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Abstract— Applications running in Grids and other large scale distributed systems have several communication requirements 

which are not easy to satisfy by the existing communication middleware, like high throughput data transfer, reliable point-to-

point messaging and unreliable multicast streaming. In this paper we propose a scalable, fault tolerant communication 

framework based on the peer-to-peer paradigm. The framework’s design is oriented towards high volume point-to-point and 

multicast data delivery. The proposed system uses balanced message flow distribution over multiple paths in order to achieve 

high throughput and the lexicographic distance between the peer’s names in order to guarantee that the message flow 

converges to destination. 

I. INTRODUCTION 

Grids and large scale distributed systems are execution environments for many data-intensive applications. Simulations 
or scientific instruments and sensors generating large amounts of information, transmission of audio and video streams 
from a provider to multiple consumers, scientific computations performed upon large quantities of data, video 
conferences, Grid monitoring tools sending data to storage and processing applications, instant messaging and massively 
multiplayer online games are just a few situations where high throughput unicast and multicast communication 
capabilities are required. There are currently several approaches for offering this kind of communication services.  

One possibility is based on establishing direct TCP connections between the sender and the receiver for the case of 
unicast messages. Multicast 1-to-N communication requirements are satisfied either by using IP multicast or by sending 
N unicast messages to each of the destinations. This approach has the advantage of being very simple to use, but has 
several drawbacks. First, it may not be possible to establish direct TCP connections between machines located behind 
NATs (Network Address Translators) or firewalls. Second, there aren’t too many multicast-capable routers in the 
Internet, so IP multicast cannot be used on a large scale. 

A second approach is based on the use of central servers. If two client applications need to communicate with each 
other, they do this by connecting to one of the servers, which will route all the messages exchanged between them. This 
solution is suitable for applications running behind NATs and firewalls. Its only drawbacks are that the servers represent 
central points of failure and that they may become communication bottlenecks in the case of many clients. 

Another approach is given by the peer-to-peer paradigm. Peers form a decentralized overlay network similar to an 
undirected graph, where the edges are represented by direct connections between peers. The peer-to-peer model could use 
efficiently both the available bandwidth and the computational power. However, such a decentralized approach brings 
new challenges regarding peer lookup and message routing. Many peer-to-peer communication architectures have been 
proposed, but they focus on different communication issues, not necessarily on achieving high throughput data transfer. 
Some of them consider network latency a major factor, others consider the number of hops in the overlay network, while 
another part of them is more interested in the amount of consumed resources. 

The novelty of our communication framework is represented by its focus on high throughput message routing, at the 
expense of other network metrics. We will consider the process of routing messages in the context of a flow of messages 
from a source to one or several destinations. Both the source and the destinations have an address representing 
coordinates in a metric space associated with the overlay network. In order to make sure that any message will eventually 
reach its destination, each message will be routed on a path consisting of intermediate peers in such a way that the 
distance towards the destination, computed in the associated metric space, decreases constantly. Naturally, there could 
exist many such paths. The communication framework distributes the message flow over all these paths in such a way 
that the total size of the messages forwarded on any path is proportional to the available bandwidth of the path. The 
offered communication services are reliable point-to-point and unreliable multicast messaging. 

The rest of this paper is organized as follows. In Section II we present related work. In Sections III, IV, V and VI we 
provide an extensive presentation of the concepts and algorithms used by the proposed communication framework. In 
Section VII we present experimental results and in Section VIII we conclude and present future work. 

II. RELATED WORK 

Among systems trying to achieve high throughput data transfer are the peer-to-peer file sharing applications like 
Bittorent

1
 or Kazaa

2
. Bittorent uses swarming content delivery. All the peers trying to download the same file are part of 

                                                           
1 http://www.bittorent.com 
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the same swarm. In order to download a file, a peer has to contact a central tracker. After that it connects to several 
randomly chosen peers in the swarm. Files are decomposed into smaller pieces and a client may start sharing the 
downloaded pieces before downloading the entire file. Bittorent uses a tit for tat scheme which encourages peers to 
upload files, not just download them. Kazaa’s peers are differentiated into clients and super-peers. Super-peers are chosen 
automatically based on their computational power, storage capacity and bandwidth. Clients connect to the closest super-
peer, using it for file search and download. 

