximation by the (mKP-I) solitary wave (we have already seen that in this case E and P diverge like ε -1 ≈ (c s -c) -1/2 ). In figure 7 (e) and (f), we have plotted the numerical solutions for c = 2.38 and c = 2.422 (that is ε = √ 6 -2.422 2 ≈ 0.3725). It should be pointed out that scales on both vertical and horizontal axes are different. We may compare figure 7 (f) with figure 8 where we have plotted the modulus of (5) which is the function

1 + εW (εx 1 , ε 2 x 2 ), (27) 
with the same value of ε = 0.3725 and A ε = W the solution to (SW'). This last solution may be computed with the help of Petviashvili algorithm (see section 2.3.2). Though not perfect, this approximation is convincing. Note that the convergence rate of A ε to W should be O(ε), and that ε = 0.3725 is not so small (in comparison, for the usual (KP-I) limit, we expect a convergence rate O(ε 2 )).

We now turn to the upper branch (figure 6). As in the one dimensional case (see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], Example 1), these solutions should have a modulus essentially ≥ 1 (contrary to those on the lower branch). One could be tempted to start from speeds c close to c s and use the (mKP-I) solitary wave -W , but this is difficult for the following reasons. In the transonic limit c c s , E and P increase up to infinity, thus the curve P → E has to be convex in view of the Hamilton group relation. As a consequence, we can not capture these travelling waves (if they exist) by the variational methods we have discussed. Therefore, we may choose the continuation method, but then one needs to start with ε very small in order to have an accurate solution, which causes some numerical challenge. Furthermore, we have seen that the transonic limit has some numerical intrinsic difficulties (see 27) for c = 2.42 with the help of Petviashvili algorithm. section 2.5). Finally, since we do not have any theoretical result concerning the (mKP-I) limit for the travelling waves, it should be better to start from solutions rather far from those ones. Instead of starting from c ≈ c s , it is more convenient to start from the other (diverging) part of the curve. For that purpose, we look for an initial guess given by a Padé function of the form

U Padé (x) = 1 + a 0 + a 1 x 2 1 + a 2 x 2 2 + ix 1 (b 0 + b 1 x 2 1 + b 2 x 2 2 ) 1 + c 1 x 2 1 + c 2 x 2 2 + c 3 x 4 1 + c 4 x 2 1 x 2 2 + c 5 x 4 2
as in [START_REF] Berloff | Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation[END_REF] and follow the strategy in [START_REF] Berloff | Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation[END_REF], section 5, by fixing c = 2.3. We thus impose

a 2 = cb 1 (1 - c 2 /c 2 s ), b 2 = b 1 (1 -c 2 /c 2 s ), c 4 = 2c 3 (1 -c 2 /c 2 s ) and c 5 = c 3 (1 -c 2 /c 2 s
) (these choices are rather arbitrary since we shall not obtain a very accurate initial guess), and optimizing the remaining coefficients as described in [START_REF] Berloff | Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation[END_REF], section 5. We impose a 0 > 0 since we want U to have a modulus ≥ 1 as much as possible and want to avoid the solution on the lower branch, for which a 0 < 0 (we also impose the posivity of the coefficients c j ). In this way, we obtain

U Padé (x) = 1 + 0.2152 + 0.1320x 2 1 + 0.0606x 2 2 + ix 1 (0.2702 + 0.2225x 2 1 + 0.0263x 2 2 ) 1 + 0.4222x 2 1 + 0.001x 2 2 + 0.0206x 4 1 + 0.0049x 2 1 x 2 2 + 0.0003x 4 2
and start the heat flow with this initial datum. The advantage is that the solutions in the concave part are capturable by the variational methods and that we start sufficiently far from the transonic limit to trust our numerics. Once we have obtained numerical convergence to a (local) minimizer, which gives a point in the middle of the concave part of the diagram in figure 6, we can pursue with variational methods and continuation. This is a big advantage of the heat flow on the functionals we consider since even we start not so close to the local minimum we are looking for, we may reach it. At the opposite, the Newton algorithm requires to start not too far from the desired solution, and the continuation procedure needs to start from a sufficiently accurate solution. Actually, in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], this is not exactly the nonlinearity f 1 which was considered, but a similar one, say f1 . In example 1 in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], the nonlinearity f1 was such that cs = √ 2 ≈ 1.414 2 and as

c → c0 def = 484
243 ≈ 1.411 3, the modulus of the travelling wave of the upper branch tends (locally uniformly) to ≈ 1.106. It turns out that c0 is extremely close to cs , hence we have chosen to modify slightly the nonlinearity in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] in order to have the same qualitative behaviour but with c0 less close to cs . With the nonlinearity f 1 , we have now c s = √ 6 ≈ 2.449 and for the travelling waves in dimension one, as c → c 0 def = √ 5 ≈ 2.236, the modulus of the solution of the upper branch tends (locally uniformly) to ≈ 1.390.

For our simulation, as c decreases down to c * def = 2.318, we have the right part of the green curve in figure 6. In figure 9, we have plotted the solution for c = 2.32. It is remarkable that for x 2 = 0 and x 1 ∈ [-8, +8], we observe a plateau where the modulus of the solution is equal to ≈ 1.40 which is precisely the critical amplitude in dimension one. However, the speed c * = 2.318 is different from c 0 = √ 5 ≈ 2.236. As c increases, the momentum, energy and the maximum of the modulus decrease along the green (concave) part of the (E, P ) diagram. We reach the cusp for the parameters (c = 2.427, P = 15.952, E = 38.320), and c is already very close to the speed of sound c s = √ 6 ≈ 2.4494897. For c c s , P and E increase and this is the convex part (blue stars) in figure 6. Due to the Hamilton relation [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF], one would expect this last part of the curve to be above the staight line E = c s P . However, this point is not easy to check due to numerical precision. The solution for c = 2.44 in figure 10 is here again quite close to the approximate solution given by the (mKP-I) ansatz ( 27) for c = 2.44 with the other solution -W of (SW').

In this example, Newton's algorithm converges neither with the (mKP-I) ansatz [START_REF] Berloff | Vortex Splitting in Subcritical Nonlinear Schrödinger Equations[END_REF] nor starting from the initial guess U Padé . This method alone does not allow to capture the upper branch of the (E, P ) diagram, or to start the lower branch from its upper part.

Comments.

