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Abstract—Mobile users generate ever-increasing amounts of
digital data, such as photos and videos, which they upload, while
on the go, to online services. 3G connectivity enables mobile users
to upload their data while on the go but drains the battery of
their devices and overloads mobile service providers. Wi-Fi data
offloading overcomes the aforementioned issues for delay-tolerant
data. This, however, comes at the cost of constrained mobility for
users as they are required to stay within a given area while the
data is uploaded. The up-link of the broadband connection of
the access point often constitutes a bottleneck and incurs waiting
times of up to tens of minutes. In this paper, we advocate the
exploitation of the storage capabilities of common devices located
on the Wi-Fi access point LAN, typically residential gateways or
set-top boxes, to decrease the waiting time. We propose HOOP,
a system for offloading upload tasks onto such devices. HOOP

operates seamlessly on HTTP(S) POST, making it highly generic
and widely applicable; it also requires limited changes on the
gateways and on the web server and none to existing protocols
or browsers. HOOP is secure and, in a typical setting, reduces
the waiting time by up to a factor of 46. We analyze the security
of HOOP and evaluate its performance by correlating mobility
traces of users with the position of the Wi-Fi access points of a
leader ISP. We show that, in practice, HOOP drastically decreases
the delay between the time the photo is taken and the time
it is uploaded, compared to regular Wi-Fi data offloading. We
demonstrate the practicality of HOOP by implementing it on a
wireless router.

I. INTRODUCTION

With the advent of mobile devices, users generate ever-

increasing amounts of digital data while on the go. For

instance, they take photos and videos with their smartphones

and produce or edit possibly large documents on their tablets

and laptops. The data is then uploaded (often automatically)

to online services, typically through web applications, native

apps or system services. They do so for various purposes

ranging from social sharing (e.g., sharing photos on Facebook

or Flickr, or videos on YouTube) to increased availability and

backup (e.g., uploading all sorts of documents to a cloud

storage service such as Dropbox or iCloud). In many cases,

the upload to the online service is performed through HTTP(S)

POST operations (e.g., using a browser, or with applications

relying on HTTP-based APIs).

To upload the data they produce while on the go, users rely

on the connectivity of their mobile devices, namely 3G and

Wi-Fi capabilities. To do so, they are offered essentially two

options, both with noticeable drawbacks. Cellular connectivity

enables mobile users to upload their data from virtually

anywhere (and while moving) but drains the battery of their de-

vices [1], [2] and overloads mobile Internet service providers,

which, in response, impose data caps (and either, block the

traffic, reduce the bandwidth or over-charge the traffic beyond

the limit) much to the detriment of the users. Data offloading at

Wi-Fi access points (or 3G DropZones as advocated in [3]), be

they public (e.g., AT&T WiFi [4]), business (e.g., Starbucks)

or community (e.g., FON [5]) hotspots or personal or corporate

access points, overcomes the aforementioned issues for delay-

tolerant data. This, however, comes at the cost of constrained

mobility and/or significant delays for users. Indeed, the users

are required to stay in the close vicinity of the access point

while the data is being uploaded. In the case of personal

or corporate access points, the data is uploaded only when

the user reaches the corresponding location (i.e., home and

work place respectively). A determining factor of the upload

time is the up-link speed of the Wi-Fi access point’s Internet

connection (typically 1 Mbps [6]) which often constitutes

a bottleneck compared to the Wi-Fi connection (typically

50 Mbps). The waiting time can reach ten minutes for 20

high-definition photos uploaded on a 1 Mbps Internet link.

In this paper, we propose to leverage on the processing and

storage capabilities of common devices located on the Wi-

Fi access point’s local area network (LAN) to implement a

sort of store-and-forward HTTP(s) proxy, thus decreasing the

waiting time to the point where the Wi-Fi connection of the

access point becomes the bottleneck. First-class candidates

to implement such a scheme include always-on residential

gateways [7], [8], routers, network-attached storage (NAS)

units, and set-top boxes. One major design challenge, which

is paramount for a wide adoption, is to provide a solution that

is completely transparent for the users and that requires as-

small-as-possible changes to existing software and protocols.

We propose HOOP, a system for offloading upload tasks onto

devices such as gateways in a secure and seamless way. In

a nutshell, when a user reaches an HTML upload form on a

HOOP-enabled website, her browser looks for a device running

HOOP on the local network (say a gateway) to offload the

uploading task. If such a device is found, the user’s browser,

instead of directly uploading the file to the online service,

encrypts and uploads the file to the gateway, together with

an authentication token, at a speed determined by the Wi-Fi

connection of the access point. At this point, the user can

disconnect from the access point, and potentially move and



switch off her device, while the file is being asynchronously

uploaded by the gateway.