DHTs (Distributed Hash Tables) are decentralized distributed systems that partition the keys inserted into the hash 
table among the participating nodes. They usually form a structured overlay network in which each communicating node 
is connected to a small number of other nodes. Any DHT could be easily turned into a system offering communication 
services. Ref. [1] presents CAN (Content Addressable Network), a DHT which uses a virtual coordinate space 
represented by a d-dimensional torus. Each node has a unique ID in this space. Considering that there are N nodes in the 
system, a message reaches its destination after O(d�N

1/d
 ) hops. The amount of routing information stored by each node is 

O(2�d). In [2], the authors introduce Chord. The identifiers of the participating nodes are 160-bit numbers ordered on a 
circle modulo 2

160
. Each node x is connected to its numerical successor and stores a list of O(log N) “fingers” to other 

nodes. The i
th
 element of this list contains the identifier of the peer which succeeds x by at least 2

i-1
. A node can reach any 

other node in O(log N) hops using this list. Pastry, presented in [2], uses prefix-based routing in order to build an overlay 
network and route messages within this network. Each node has a 128-bit identifier in a circular space. The identifiers 
and the keys are interpreted as base B numbers. Any message reaches its destination after O(logBN) hops. The amount of 
routing information stored by each node is O((B-1)�logBN). DHTs are very efficient because they provide a small number 
of hops with only a small amount of routing information. But they are not the most suitable choice for high volume 
transmission of data. Moreover, most of them require connectivity capabilities between any pair of nodes, so they are less 
likely to deal appropriately with machines located behind NATs and firewalls. 

Most DHTs support only point-to-point communication, but multicast extensions have been built upon them. Ref. [4] 
presents Scribe, which uses a single multicast tree built over Pastry. Ref. [5] introduces Splitstream, in which multicast 
data transfer is based on multiple Scribe trees. Another multicast data delivery system, based on multiple, concurrently 
used, balanced trees, is presented in [6]. 

III. NAME SPACE AND TOPOLOGY 

We consider that the communication network is composed of one or more communication nodes (or cells). Each cell 
may have zero or more names. A name is simply a string of characters which must not contain the special character ‘*’. 
The names are coordinates in a metric space where the distance between two names is the lexicographic distance. The 
names assigned to a cell are important in establishing the topology of the overlay network. For each name it has, the cell 
tries to establish direct connections to the K closest cells having a name lexicographically smaller and the K closest cells 
having a name lexicographically larger. Because some of these cells might not be directly accessible, because of NATs or 
firewalls, the K closest directly accessible cells are chosen. A cell also tries to connect to M other cells, chosen randomly 
from the set of known cells, and to P of the known cells which are very distant in the overlay network, in order to keep a 
well-connected network. Fig. 1 shows a possible network topology for 8 cells, K=2, M=1 and P=0. 

 
 

Fig. 1. A possible overlay network topology for K=2, M=1 and P=0. 

The applications using a given cell for communication purposes may add a new name or remove one of the old names. 
They can do this based on their current communication interests. If a group of applications expects to communicate 
intensely, they may add names which are close to each other in the metric space, thus bringing the corresponding cells 
closer in the overlay network. These names may also be added in order to reflect geographic proximity and make the cells 
establish low latency connections, by using the reversed DNS name or a hierarchically structured name (for instance, 
“country.city.institution.machine_name”). 

IV. ROUTING INFORMATION 

Routing information is exchanged between cells by sending routing update messages at regular intervals. These 
messages are sent to all the cells located at a distance of at most R hops in the overlay network, where R is the 

                                                                                                                                                                                                 
2 http://www.kazaa.com 
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neighborhood radius. There are two types of routing update messages: updates which advertise the state of the direct 
connections and updates advertising other known peers in the network. 

The first type of messages contains information about the measured available bandwidth of each direct connection. 
This information is used by each cell in order to build a detailed view of their neighborhood. 

The second type of routing update message contains information about other cells in the overlay network that the 
sending cell knows about. For each known peer, also called destination peer, a set of cells from the neighborhood of the 
sending cell is sent. The peers in this set are candidate nodes when choosing an intermediate cell in the routing process. 
For each peer in the set an estimation of the overall available bandwidth of all the paths towards the destination peer is 
also sent. Based on this information, the receiving cell computes the available bandwidth on all the paths from the 
sending cell to the advertised cell which do not contain any other node in the neighborhood of the receiving cell. The 
names of the advertised cells and the computed information are stored in a trie. 