Similarly to what we had observed in dimension one in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], for this nonlinearity f 1 , the transonic limit is governed by a focusing (mKP-I) equation and we indeed see two branches of solutions for c close to c s . This is, to our knowledge, the first multiplicity result of this type in space dimension two. Let us quote that in [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF], the travelling wave solutions to the Landau-Lifshitz equation with an easy plane anisotropy, that is

∂m ∂t = m × (∆m -m 3 e 3 ), e 3 def = (0, 0, 1). (LL)
are simulated. For (LL), the transonic limit is also given by a focusing (mKP-I) equation (see [START_REF] Papanicolaou | Semitopological solitons in planar ferromagnets[END_REF]). Therefore, one may also expect two branches of solutions in the transonic limit. However, the model (LL) possesses a discrete symmetry: if m solves (LL), then so does m(t,

x) = (m 1 , m 2 , -m 3 )(-t, -x).
Since this symmetry is inherited by the travelling waves, they appear by pairs, with the same energy and momentum. Thus in the (E, P ) diagrams for (LL), each curve is actually the superposition of two curves, and this is in particular the case in the transonic limit. Our problem does not possess any discrete symmetry.

The other remarkable fact is the phenomenon of "one dimensional spreading" of the modulus as c approaches c * = 2.318 which, as far as we know, has not been observed before. It is not very easy to propose an ansatz for the travelling wave solution that could give some explanations of this phenomenon. Indeed, in the two dimensional (or higher) case, the travelling wave tends to 1 at infinity (see [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF]) at some algebraic rate, but in dimension one, this is no longer the case: the travelling wave has two different phases at +∞ and -∞ and this phase shift has to be included in the definition of the momentum. Therefore, it is not completely clear that we could embed the one dimensional travelling waves in two space dimension. It is probably this phase problem at infinity that implies that the critical speed c * = 2.318 is slightly different from the one dimensional critical speed c 0 = 2.236.

Example 2: a cubic-quintic-septic nonlinearity (ii)

Here, we consider

f 2 ( ) def = -4( -1) -36( -1) 3 ,
for which we compute The energy momentum diagram has two branches of solutions. The first one corresponding to speed from 0 to c s ≈ 2.8284 (blue branch (I) on figure 11 and figure 12 (a)). We start our computation by the approximation of the vortices that we expect as c ≈ 0. We use the variational approach to compute the concave branch of solutions. The cusp occurs at c = 2.276 (P = 5.45, E = 19.28). The branch is then completed by using the continuation algorithm. Qualitatively, as in the first example, as the speed increases, the vortices come closer and merge (see figure 13). The loss of vorticity occurs for c = 2.756 (P = 28.91, E = 83.43), which is rather close to the speed of sound. As the speed approaches the speed of sound, energy and momentum become large. As c → c s , the modulus of the solution exhibits a particularly remarkable behaviour: we observe a plateau at a value of ≈ 0.93 in the x 2 -direction (see figure 14). It corresponds to the value of the critical amplitude in 1D (≈ 0.9269), see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF]. To compute this convex part of the blue branch (I), we could have indifferently used Newton's method for the computation of the upper part of branch (I). Concerning the adaptation of the parameters R 1 and R 2 , we start from R 1 = R 2 = 0.2 and need to take for the last solution R 1 = 0.156, R 2 = 0.073. Thus we have to modify their values along the computations. Turning to the other branch (green branch (II) on figure 11 and figure 12 (b)), we initiate the computation for c ≈ c s ≈ 2.8284 with the (KP-I) ansatz ( 5) with the ε = c 2 s -c 2 -scaling as described in section 2.3.2. We computed solution from c ≈ c s down to the value c * ≈ 2.77. This speed appears to be the limit speed we were able to reach numerically. Qualitatively we observe a spreading in the x 2 direction as the speed decreases leading to a sharp plateau at the modulus ≈ 0.90 associated here again to the critical amplitude in 1D; see the evolution from figure 15 to 16, and the zoom in figure 17. Here again, simply using Newton's method, we would miss the green branch (II). Comments. Concerning the blue branch (I), as for the nonlinearity f 1 , we observe the phenomenon of "one dimensional spreading" as c → c * ≈ 2.77 (see figures 16 and 17), with a plateau in the x 2 variable associated with a one dimensional critical amplitude of ≈ 0.9. The green branch (II) does not possess the same type of "one dimensional spreading" in view of the presence of a small region of relatively small modulus close to the origin. However, the remarkable value of the plateau is still the one dimensional value ≈ 0.9. Another noticeable fact is that we computed two numerical solutions for the whole interval of speeds [c * , c s ]. The two branches that we have computed both represent solutions with modulus essentially less than one whereas for f 1 one branch corresponds to solution with modulus essentially greater than one. Finally, these two branches cross at (E ≈ 9.2, p * ≈ 25.3) for the speeds c ≈ 2.80 and c ≈ 1.19 corresponding (almost) to figures 16 (a), 13 (b), respectively. The same phenomenon occurs also in 1D, see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], example 2. As a consequence, this nonlinearity f 2 has the remarkable property that the function E min is not differentiable at p * > 0 and there exist two minimizers for the constrained minimization problem E min (p * ). We didn't find such configurations in the existing literature.

V 2 ( ) = 2( -1) 2 + 9( -1) 4 ,

Example 3: a cubic-quintic-septic nonlinearity (iii)

We consider here 4 , thus c 2 s = 1, Γ = 0, Γ = 24 > 0. The peculiarity of f 3 is that we have Γ = 0, hence we do not have a (KP-I) transonic limit, and the coefficient Γ is positive which means that the associated (mKP-I) is defocusing (without nontrivial solitary wave), thus we do not have a (mKP-I) transonic limit. Here we find the Padé approximant for the profile a a Padé (r) def = r 0.6689784247 + 0.2838394656r 2 1 + 1.236787922r 2 + 0.2838394656r 4 .

f 3 ( ) def = - 1 2 ( -1) + 3 4 ( -1) 2 -2( -1) 3 ,
V 3 ( ) = 1 4 ( -1) 2 - 1 4 ( -1) 3 + 1 2 ( -1)
The energy-momentum diagram we have obtained is given in figure 18. We start from c close to zero and let c increase using the minimization based on the functional I. The qualitative behaviour of the solution for c ≤ 0.8 is rather similar to what we observe on the (GP) equation or for the nonlinearity f 1 . For c small, the solution looks like the solution with two vortices as in figure 2 (a) and as c increases, the vortices get closer until we reach the values (c = 0.795, P = 15.591, E = 18.671), which is the solution in figure 19. These solutions correspond to the concave part of the (E, P ) diagram in figure 18, but we are actually slightly before the cusp. We have then used the continuation method to obtain the cusp and the upper (convex) part of the (E, P ) diagram. The parameters associated with the cusp are (c = 0.822, P = 15.526, E = 18.613). On the convex part, the solution becomes vortexless for the parameters (c = 0.944, P = 18.163, E = 20.965). As c c s , both energy and momentum increase. Comments. In one space dimension, we know from [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] that there exists a solution of finite energy and momentum for speed c = c s which has a modulus with minimum value equal to 1/ √ 2 ≈ 0.707. Looking at the way the solution evolves close to the speed of sound, it is natural to wonder whether there exists a nontrivial solution to (TW cs ). Indeed, between figures 20 (a) and (c), the speed has increased from c = 0.95 to c = 0.996 (recall c s = 1) the minimum of the modulus has increased, but does not seem to tend to 1 (or even to 0.707). It turns out that if v is a sonic travelling wave of finite energy, then the identity