HOOP operates seamlessly–from the standpoint of the user–

on HTTP(S) POST and relies only on existing web standards

(e.g., JavaScript and AJAX) and network protocols (e.g.,

HTTP(S) and DNS), thus making it highly generic and widely

applicable. More specifically, it can be used (through its open

API) by any application that relies on HTTP(S) POST to upload

data (e.g., HTML forms, Flash/Java uploaders, native apps).

HOOP requires only limited changes on the gateways and on

the web server and none at the client side (i.e., at the mobile

device’s operating system and browser). HOOP is secure and

it significantly reduces the users’ waiting time.

We analyze the security of HOOP and we show that HOOP

guarantees the confidentiality and the integrity of the uploaded

data, with respect to various attackers including the gateway

and eavesdroppers. In addition, we show that HOOP does not

create new opportunities for an attacker to disrupt the upload

or attack the online service. We evaluate the performance of

HOOP in two scenarios. We consider a static user upload-

ing data at a HOOP-enabled Wi-Fi access point and show

experimentally that the waiting time is reduced by a factor of

46, compared to regular Wi-Fi data offloading. We consider

a mobile user who uploads data while moving, through a

network of hotspots, and we show through trace-driven simu-

lations (i.e., by correlating mobility traces with the positions

of the Wi-Fi hotspots from a leader ISP), that HOOP increases

the upload capacity by a factor of 42. We demonstrate the

practicality of HOOP by implementing it on a high-end set-

top box and on a wireless router (for the code running on the

gateway) and on various websites including a minimal HTML

form-based uploader, the Flash and HTML 5 uploaders of the

Gallery [9] web photo organizer, and the Java uploader of the

ResourceSpace [10] web data management service. Finally,

we discuss potential business models for HOOP and show that

the involved parties, in particular the users, the online service

providers, the Internet service providers (ISP), and the access

point operators, all have incentives to adopt HOOP.

The rest of the paper is organized as follows. In Section II,

we survey the related work. In Section III, we introduce the

system model and we give some background about HTTP(S)

uploads. In Section IV, we present and describe HOOP. We

analyze the security of HOOP and we report on its performance

evaluation in Section V. Finally, we discuss the incentives and

the economics behind HOOP in Section VI and we conclude

the paper in Section VII.

II. RELATED WORK

The problem of mobile data upload has received a great

deal of attention from the research community over the last

few years. More specifically, Balasubramanian et al. first

proposed [11] to augment the 3G capacity in mobile sce-

narios by exploiting Wi-Fi access points. They implement

a software solution for delaying data exchanges and fast-

switching between 3G and Wi-Fi, and they assess the potential

of their approach. In [1], Lee et al. perform a large scale

experimental performance evaluation of data offloading over

Wi-Fi that demonstrates the benefits of this approach, both

in terms of the amount of data offloaded from 3G and of

battery power. In [3], Trestian et al. study the data generation

and upload patterns of mobile users and advocate the use of

cells with disproportionally upgraded bandwidth, called Drop

Zones, for offloading the content generated by mobile users

while on the go. In addition, they tackle the problem of the

optimal placement and of the dimensioning of the Drop Zones.

In all these piece of work, it is assumed that the data is

offloaded directly over Wi-Fi, at the speed of the access point’s

connection to the Internet, which constitutes a bottleneck.

Although HOOP relies on the same approach, i.e., offloading

traffic at Wi-Fi access points, it goes beyond by exploiting the

storage capacity at the access points to fully take advantage

of the Wi-Fi connectivity for delay-tolerant uploads.

Several pieces of work, e.g., [7], [8], advocate the use of the

storage capacity of gateways–and other always-on devices with

storage capacity–to offload data transfer from user devices.

Technical solutions have been proposed and implemented on

gateways, set-top boxes and networked area storage units. For

instance, many such devices offer HTTP download services

and run BitTorrent clients (e.g., Synology NAS). Closer to our

work, the Fonera [12] enables users to asynchronously upload

files to a number of online services (including YouTube,

flickr, and Facebook) by simply copying them over, e.g., ftp,

to specific folder. Unlike HOOP, such solutions have major

drawbacks that prevent wide adoption in the public domain:

The device is trusted with the users’ credentials for these

online services; the device is given the users’ data, in clear,

which it can alter; the solution is dependent on the online

service (as it relies on their proprietary APIs) and it requires

explicit user interactions, as opposed to HOOP that is generic

and seamless.