In order to avoid the propagation of every piece of information to every node in the system, each cell allows only a 
maximum number of T entries in the trie. Once this threshold is reached, either new entries or already existing entries 
should be discarded. The algorithm we used allows, in fact, for a maximum of f�T (f>1) entries in the trie and periodically 
selects only the T most significant such entries, deleting the others. Newer entries, entries which have a shorter common 
prefix with all other entries at the moment of insertion and entries which are frequently used in the routing process are 
preferred. 

V. THE ROUTING ALGORITHM 

A. Routing Unicast Messages 

Routing unicast messages is a two step process. First, the name of the destination is looked up in the trie. Here one of 
the peers which are located in the neighborhood of the cell routing the message and which advertised paths towards the 
destination is chosen. This choice is non-deterministic. A peer i is chosen as an intermediate cell according to the formula 

 Pi = ABi /SAB . (1) 

Pi is the probability to choose the i
th
 peer, ABi is the advertised available bandwidth of peer i towards the destination 

and SAB is the sum of the available bandwidths of all the candidate peers. Only peers having a name which is 
lexicographically closer to the destination than any of the names of the cell making the routing decision are considered as 
candidate peers, in order to make sure that the lexicographic distance towards the destination decreases. In case the name 
is not found in the trie, the name which is lexicographically closest to the destination is chosen. This operation can be 
performed very efficiently using the trie data structure. 

The second step consists of choosing a path towards the intermediate peer selected in the first step. In order to make 
this decision, the knowledge about a cell’s neighborhood is interpreted as a directed graph. The vertices of the graph are 
represented by the cells of the network and the edges of the graph are represented by connections between these cells. 
Each edge has an associated capacity equal to the measured available bandwidth of that edge. The graph is directed 
because the measured available bandwidth might differ when measured from each of the two end points of each edge. 
Considering, in turns, each cell in the neighborhood as a sink and the current cell as a source, the Edmond-Karp 
algorithm is used in order to compute the maximum flow in the corresponding flow network. After computing the flow, a 
maximum of D paths from the source to the sink are selected and stored. Each path is chosen considering only the 
graph’s edges which have a positive amount of flow. For each such path, the minimum amount of flow f on any of the 
edges on the path is computed. This will be the capacity of that path. The quantity f is then subtracted from the amount of 
flow existing on each of the graph’s edges which are part of the path. The next path is computed considering the new 
amounts of flow on the graph’s edges, and so on. The process of selecting a path from the current cell to an intermediate 
cell located in its neighborhood consists of non-deterministically choosing one of the paths. Each path i is chosen with a 
probability computed according to the formula 

 
Fig. 2. A possible path from B.1 to D.2. 
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 Pi = Capi /SumCap . (2) 

Pi is the probability to choose the i
th

 path, Capi is the capacity of the i
th
 path and SumCap is the sum of the capacities of 

all the selected paths towards the intermediate cell. The message is then routed along this path. The next cell making a 
routing decision is the last cell of the selected path. 

The path a message follows to the destination is composed of two types of cells, chosen in the two steps of the routing 
process. The first type is represented by the main cells and they are the ones making routing decisions. The names of 
these cells get increasingly closer to the destination’s name, as the cells are located further away along the path. Between 
two consecutive main cells on the path there may be several secondary cells. The secondary cells only pass the message 
forward and are not subject to naming restrictions. However, all the secondary cells between two consecutive main cells 
A and B are in the neighborhood of the cell A. The separation into main and secondary cells is based only on the actions 
taken when routing a message along a path. Any cell could be a main cell for some messages and  a secondary cell for 
others. Fig. 2 shows a possible path a message could follow between the cells B.1 and D.2. The path contains the cells 
B.1, A.2, C.1, B.2, C.2, D.2, in this order. The network topology is the one presented in Fig. 1 and the radius R of a cell’s 
neighbordhood was considered to be 1 hop. 