R 2 |∇v| 2 dx = R 2 |v| 2 f (|v| 2 ) + c 2 s 2 (|v| 2 -1) dx
must hold true: see Theorem 3.1 in [START_REF] Mariş | Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity[END_REF]. For the solution with speed c = 0.996, we have computed a kinetic energy ≈ 18.09 and the right-hand side is equal to ≈ 12.18. Since these two values are rather different, we believe that if the travelling wave u c converges as c → c s to a nontrivial sonic travelling wave, then the latter must be of infinite energy. In this case, the energy and momentum should diverge to infinity as c → c s . Note that the diagram is similar to the one computed in [START_REF] Jones | Motion in a Bose condensate IV. Axisymmetric solitary waves[END_REF] in 3D for the (GP) nonlinearity, see figure 1 (b). In particular there does not exist travelling waves solutions with small energy, see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with nonzero condition at infinity[END_REF] for a mathematical result. We furthermore point out that the transonic limit is not governed by a (KP)-type equation.

We have not performed the numerical simulation for "example 4" in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF]. The point is that this case is very degenerate (we obtain in the transonic limit the sextic (gKdV)), which means that we need to achieve extremely small values of ε 2 = c 2 s -c 2 to see something in the transonic limit. Furthermore, the sextic (gKP-I) does not have nontrivial solitary waves (see [START_REF] De Bouard | Solitary waves of generalized Kadomtsev-Petviashvili equations[END_REF]). This has led us to think that the (E, P ) diagram should probably not be very different from what we have obtained for the nonlinearity f 3 . We then pursue with "example 5" in order to keep the notations of [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF].

Example 5: a saturated nonlinearity

In this example, we take, for some 0 > 0,

f 5 ( ) def = exp 1 - 0 -1.
This type of nonlinearity saturates when is large and can be found, for instance, in [START_REF] Kivshar | Modulational instabilities and dark solitons in a generalized nonlinear Schrödinger-equation[END_REF]. For this nonlinearity, we have

V 5 ( ) = 0 exp 1 - 0 -1 - 1 - 0 , thus c 2 s = 2/ 0 , Γ = 6 - 2 0
. Therefore, the coefficient Γ changes sign for 0 = 1/3. We shall focus (as in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF]) on the case 0 = 0.4 ∈ (1/3, 1/2), for which c s = √ 5 ≈ 2.236, Γ = 1 and the Padé approximant is a Padé (r) def = r 2.298837694 + 5.902032693r 2 1 + 5.363022096r 2 + 5.902032693r 4 . Starting with the approximation of the vortices as c ≈ 0, we compute the solutions using the variational approach: the qualitative behaviour remains similar to other nonlinearities (see e.g. nonlinearity f 2 and figure 13). The solution becomes vortexless at speed c = 1.83. To complete the computations, we use the continuation method. The diagram is given in figure 21.

The (E, P ) diagram has two cusps. The first one at speed c cusp 1 = 1.63 (E = 18.64, P = 7.84) (see figure 22,(a) left) it corresponds to a minimum of E and P . The second one occurs after the loss of vorticity at speed c cusp 2 = 2.208 (E = 36.28, P = 16.27) (see figure 22,(c) left); it corresponds to a maximum of E and P . After this second cusp, energy and momentum decrease down to (E = 0, P = 0), with a (KP-I) transonic limit as c → c s ≈ 2.236, see figures 22 (d) and (e). Indeed, for this nonlinearity, the results in [START_REF] Chiron | Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit[END_REF] may be applied and provide a rigourous convergence result to the (KP-I) limit, and this is why we have inserted the blue crosses in figure 21.

We compared the results obtained with the continuation method to the one obtained with Newton's method. The latter allows for larger speed step sizes but fail to converge in the transonic limit. The continuation method, on the contrary, enables us to pursue the computation if one starts with a solution with a very good residual at the end of the variational computation process. Since we begin to use the continuation method when the variational approach fails, the starting solution for initiating the continuation process can be computed with the desired value of the residual.

Comments.The diagram (E, P ) exhibits two cusps, reflecting two transitions between stable (concave) branches and unstable (convex) branches. In particular, contrary to the instability cases for the nonlinearities f 1 , f 2 and f 3 , the instability region is precisely the interval [c cusp 1 , c cusp 2 ] ⊂]0, c s [. Furthermore, the two concave regions self-intersect. The two travelling waves at the intersection point belong to the same continuum of solutions corresponding to the interval of velocities ]0, c s [. In comparison, for the nonlinearity f 2 , this happens for two distinct continua. Therefore we find two solutions that have same momentum p * and energy but with two distinct speeds and qualitative behaviours: vortices on the one hand and a rarefaction pulse on the other hand (like in figure 22 (b) and (e)). It is noticeable that for P ∈ [START_REF] Berloff | Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation[END_REF][START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF], some rarefaction pulses have higher energy than the vortex solutions. In addition, the differentiability properties of E min at p * are deeply linked to the question of uniqueness of the minimizer for the constraint minimization problem E min (p * ). Our nonlinearity, as well as f 2 , shows that we have two minimizers for E min (p * ) and E min is not differentiable at p * . In [START_REF] Akhmediev | Hamiltonian-versus-energy diagrams in soliton theory[END_REF], section IV G, a diagram similar to the (E, P ) in figure 21 can be found; the corresponding analysis was different and concerned the study of bound states in the 1D Nonlinear Schrödinger equation (with zero condition at infinity) with the focusing non monotonic nonlinearity f ( ) = 5/2 -5 + 1 2 15/2 . On the contrary, our framework deals with 2D travelling waves with nonzero condition at infinity with a defocusing monotonic nonlinearity. To our knowledge, this is the first occurrence of such a diagram in this last context. This study has led us to try to construct a nonlinearity in 1D with the same qualitative properties: see A.1 and figure 28 (b).