III. SYSTEM MODEL AND BACKGROUND

We consider a system composed of the following entities:

(1) a local area network (LAN) connected to the Internet by

an ISP, (2) a mobile device, controlled by the user, and (3) an

online web service, as described in Figure 1. The local network

is composed of a router (typically a gateway) that connects the

different devices to the Internet, a device with computational

and storage capabilities to run HOOP (typically a set-top box

or the gateway), and an access point that allows users with

wireless-equipped devices to connect to the local network. The

user connects to the Internet (through the local network) with

her wireless-equipped mobile device and makes use of web

services through her installed browser and native apps. We

consider an online web service that allows users to upload

data through HTTPS
1

POST operations, from an HTML form

(potentially with AJAX), a Flash uploader, or a native app.

Throughout the paper, we focus on the case of HTML forms,

1We focus on HTTPS throughout the paper: The case of unsecured HTTP

can be solved by implementing a proxy at the IP level; this is not possible
for HTTPS, as TLS layer protections rely on session keys that are periodically
renewed.



the other cases being in fact simpler as the service provider

controls the application, whereas for HTML forms the service

provider does not control the browser.
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Fig. 1. Setup of Hoop.

In a typical HTML scenario (without HOOP), a user connects

to the web service and requests the upload page, through

HTTP(S), from the browser installed on her mobile device. The

web service returns a HTML web-page including a form (e.g.,

see Figure 2) that contains at least a form element to select the

data (typically some files, e.g., photos) to be uploaded, some

extra information (e.g., a caption), an authentication token, and

the target page (https://www.service.com/post.php) to which

the data will be posted. The user then selects the file(s) to

upload and submits the form by clicking on the corresponding

button, and the data is posted to the target page (typically a php

page). The user must stay connected until the data is uploaded.

Once the data is uploaded, the target pages checks that the

user is authenticated (e.g., based on an authentication token

stored in a hidden field of the HTML form) and it retrieves and

processes the data (e.g, adds the photos to the user’s profile in

the service’s database); then a message confirming the upload

is shown to the user. The whole process is depicted in Figure 3.

<form id="upload_form" action="post.php" method="post"
>

<input type="file" name="data">
<input type="text" name="caption">
<input type="hidden" value="..." name="token">
<input type="button" value="Upload"

id="upload_button" onclick="upload_form.submit
();">

</form>

Fig. 2. HTML upload form.

Consider the typical scenario of a native mobile application,

written in Java, for the Android platform. The application

communicates with the web service through HTTP(S) in order

to use the same interface as for the website: The application

collects data from the local file system, as well as from various

elements of the graphical user interface (GUI); the application

embeds the data in an HTTP(S) request that it POSTs to the

target URL (e.g., https://www.service.com/post.php) by using

a dedicated library (e.g., org.apache.http.client).

IV. HOOP

In this section, we describe HOOP, a system for offloading

upload tasks onto devices located on the same LAN as the

user’s mobile device in a store-and-forward fashion. HOOP

involves three different entities as described in the system

model: a software component on the device running HOOP

(say a gateway) the application running on the user’s mobile

device, and the web service. We describe the functioning

of HOOP by listing and explaining the different operations

performed by each of the three aforementioned entities. HOOP

operates as follows: the mobile device (be it a script executed

by the browser or a native app) searches for a device running

HOOP on the local network and, if any such device is found,

it processes (i.e., re-formats and encrypts) the data to be sent

and directs the upload to this device (instead of to the web

service). The device running HOOP stores the data received

from the mobile device and asynchronously uploads it to the

web service that handles the data as for a regular upload. We

first describe the general functioning of HOOP, depicted in

Figure 5; then we describe the specifics of its implementation

on the mobile device as a web application running in a browser

and as a native app.

A. System Description

The HOOP component running at the gateway essentially

consists of a daemon acting as both an HTTP server bound to

a fixed pre-defined port and an HTTP client. At the startup,

the HOOP component registers the hostname hoop.local on

the local network through the DHCP protocol [13]. Note that

as gateways often host a DHCP/DNS server, the hostname

registration can be done locally and the gateway can make

sure that no other device on the LAN registers as hoop.local.