B. Routing Multicast Messages 

A multicast message is sent to a destination of the type “PREFIX*”, meaning that the message must reach all the cells 
having a name starting with the prefix “PREFIX”. Routing such a message consists of two stages. In the first stage, the 
message is routed as a unicast message. The message is being routed towards cells having an increasingly longer 
common prefix with the destination. Eventually, the message will reach a cell having the prefix “PREFIX”. When such a 
cell is reached, the second stage begins. The multicast message is broadcasted towards all the neighbors of the cell which 
have a name starting with the prefix “PREFIX”. These neighbors will broadcast the message further to other peers having 
a name beginning with the string “PREFIX”, and so on. Because of the way the topology is built, all the cells sharing the 
same common prefix will try to form a connected subgraph in the overlay network and the message will reach all of the 
destinations. 

VI. MEASURING THE AVAILABLE BANDWIDTH 

We need to measure the available bandwidth for every direct connection. In order to do this, we will consider every 
connection to be a cylindrical pipe, having a certain length and a certain cross section. The “length” L of the pipe will be 
measured in milliseconds. The cross section of the pipe has an area A and will be measured in kilobytes per second. The 
volume of the pipe, which is the length multiplied by the area, is measured in kilobytes. The capacity of the pipe is its 
cross-section A and is the value we want to determine. In order to do this, L is periodically estimated based on the round-
trip times of several small messages (a few bytes in size). Then, when sending a “large” message having X bytes through 
the pipe, its “length” will be X/A. The time it takes for the whole message to reach the other side will be (L+X/A). Fig.3 
shows a message having X bytes being sent on the connection. The measured RTT (round-trip time) will be equal to 
twice the value of (L+X/A) and the desired value of A will be 

 

L
2

R��

X
A

−

=
. (3) 

However, if X/A is less than 1, the RTT will be approximately equal to 2�L and the denominator in (3) would be close 
to 0. In order to achieve a good result, we would need a value of X for which X/A is significantly larger than 1. We can 
use binary search for X, between a lower limit of 1 byte and some specified upper limit. An upper limit of 3 megabytes 
for X is enough even for connections having a bandwidth of 10 Gbps. With the binary search, we are looking for values 
of X for which the RTT is not too close to 2�L, aiming for an RTT value close to F�L (2.2 < F < 4). Binary search 
messages are sent at regular intervals. 

The value of the estimated available bandwidth is computed with the following formula: 

 ABnew = t · ABold + (1-t) ·  ABcomputed . (4) 

t is a real number between 0 and 1, ABcomputed is the value of the available bandwidth computed based on the size and 
RTT of the most recent message, according to (3), ABold is the previous estimation of the available bandwidth and ABnew 
is the new estimation of the available bandwidth. 

Because the value of the available bandwidth might largely fluctuate over time, we do not use a tight binary search. 
Instead, when we need to increase the lower  limit of the binary search, we will slightly increase the upper limit, too. 
Similarly, when decreasing the upper limit of the binary search, we will also decrease the lower limit a bit. Doing so, we 
provide a solution for the case when the value of the available bandwidth suddenly moves outside the current range of the 
binary search. 

The algorithm estimates the available bandwidth of the TCP connection, as seen from the application level. It does not 
try to measure the end to end available bandwidth outside the context of the running application. The measurements are 
affected by the TCP buffer sizes and by the time the messages spend in the message queues. In order to achieve higher 
throughput, several TCP tuning techniques should be used, as mentioned in [7]. These techniques are outside the scope of 
this paper. 
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Fig. 3. Sending an X bytes message on the connection. 

VII. EXPERIMENTAL RESULTS 

At the time of writing this paper, we have implemented only a prototype of the proposed communication framework, 
using the Java programming language. This prototype implementation has been tested using only a small number of cells. 
Our test scenarios consisted of 8 cells running on 8 different machines, located at 3 different sites. 2 machines were 
located at the California Institute of Technology (Site 1), 3 machines were located at CERN (European Center for 
Nuclear Research), in Switzerland (Site 2) and 3 machines were located at the Polytechnic University of Bucharest, in 
Romania (Site 3). 2 machines (one at Site 2 and one at Site 3) were located behind firewalls. At the beginning, every 
machine had a single name and knew the IP and port of one or two other peers. The neighborhood radius was chosen to 
be 2 hops. 