The (E, P ) diagram in 1D with the nonlinearity f 5 does not have any cusp (cf. [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF]). However, another type of saturated nonlinearity given by

f ( ) = α     1 (1 + 0 ) ν - 1 (1 + 1 0 ) ν    
does have one for some particular values of 0 , ν, α. Actually, it corresponds to a local maximum of both P and E. This nonlinearity has already been studied in [START_REF] Kivshar | Instabilities of dark solitons[END_REF], where they put forward for the first time unstable kinks. Nevertheless their (E, P ) diagram should exhibit a cusp as shown in A.2 figure 30 instead of figure 1 in [START_REF] Kivshar | Instabilities of dark solitons[END_REF].

Example 6: a cubic-quintic nonlinearity

We consider finally the cubic-quintic nonlinearity

f 6 ( ) def = -( -1) -3( -1) 2 ,
for which V 6 ( ) = 1 2 ( -1) 2 + ( -1) 3 , thus c 2 s = 2, Γ = 24 and the graphs of f 6 and V 6 are given in figure 23. It is important to note that, near the origin, f 6 is increasing and V 6 is negative. This nonlinearity is well-studied in the physical Figure 24: The profile g of the ground state solution for the cubic-quintic nonlinearity f 6 literature: see [START_REF] Barashenkov | Stability and evolution of the quiescent and travelling solitonic bubbles[END_REF] and other papers by I. Barashenkov and co-authors. However, these studies are in dimension one, and we have not been able to find any study in higher dimensions. In dimension two and three, the paper [START_REF] Berloff | Vortex Splitting in Subcritical Nonlinear Schrödinger Equations[END_REF] provides the energy-momentum diagrams in the case of cubic-quintic type nonlinearities but when the potential function V is everywhere nonnegative (hence there exist vortex solutions).

When the potential function V 6 is negative near the origin, there does not exist vortex solutions and we do not expect vortices for small speeds. Actually, for this type of nonlinearity where inf V < 0, there exists a stationary bubble, that is a real-valued solution v to ∆v + vf 6 (v 2 ) = 0, which is a radially symmetric function v(x) = g(|x|) = g(r), where g is increasing and tends to 1 at infinity. Concerning the existence of such solutions, we may refer to [START_REF] Berestycki | Nonlinear scalar field equations. I. Existence of a ground state[END_REF] or to the proof of Theorem 3.1 p. 106 in [START_REF] Brézis | Minimum Action Solutions for Some Vector Field Equations[END_REF] by variational methods. One may also use a shooting argument as in [START_REF] Menza | Numerical computation of solitons for optical systems[END_REF] relying on the mathematical justification given in [START_REF] Berestycki | An ODE approach to the existence of positive solutions for semilinear problems in R N[END_REF]. For our cubic-quintic nonlinearity f 6 , we have obtained by the shooting method the profile g given in figure 24, and the minimum value of g is g(0) ≈ 0.528 621 847 110. This solution is known to be unstable for the corresponding (NLS), see [START_REF] De Bouard | Instability of stationary bubbles[END_REF]. The (E, P ) diagram for f 6 is given in figure 25.

We have started from the transonic limit c ≈ c s and used the minimization of the functional I (that is G c 0 min ) starting from ε not too small and the (KP-I) ansatz with the lump solution. The corresponding travelling wave looks like the rarefaction pulse in figure 2 (b). We may notice that we do not reach the value (P = 0, E = 0) in view of the problems associated with the transonic limit (see section 2.5). Here again the results on the transonic limit in [START_REF] Chiron | Rarefaction pulses for the Nonlinear Schrödinger Equation in the transonic limit[END_REF] may be applied to this nonlinearity (see the blue crosses in figure 25). Then, we increase the kinetic so that E and P increase (concave part of the diagram) until we reach the point with parameters (c = 0.785, P = 0.721, E = 0.921) which corresponds to the cusp. This time, it is associated with a (local) maximum of both E and P whereas those for the nonlinearities f 1 , f 2 and f 3 were for a (local) minimum. We pursue the simulation after the cusp: E and P decrease up to ≈ 0.712 and 0 respectively. For c ≈ 0, we significatively observe numerical convergence towards the bubble as shown in figure 26 (c). In particular, the minimum of the modulus is indeed ≈ 0.529 (see figure 26 (c)), which is the minimum of the ground state solution (g(0) ≈ 0.528). As c goes to zero, the minimization of G c 0 min is actually more and more difficult in view of the fact that the derivative dG c 0 min dk = -c 0 c 2 (by ( 17)) tends to -∞ but G c 0 min has a finite limit. This implies that we spend a lot of time to acheive a (local) minimum. For this reason, we have used the minimization of G c 0 min up to the solution with parameters (c = 0.42, P = 0.53, E = 0.81) and the rest of the curve is obtained using the continuation method. See the evolution in figure 26.

Comments. The cubic-quintic is a common model, but to the best of our knowledge, the study of the travelling waves for this equation has not been done in dimension two. The specificity of this nonlinearity is that the potential V achieves negative values, which implies the existence of a particular stationary solution: the ground state. The (E, P ) diagram is then similar to the one dimensional case, with a cusp corresponding to a maximum for both E and P (see [START_REF] Barashenkov | Stability and evolution of the quiescent and travelling solitonic bubbles[END_REF]).

Proofs

Proof of Proposition 3

Proof of (i). Since u * is a minimizer for L min (µ * ), u * solves 

∆u * + u * f (|u * | 2 ) -i E 0 P 2 0 (µ * -P (u * )) ∂ x 1 u * = 0
E(u * ) + E 0 2P 2 0 (µ * -P (u * )) 2 = L(u * , µ * ) ≤ L(w, µ * ) = E(w) + E 0 2P 2 0 (µ * -P (u * )) 2 ,
hence E(u * ) ≤ E(w) as wished.

Proof of (ii). One writes ∀v ∈ X ,

L(v, µ * ) -L(u * , µ * ) = E(v) -E(u * ) + E 0 2P 2 0 (µ * -P (v)) 2 - E 0 2P 2 0 (µ * -P (u * )) 2 = E(v) -E(u * ) + E 0 2P 2 0 [2µ * -P (u * ) + P (v)] [P (u * ) -P (v)] . Since µ * = p * P 0 + c * P 0 E 0 and P (u * ) = p * , we deduce L(v, µ * ) -L(u * , µ * ) = E(v) -E(u * ) + E 0 2P 2 0 (P (u * ) -P (v)) 2 -c * (P (v) -P (u * )) .
Since we choose v in the vicinity of u * and u * is a minimizer for E min (P (u * )),

L(v, µ * ) -L(u * , µ * ) ≥ E min (P (v)) -E min (P (u * )) + E 0 2P 2 0 (P (u * ) -P (v)) 2 -c * (P (v) -P (u * )) ≥ dE min dp (P (v) -P (u * )) + 1 2 d 2 E min dp 2 (P (u * ) -P (v)) 2 + E 0 2P 2 0 (P (u * ) -P (v)) 2 -c * (P (v) -P (u * )) + o((P (u * ) -P (v)) 2 ),
where we have used the second order Taylor expansion of E min . Furthermore, the speed c * satisfies the Hamilton group relation (see [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF])

dE min dp (P (u * )) = c * ,
since E min has a derivative at P (u * ), thus

L(v, µ * ) -L(u * , µ * ) ≥ 1 2 d 2 E min dp 2 + E 0 P 2 0 + o(1) (P (u * ) -P (v)) 2
and the right hand side is nonnegative under the condition

d 2 E min dp 2 + E 0 P 2 0 > 0 provided v is sufficiently
close to u * . This concludes the proof.