The HTTP server implemented by the HOOP component can be

accessed at http://hoop.local/ and offers two services: test

(accessible at http://hoop.local/test2) that allows devices

on the LAN to detect its presence and test its availability, and

offload that implements the store-and-forward operation, as

we describe below. In order to allow scripts originating from

HOOP-compatible web services to connect to the gateway’s

HTTP services, the latter implements a cross-origin resource

sharing (CORS [14]) policy by adding the rule Access-

Control-Allow-Origin:* to the HTTP header (or a similar

rule in the crossdomain.xml file for Flash applications).

The HOOP-compatible web service hosts, in addition to

the traditional page post.php, a page post_hoop.php that

handles the uploads which are offloaded to and forwarded by

the HOOP component running at the gateway. Although these

two pages differ in the way they retrieve and pre-process the

uploaded data, they process this data in the same way by

relying on the same php function. Thus, the modifications

required at the web service are limited. The web service has

a secret key Kws for symmetric authenticated cryptography.

Upon login, the mobile device obtains an authentication token

T from the web service. When an upload operation is initiated,

2Note that we omit the port for the sake of clarity.

https://www.service.com/post.php
https://www.service.com/post.php
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Fig. 3. System overview without Hoop.

the mobile device obtains a fresh random secret key K for

symmetric authenticated encryption, together with a version of

the key encrypted with the secret key of the web service, i.e.,

EKws
(K) where E denotes the encryption operation (typically

AES in OCB, CCM or EAX mode), from the web service.

The mobile device (i.e., a web-application running in the

browser, a Flash application, or a native app) searches for

a device running HOOP on the local network by sending

an HTTP request to http://hoop.local/test. If the request

returns successfully (i.e., the host hoop.local is resolved

and found, and the request returns the HTTP success code

200–the gateway returns the HTTP service unavailable 503

code if its upload buffer is full), the mobile device sets the

target URL to http://hoop.local/offload, so as to offload the

upload to the device running HOOP, sets a GET parameter to

the target URL of the web service (i.e., http://www.service.

com/post_hoop.php), and generates the following post data:

Z = EKws
(K) || EK(T || D), where E denotes the encryp-

tion operation (e.g., AES in OCB, CCM or EAX mode), T is

the authentication token provided by the web service, and D is

the data the user wants to upload (e.g., a photo and a caption).

Note that as the content sent by the mobile device to the device

running HOOP and by the device running HOOP to the web

service is encrypted, there is no need to use TLS encryption

(i.e., HTTP suffices); this alleviates the need for certificate

management at and for the gateway. Finally, the mobile device

posts the data Z to the offload URL http://hoop.local/offload.

As the mobile device and the device running HOOP are on the

same local network, the speed at which the data is transferred

is determined by the technology used on the LAN (typically

100/1000 Mbps Ethernet or Wi-Fi g/n/ac) but is independent

from the speed of the Internet connection.

When the gateway receives a request to its offload service,

it first extracts the target URL of the web service from the

GET parameters (i.e., http://www.service.com/post_hoop.php).

Then it extracts the POST data (i.e., EKws
(K) || EK(T || D))

and passes this data to its HTTP client that (re-)posts the

data to the target URL of the web service. When the device

running HOOP has limited processing and memory capabilities

(e.g., a wireless router as described in Section V), the HOOP

component is implemented as a standalone native executable

file that provides basic HTTP server and client features for

receiving and (re-)posting offloaded data. When running on a

more powerful device (e.g., a set-top box, a NAS, a dedicated

server), the HOOP component can also be integrated into an

existing HTTP server, e.g., as a module in the Apache HTTP

server.

The post_hoop.php page hosted by the web service parses

the POST data. It first obtains the symmetric key K by

decrypting EKws
(K) with its secret key Kws. Then, it decrypts

the data and the authentication token by using the key K
and passes them to the script used to handle regular uploads

(i.e., those that do not make use of HOOP). Note that when

decrypting the different parts of the POST data, the php script

checks the integrity of the data and drops the request if it

fails the integrity test. Figure 4 gives a simplified version3

of a typical post_hoop.php page (note that any language,

such as Java or Python could be used for implementing the

post_hoop). Note that the web service relaxes its CORS

policy for the post_hoop.php page by accepting any origin

for this page.