The 2 communication cells located at the first site were named: Site1.Host1 and Site1.Host2. The 3 cells located at the 
second site had a similar naming model, with names ranging from Site2.Host1 to Site2.Host3. The machines at Site 3 
were named following the same pattern, ranging from Site3.Host1 to Site3.Host3. Every communication cell tried to 
connect to the 2 closest cells having a name lexicographically smaller, the 2 closest cells having a name lexicographically 
larger and another randomly chosen cell. All the communication cells were started roughly at the same time. 

The test cases we used consisted of trains of packets. We considered 3 test scenarios. In the first one, 10.000 messages 
each having 25.000 bytes were sent from Site1.Host1 to Site3.Host1. Fig. 4 shows the way the total amount of bytes 
received varied in time. As can be noticed, all the 250 million bytes were received within a time interval of approximately 
3 minutes, achieving an average transfer rate of nearly 1.4 MB/s, with a peak rate of about 2.3 MB/s during the first 
minute. For comparison purposes, we also transferred 250 million bytes using SCP (Secure copy), which achieved a peak 
rate of 210 KB/s. Except for the SCP test, we also wanted to know what the transfer rate would be if only the direct 
connection between Site1.Host1 and Site3.Host1 was used. In order to achieve this, we generated a second test scenario, 
where only Site1.Host1 and Site3.Host1 were started. Fig. 5 shows the variation with time of the total amount of bytes 
received by Site1.Host1. We achieved a constant transfer rate of approximately 280 KB/s. The transfer rate was 
noticeably higher when using all the 8 cells, proving that our balanced message flow distribution could be a feasible 
technique for achieving high throughput data transfers. 

 
Fig. 4. The variation with time of the total amount of bytes received by Site3.Host1 during the first test scenario. 

In the third test scenario we wanted to understand if the message routing overhead was significant. For this, we sent 
10.000 messages each having 25.000 bytes between two communication cells located on two machines at Site 2 
(Site2.Host1 and Site2.Host2). The transfer rates ranged from 6 MB/s to 9 MB/s. We also transferred 250 million bytes 
between the 2 machines using SCP. With SCP, the transfer rate reached a peak of approximately 11.3 MB/s. Since in this 
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scenario most of the messages were routed along the direct connection between the 2 machines, the difference between 
the transfer rates of our system and those achieved by SCP was caused by the routing overhead. 

Other test scenarios consisted in testing the multicast message delivery, but the amount of transferred data was quite 
small and the tests were only intended to verify the correctness of the implementation. 

The test results showed that our implementation worked well in a small distributed system. However, the good 
behavior cannot be extended to large distributed systems without further testing. The test results were also insightful, 
because we noticed that the routing overhead may be significant in some situations. 

 
Fig. 5. The variation with time of the total amount of bytes received by Site3.Host1 when using only the direct connection to Site1.Host1. 

VIII. CONCLUSIONS AND FUTURE WORK 

The test results were not conclusive about the behavior of our system in large distributed systems, but they did show 
that the framework can behave well in small, although geographically sparse, distributed systems. As part of our future 
work, we will deploy the communication framework in a large network in order to further test our system. An 
architecture for generating realistic and significant test cases is already under development. 

By having no control over the assignment of names, the communication framework does not fully support peers 
located behind NATs and firewalls. If there are two cells having names where one is the lexicographic successor of the 
other, but a direct connection between the cells cannot be established in any of the two directions, the routing algorithm 
will not work properly. Unicast routing would still work, however, if the two peers are located in the same neighborhood 
(at most R hops away) and multicast routing would work if all the peers having a prefix equal to the longest common 
prefix of the two cells form a connected subgraph in the overlay network. We are considering the development of an 
automatic method of assigning names to the cells, in such a way that the  lexicographic distance is related to connectivity 
capabilities, network latency and available bandwidth. 

Other aspects we seek to improve or reconsider are the algorithm used to determine the available bandwidth of a 
connection, the second stage of the multicast routing algorithm and the enforcement of flow control. 

Also as part of our future work, the system will be integrated in the MonALISA framework, presented in [8]. This 
integration will represent the most important test for our communication framework, because it will have to deal with 
real-life traffic and not just artificially created environments. 
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