Proof of proposition 4

Proof of (i). Assume that κ * ∈ R + and u * is a minimizer of the problem I min (κ * ). Then for all v ∈ X , such that E kin (v) = E kin (u * ),

E pot (u * ) -c 0 P (u * ) + 1 E 0 (E kin (u * ) -κ * ) 2 ≤ E pot (v) -c 0 P (v) + 1 E 0 (E kin (v) -κ * ) 2 ,
which implies

E pot (u * ) -c 0 P (u * ) ≤ E pot (v) -c 0 P (v), ∀v ∈ X such that E kin (v) = E kin (u * ). Thus G c 0 min (E kin (u * )) = G c 0 (u * ). Furthermore since u * is a solution of problem I min (κ * ), u * solves 1 E 0 (E kin (u * ) -κ * )∆u * + u * f (|u * | 2 ) -ic 0 ∂ x 1 u * = 0 in R 2 . From Proposition 2 (ii), we deduce that 1 E 0 (E kin (u * ) -κ * ) = c 0 c * 2 > 0,
with c * defined as in [START_REF] Brézis | Minimum Action Solutions for Some Vector Field Equations[END_REF]. Thus if we set σ

= E 0 E kin (u * ) -κ * = c * c 0 , the function ũ * def = u * ( • σ ) is a solution of ∆ũ * + ũ * f (|ũ * | 2 ) -ic * ∂ x 1 ũ * = 0, that is (TW c * ).
Proof of (ii). The first part of the statement is a direct application of Proposition 2. Let then u * be a minimizer of the problem G c 0 min (K * ). One writes ∀v ∈ X and κ * > 0,

I(v, κ * ) -I(u * , κ * ) = E pot (v) -c 0 P (v) + 1 2E 0 (E kin (v) -κ * ) 2 -E pot (u * ) + c 0 P (u * ) - 1 2E 0 (E kin (u * ) -κ * ) 2 = [(E pot -c 0 P )(v) -(E pot -c 0 P )(u * )] + 1 2E 0 (E kin (v) -κ * ) 2 -(E kin (u * ) -κ * ) 2 .
By choosing κ * = E kin (u * ) -

c 2 0 c 2 * E 0 = K * - c 2 0 c 2 * E 0 , one finds I(v, κ * ) -I(u * , κ * ) = [(E pot -c 0 P )(v) -(E pot -c 0 P )(u * )] + 1 2E 0 [E kin (v) -E kin (u * )] 2 + c 2 0 c 2 * [E kin (v) -E kin (u * )] ≥ G c 0 min (E kin (v)) -G c 0 min (E kin (u * )) + 1 2E 0 [E kin (v) -E kin (u * )] 2 + c 2 0 c 2 * [E kin (v) -E kin (u * )] .
If we choose v in the vicinity of u * ,

I(v, κ * ) -I(u * , κ * ) ≥ dG c 0 min dk (E kin (u * ))(E kin (v) -E kin (u * )) + 1 2 d 2 G c 0 min dk 2 (E kin (u * ))(E kin (v) -E kin (u * )) 2 + 1 2E 0 [E kin (v) -E kin (u * )] 2 + c 2 0 c 2 * [E kin (v) -E kin (u * )] + o((E kin (v) -E kin (u * )) 2 ).
By [START_REF] Brézis | Minimum Action Solutions for Some Vector Field Equations[END_REF], we then infer

I(v, κ * ) -I(u * , κ * ) ≥ 1 2 d 2 G c 0 min dk 2 (E kin (u * )) + 1 E 0 + o(1) (E kin (v) -E kin (u * )) 2 .
This yields the conclusion under the condition:

d 2 G c 0 min dk 2 (E kin (u * )) + 1 E 0 > 0, provided v is suffi-
ciently close to u * . This finishes the proof.

Proof of Proposition 5

In the sequel, we shall make a little abuse of notation by using the same notation P for the momentum considered as a function of ũ * , c or k.

Since P (ũ * ) = c * c 0 P (u * ) and E pot (ũ * ) = c * c 0 2 E pot (u * )
by scaling, it follows that

G c 0 min (K * ) = c 0 c * 2 E pot (ũ * ) - c 2 0 c * P (ũ * ) = - c 2 0 2c * P (ũ * ), (28) 
where we have used the Pohozahev identity 2E pot (ũ * ) = c * P (ũ * ). Furthermore, c * is defined by

c * = - c 2 0 dG c 0 min dk (K * ) . (29) 
This implies that dc dk (K * ) < 0 since, by assumption, G c 0 min has a second order derivative at K * and is concave. This gives sgn( dP dc ) = -sgn( dP dk ). Moreover, combining [START_REF] Menza | Numerical computation of solitons for optical systems[END_REF] and [START_REF] Di Menza | The black solitons of one-dimensional NLS equations[END_REF], 

dP dk = d dk     - 2 c 2 0 G c 0 min - c 2 

Proof of Proposition 6

Let us consider a ground state A for (KP-I) (recall Γ = 0), that is expected (but not proved) to be the lump solitary wave. Then, A minimizes the energy [START_REF] De Bouard | Remarks on the stability of generalized KP solitary waves[END_REF] for precise functional spaces). As a consequence, the hessian of the action around A is associated with the self-adjoint operator

R 2 1 c 2 s (∂ z 1 ζ) 2 + (∂ z 2 ∂ -1 z 1 ζ) 2 + Γ 3 ζ 3 dz among all functions satisfying R 2 ζ 2 dz = R 2 A 2 dz (see
Λ def = 1 c s - 1 c 2 s ∂ 2 z 1 + ∂ 2 z 2 ∂ -2 z 1 + ΓA
has at most one negative eigenvalue (see [START_REF] Reed | Methods of Modern Mathematical Physics. IV. Analysis of operators[END_REF]). Its essential spectrum is [c -1 s , +∞). On the other hand, the scaling properties of (SW) show that for any λ > 0, the function A

λ (z) = λ 2 A(λz 1 , λ 2 z 2 ) solves λ 2 c 2 s ∂ z 1 A λ - 1 c 2 s ∂ 3 z 1 A λ + ΓA λ ∂ z 1 A λ + ∂ 2 z 2 ∂ -1 z 1 A λ = 0. Differentiating at λ = 1 provides Λ ∂A λ ∂λ |λ=1 = - 2 c 2 s A 1 = - 2 c 2 s
A, hence, by scaling for the third equality,

Λ ∂A λ ∂λ |λ=1 , ∂A λ ∂λ |λ=1 L 2 (R 2 ) = - 2 c 2 s A 1 , ∂A λ ∂λ |λ=1 L 2 (R 2 ) = - 1 c 2 s d dλ A λ 2 L 2 (R 2 ) |λ=1 = - 1 c 2 s d dλ λ A 2 L 2 (R 2 ) |λ=1 = - 1 c 2 s A 2 L 2 (R 2 ) < 0. (30) 
Consequently, the operator Λ has exactly one negative eigenvalue, denoted λ KP , and let à * = c -1 s ∂ -1 z 1 φ * be a corresponding eigenvector, so that

1 c s à * - 1 c 2 s ∂ 2 z 1 à * + ∂ 2 z 2 ∂ -2 z 1 à * + ΓA à * = λ KP à * .
Starting from this eigenpair, we shall construct an approximate eigenvector ũ for the linearized operator Υ c (defined in ( 25)) when c = c(ε) → c s . Recall that the travelling wave u

c(ε) (x) is searched as (1 + ε 2 A ε (z))e iεϕε(z) with z 1 = εx 1 and z 2 = ε 2 x 2 . Therefore, it is natural to look for ũ under the form ũ(x) = iε(1 + ε 2 A ε (z))e iεϕε(z) φ(z) + ε 2 Ã(z)e iεϕε(z) , (31) 
corresponding to a linearization in (A, ϕ).

We have already seen that for u c(ε) given by ( 5), there holds

∆u c(ε) + u c(ε) f (|u c(ε) | 2 ) -ic(ε)∂ x 1 u c(ε) (x) = e iϕε -ε 2 (1 + ε 2 A ε )Θ 1 (A ε , ϕ ε ) + iε 3 Θ 2 (A ε , ϕ ε ) (z), (32) 
where

Θ 2 (A ε , ϕ ε ) def = -c(ε)∂ z 1 A ε + 2ε 2 ∂ z 1 ϕ ε ∂ z 1 A ε + 2ε 4 ∂ z 2 ϕ ε ∂ z 2 A ε + (1 + ε 2 A ε )(∂ 2 z 1 ϕ ε + ε 2 ∂ 2 z 2 ϕ ε ) and Θ 1 (A ε , ϕ ε ) def = -c(ε)∂ z 1 ϕ ε + ε 2 (∂ z 1 ϕ ε ) 2 + ε 4 (∂ z 2 ϕ ε ) 2 - 1 ε 2 f ((1 + ε 2 A ε ) 2 ) -ε 2 ∂ 2 z 1 A ε + ε 2 ∂ 2 z 2 A ε 1 + ε 2 A ε .
The linearization of (32) (with (5)) gives:

Υ c(ε) (ũ) = e iεϕε -ε 2 (1 + ε 2 A ε )DΘ 1 (A ε , ϕ ε ).( Ã, φ) + iε 3 DΘ 2 (A ε , ϕ ε ).( Ã, φ) -ε 4 ÃΘ 1 (A ε , ϕ ε ) + φe iεϕε -ε 2 (1 + ε 2 A ε )Θ 1 (A ε , ϕ ε ) + iε 3 Θ 2 (A ε , ϕ ε )
= e iεϕε -ε 2 (1 + ε 2 A ε )DΘ 1 (A ε , ϕ ε ).( Ã, φ) + iε 3 DΘ 2 (A ε , ϕ ε ).( Ã, φ) , since u c(ε) solves (TW c(ε) ). We now consider, for some λ to be determined later (we shall find λ ∼ ε 4 λ KP ), the expression Υ c(ε) (ũ) -λũ = e iεϕε -ε 2 (1 + ε 2 A ε )DΘ 1 (A ε , ϕ ε ).( Ã, φ) + iε 3 DΘ 2 (A ε , ϕ ε ).( Ã, φ)

-λ iε(1 + ε 2 A ε ) φ + ε 2 Ã .
Moreover, in view of [START_REF] Berestycki | An ODE approach to the existence of positive solutions for semilinear problems in R N[END_REF], it is natural to choose ( B, φ, Ã) all of order ε 0 , but depending on ε, such that c s à + ε 2 c s B = ∂ z 1 φ = c s à + O(ε 2 ). We now use that c(ε) = c 2 s -ε 2 = c s -

ε 2 2c s + O(ε 4
), the definition of φ and the convergence of A ε = ∂ z 1 ϕ c s → A, to obtain the expansion

DΘ 2 (A ε , ϕ ε ).( Ã, φ) = -c(ε)∂ z 1 à + ∂ 2 z 1 φ + ε 2 2∂ z 1 φ∂ z 1 A ε + 2∂ z 1 ϕ ε ∂ z 1 à + Ã∂ 2 z 1 ϕ ε + A ε ∂ 2 z 1 φ + ∂ 2 z 2 φ + O(ε 4 ) =c s ε 2 ∂ z 1 B + 1 2c 2 s ∂ z 1 à + 3∂ z 1 (A Ã) + ∂ 2 z 2 ∂ -1 z 1 à + o(ε 2 ).
Similarly, we obtain We then infer

Υ c(ε) (ũ) -λũ = ic s ε 5 e iεϕε ∂ 2 z 1 Ã + Γ∂ z 1 (A Ã) + ∂ 2 z 2 ∂ -1 z 1 Ã -λ KP ∂ -1 z 1 Ã + o(ε 5 ).
and choose à def = à * the negative eigenvector as defined previously, so that the term in brackets cancels out. As a consequence,

Υ c(ε) (ũ) -ε 4 λ KP ũ L 2 ũ L 2 = o(ε 5 ).
We conclude with the help of the following classical result (see, e.g., [START_REF] Reed | Methods of Modern Mathematical Physics. I. Functional analysis[END_REF]). Indeed, since the essential spectrum of Υ c is included in R + , we deduce the existence of some negative eigenvalue for Υ c(ε) which is ∼ ε 4 λ KP as ε → 0.

Remark 9

The operator Υ c(ε) has the same bad behaviour when Γ = 0 > Γ provided one can prove that there exists a negative eigenvalue for the linearization of (SW'). This is probably true, but the argument [START_REF] Gravejat | Asymptotics for the travelling waves in the Gross-Pitaevskii equation[END_REF] is no longer sufficient in the cubic case.

Conclusions

We have investigated numerically the two dimensional travelling waves of the Nonlinear Schrödinger Equation for a general nonlinearity and with nonzero condition at infinity. These travelling waves are saddle points of the action. In order to compute these solutions, we first exhibit, for a certain range of speeds, a functional for which they are local minimizers (Lyapounov functional) so that we can use a gradient flow. We have combined this approach with a continuation method in speed in order to obtain the full range of velocities. Contrary to a Newton's algorithm, our strategy permits to capture the transonic limit of (KP)-type and to compute solutions even without a very accurate initial guess. The consequence is that Newton's method would miss some branches. The variational method was proved to be essential in particular because it can capture solutions lying on a branch which is not connected to the vortex branch (c → 0), which is impossible using only Newton's or the continuation methods.

We have performed simulations for several nonlinearities having the same behaviour as the wellknown Gross-Pitaevskii nonlinearity. We obtained a great variety of (E, P ) diagrams and qualitative behaviours. We have observed cusps; a modified (KP-I) asymptotic in the transonic limit with two branches of solutions; various multiplicity results: non uniqueness for some interval of speeds, selfintersection of one continuous branch, intersection of two distinct branches, non uniqueness for some constraint minimization problems; some phenomena of "one dimensional spreading" where the modulus has a plateau corresponding to special values associated with the 1D problem. [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] (example 4 "a degenerate case" there). For the nonlinearity f dege , we have Γ = Γ = 0 (and also other coefficients of the same type) so that the transonic limit is governed by the sextic (gKdV) solitary wave equation

1 c 2 s ∂ z A - 1 c 2 s ∂ 3 z A + Γ (6) A 5 ∂ z A = 0,
which is supercritical. For the nonlinearity f dege , as c → c s , the travelling waves have high energy and momentum (and are unstable, see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF], [START_REF] Chiron | Stability and instability for subsonic travelling waves of the Nonlinear Schrödinger Equation in dimension one[END_REF]). For the nonlinearity f qd we are now considering, the coefficient Γ becomes small, but nonzero. Actually, we have V qd ( ) = ( -1) 2 -3 -10 -3 3 ( -1) 3 + ( -1) 4 -( -1) 5 + ( -1) 6 and V qd (ξ) = -1 750 ξ 3 -1 750 ξ 4 -4ξ 7 , thus r 0 = 1, c 2 s = 4, Γ = 1 500 and the graphs of f qd , V qd and V qd are given in figure 27. Since Γ is nonzero, the transonic limit for the nonlinearity f qd is governed by the usual (KdV) solitary wave, and in particular the energy and momentum tend to zero as c → c s . However, in some sense, f qd is close to f dege , and we hope that for c close, but not too close, to c s , part of the behaviour observed for f dege will be seen for f qd . In particular, we hope to have, for the nonlinearity f qd , some "large" energy and momentum for c close, but not too close, to c s , and then for c very close to c s , small energy and momentum.

The numerical computations of the energy and momentum as in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF] provide the diagrams of c → E and c → P given in figure 28 "large" energy and momentum for speeds c with -log(1 -0.5c) 10 (for which the dominant behaviour is the one of f dege ), and finally energy and momentum go to zero since Γ = 0. We have been interested in this nonlinearity since the (E, P ) diagram (in dimension one) is qualitatively similar to the one obtained in example 5 for the (exponentially) saturated nonlinearity (in dimension two). As already mentioned, this type of (E, P ) diagram can also be found in [START_REF] Akhmediev | Hamiltonian-versus-energy diagrams in soliton theory[END_REF], section IV G, for the study of bound states in the Nonlinear Schrödinger equation (with zero condition at infinity) with the focusing non monotonic nonlinearity f ( ) = 5/2 -5 + 1 2 15/2 . We deal here with travelling waves with a defocusing monotonic nonlinearity.

A.2 Another saturated (NLS) model

We investigate now another classical saturated (NLS) model, which is

f sat ( ) def = 0 2 1 (1 + / 0 ) 2 - 1 (1 + 1/ 0 ) 2 ,
where 0 > 0 is some parameter. For this nonlinearity, there holds This nonlinearity has been studied in [START_REF] Kivshar | Instabilities of dark solitons[END_REF] and is an example where the "kink", that is the stationary wave (c = 0), is unstable if 0 is small enough. This instability has also been theoretically and numerically studied in [START_REF] Di Menza | The black solitons of one-dimensional NLS equations[END_REF], where the instability threshold was shown to be 0 0.134. However, we would like to point out that the (E, P ) diagram given in [START_REF] Kivshar | Instabilities of dark solitons[END_REF] for 0.08 = "I 0 " = 0 < 0.134 (figure 1 there) is probably not correct. Indeed, the slope of the curve P → E must be equal to the speed c in view of the Hamilton group relation [START_REF] Béthuel | Travelling waves for the Gross-Pitaevskii equation[END_REF] (which holds true in dimension one, see [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF]). 

V sat ( ) = ( - 

  1)∇ā = 0 with associated speed of sound c s def = -2f (1) > 0
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 123 Figure 1: The (E, P ) diagram (from [33]) for (GP) in dimensions (a) left: two; (b) right: three (the straight line is E = c s P )

Theorem 1 (

 1 [START_REF] Lin | Stability and instability of travelling solitonic bubbles[END_REF],[START_REF] Chiron | Stability and instability for subsonic travelling waves of the Nonlinear Schrödinger Equation in dimension one[END_REF]) Let us consider the (NLS) equation in dimension one and 0 < c * < c s . If u c * is a finite energy travelling wave with speed c * , then u c * belongs to a (unique) local branch of travelling waves c → u c for c near c * . (i) If dP (u c ) dc |c=c * < 0, then u c * is orbitally stable in the energy space. Moreover, u c * is a local minimizer of the energy E at fixed momentum P . (ii) If dP (u c ) dc |c=c * > 0, then u c * is linearly and nonlinearly unstable in the energy space. Moreover, u c * does not minimizes (locally) the energy E at fixed momentum P .

figure 1 (

 1 figure 1 (b), since then dP dc > 0. The travelling waves associated with the concave part of the (E, P ) diagram in figure 1 (b) but located above the straight line E = c s P (that is when dP dc < 0

  0 min has a derivative at k * and G c 0 min (k * ) has a minimizer u * , then the rescaled function ũ * def = u * ( c 0 c * •) solves (TW c * ) where the speed c * > 0 is given by dG c Let p * > 0 be given and assume that the potential function V is nonnegative. If u * is a minimizer for E min (p * ) and if E min has a derivative at p * , then û * = u * ( c * c 0 •) is a minimizer for G c 0 min (E kin (u * )), where c * def = dE min dp (p * ).

Figure 4 :

 4 Figure 4: Description of the iterative procedure to compute a minimum of the relaxed functional

Figure 5 :

 5 Figure 5: Energy momentum diagram for f 1 with lower and upper branches of solutions

Figure 6 :

 6 Figure 6: Energy momentum diagram for f 1 : (a) left: lower branch; (b) right: upper branch

Figure 7 :

 7 Figure 7: Travelling wave for the nonlinearity f 1 (lower branch) with speed, from left to right and top to bottom: (a) c = 0.2188; (b) c = 0.696; (c) c = 1.91; (d) c = 2.09; (e) c = 2.38; (f) c = 2.42

Figure 8 :

 8 Figure 8: Approximate solution given by the (mKP-I) ansatz (27) for c = 2.42 with the help of Petviashvili algorithm.

Figure 9 : 40 Figure 10 :

 94010 Figure 9: Travelling wave for the nonlinearity f 1 (upper branch) with speed: (a) left c = 2.32; (b) right c = 2.40

Figure 11 :

 11 Figure 11: Energy momentum diagram for f 2 with the two branches of solutions (I) and (II)

Figure 12 :

 12 Figure 12: Energy momentum diagram for f 2 with branches of solutions: (a) left (I); (b) right (II)

  for speed c= 2.26 (E= 19.28,P= 5.45) for speed c= 2.38 (E= 19.42,P= 5.51) c= 2.75 (E= 57.85,P= 19.63)
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 13141516 Figure 13: Travelling wave for the nonlinearity f 2 (blue branch (I)) with speed, from left to right and top to bottom: (a) c = 0.18; (b) c = 1.26; (c) c = 2.26; (d) c = 2.37; (e) c = 2.70; (f) c = 2.75

Figure 17 :

 17 Figure 17: Travelling wave for the nonlinearity f 2 (green branch (II)) with speed: (a) left c = 2.80, zoom; (b) right c = 2.77, zoom

Figure 18 :

 18 Figure 18: (E, P ) diagram for the nonlinearity f 3

Figure 19 :

 19 Figure 19: Travelling wave for the nonlinearity f 3 with c = 0.79

Figure 20 :

 20 Figure 20: Travelling wave for the nonlinearity f 3 with: (a) left c = 0.95; (b) right c = 0.996

Figure 21 :

 21 Figure 21: (E,P) diagram for the nonlinearity f 5 .
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 2223 Figure 22: Travelling wave for the nonlinearity f 5 with speed, from left to right and top to bottom: (a) c = 1.63, the first cusp; (b) c = 2.08; (c) c = 2.208, the second cusp; (d) c = 2.225; (e) c = 2.232

Figure 25 :

 25 Figure 25: (E, P ) diagram for the cubic-quintic nonlinearity f 6

Figure 26 :P 2 0

 262 Figure 26: Travelling wave for the cubic-quintic nonlinearity f 6 for speed: (a) top left c = 1.27; (b) top right c = 0.8182; (c) bottom c = 0.05

2 + G c 0 min d 2 G c 0 min dk 2 - dG c 0 min dk 3 2 , which gives that - dP dk and G c 0 min d 2 G c 0 min dk 2 - 2 dG c 0 min dk 2 have

 22222222 the same sign, as wished.

DΘ 1 ( 2 s 2 z 1 Ã 2 s 2 s∂ z 1 Ã- 1 2c 2 sÃ

 12212212 A ε , ϕ ε ).( Ã, φ) = c s ε 2 B + 1 2c à + (Γ -3)(A Ã) -∂ + o(ε 2 ), thus Υ c(ε) (ũ) -λũ = -c s ε 4 e iεϕε B + 1 2c à + (Γ -3)(A Ã) -∂ 2 z 1 Ãλ c s ε 2 à + o(1) + ic s ε 5 e iεϕε ∂ z 1 B + 1 2c + 3∂ z 1 (A Ã) + ∂ 2 z 2 ∂ -1 z 1 Ãλ c s ε 4 (1 + ε 2 A) φ + o(1) .In view of this expansion, we fixλ def = ε 4 λ KP and B def = -(Γ -3)(A Ã) + ∂ 2 z 1 à + ε 2 λ KP c s à + o(1).

Theorem 4 . 1

 41 Let T be a self-adjoint operator on a Hilbert space H. Assume that there exists(v, λ, δ) ∈ H × R × R * + such that v = 0 and ||T v -λv|| ≤ δ||v||. Then, σ(T ) ∩ [λ -δ, λ + δ] is not empty.

Figure 27 :

 27 Figure 27: Graphs of (a) left: f qd , (b) center: V qd and (c) right: V qd

Figure 28 :

 28 Figure 28: (a) left: Energy (*) and momentum (+) vs. speed in logarithmic scale; (b) right: qualitative (E, P ) diagram for nonlinearity f qd

Figure 29 :Figure 30 :

 2930 Figure 29: Graphs of (a) f sat , (b) V sat and (c) V sat

which is actually 1 + H 1 (R 3 , C)

like 1 + H 1 (R 2 , C)
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A About two diagrams in dimension one

In this appendix, we consider the (NLS) equation in space dimension one as studied in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF]. We wish to give two more (E, P ) diagrams showing the variety of possible qualitative behaviours.

A.1 A quasi-degenerate case

We investigate here the quasi-degenerate case

which is a perturbation of the degenerate case

Hence, there should not exist a point on the curve c → (E, P ) with vertical tangent as given in [START_REF] Kivshar | Instabilities of dark solitons[END_REF] (figure 1). We have performed the corresponding simulation as in [START_REF] Chiron | Travelling waves for the Nonlinear Schrödinger Equation with general nonlinearity in dimension one[END_REF].

We shall take 0 = 0.08 < 0.134, thus r 0 = 1, c 2 s = 2(1 + 1/ 0 ) -3 0.00081288, Γ = 6 0 0 +1 = 12 27 0.4444.... The graphs of f sat , V sat and V sat are given in figure 29. We have computed E and P as the speed c varies, see figure 30 (a), as well as the (E, P ) diagram, see figure 30 (b). As we see, the curve possesses a cusp. We see with this example that the (E, P ) diagram may exhibit a cusp with a (local) maximum of E and P even though the nonlinearity f sat is increasing. For the cubic-quintic nonlinearity, we also have a cusp with a (local) maximum of E and P , but the nonlinearity is increasing near 0.