B. Implementation

The implementation of HOOP as a native app on the

mobile device is straightforward: preparing and sending HTTP

requests is achieved by using a dedicated library such as

org.apache.http.client for Java on Android; the encryption

is performed by using a dedicated library as well, e.g.,

javax.crypto. The authentication token and the encryption

key are obtained from web service through HTTP (e.g., re-

turned in the XML or JSON format).

3For the sake of clarity, the snippets do not exactly match the actual
implementation. In particular, we omit error-handling code as well as diverse
optimizations.

http://hoop.local/offload
http://www.service.com/post_hoop.php
http://www.service.com/post_hoop.php
http://hoop.local/offload
http://www.service.com/post_hoop.php
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Fig. 5. System overview with Hoop

function hoopReceive(){
$fd = fopen("php://input", "r")
$k = hoopReadAndDecipherSessionKey($kws,$fd)
$data = hoopDecipher($k,$fd)
list ($_POST, $_FILE) = hoopMultipartDecode($data)

}
hoopReceive();
include("post.php");

Fig. 4. Hoop upload php script.

The implementation of HOOP as a web application however,

is challenging as the web application runs within the browser

over which the developer has no control. The code executed by

the browser is provided by the web service as a JavaScript. The

script contains, in two variables, the symmetric key K and its

encrypted version EKws
(K). When the JavaScript is loaded,

it searches for a device running HOOP by making an asyn-

chronous XMLHttpRequest to http://hoop.local/test. If

the request returns successfully, the JavaScript modifies the

upload form in order to offload the upload to the device

running HOOP. This is achieved by setting the target URL of

the HTML form (i.e., its action attribute) to the empty string,

and by setting instead, through the onsubmit attribute of the

submit button, a JavaScript function to be executed when the

form is submitted (see Figure 6). This function accesses the

data from the files through the HTML 5 File API, performs

the encryption by using a dedicated JavaScript library4 (e.g.,

crypto-js [16]), and it sends the encrypted POST data to

the device running HOOP at http://hoop.local/offload by

making an XMLHttpRequest with the GET parameter set to

the target URL of the web service (see Figure 7). When the

upload terminates, the user is redirected to a dedicated web

page by changing the location header.

button = document.getElementById("upload_button");

function hoopSetup(){
// search for a device running Hoop
req = new XMLHttpRequest();
req.open("GET", "http://hoop.local/test", true);
req.onreadystatechange=function(){

if (req.readyState==4 && req.status==200){
// switch the upload method to Hoop
button.onClick = "hoopSend();";

}
}
req.send();

}

Fig. 6. Hoop JavaScript function for activating Hoop, if a device running
Hoop is found on the LAN.

4Note that the W3C is currently working on the specification and the
implementation of a JavaScript cryptography API named WebCryptoAPI [15].



k = " ... " // symmetric key (in clear)
ek = " ... " // symmetric key (encrypted)
dest = "http://www.service.com/post_hoop.php"
form = document.getElementById("upload_form");

function hoopSend(){
data = hoopMultipartEncode(form) // extract the data
cipher = hoopCipher(data, k) // encrypt the data
req = new XMLHttpRequest();
req.open("POST", "http://hoop.local/offload?dest=" +

urlencode(dest), false);
req.send(ek + cipher);
window.location = "..." ;

}

Fig. 7. Hoop JavaScript function for preparing and offloading the data to a
device running Hoop.

C. Additional Features

In addition to its core offload functionality, HOOP offers side

features that enable users to monitor their offloaded uploads, at

the gateway and at the web service. Upon a successful offload

onto the gateway, the user is provided with a link of the form

hoop.local/monitor?ID=..., where ID is a random identifier

assigned to the offload, to monitor (i.e., see the current upload

status) the (re-)posting of the uploaded data. The operator of

the local network can make the monitoring service accessible

from outside the LAN; in this case, the local hostname must

be replaced by a fully qualified hostname. The monitoring

service can be implemented at the web service as well: When

an upload is offloaded to a device running HOOP, the web

service is notified by the user’s mobile device through an

HTTPS request including the key K and the meta-data (e.g., the

caption and the names of the files). The user can subsequently

monitor, through her account on the web service, the list of

her offloaded uploads and monitor/control (i.e., pause, resume,

stop) them.

Finally, the user can specify, in her account settings on the

web service, certain policies to decide whether to use HOOP

for offloading her uploads. For instance, the user can decide

to never use HOOP, to always use HOOP, or to be asked

(through e.g., a check-box) whether to use HOOP when a

device running HOOP is found on the local network. More

complicated policies can be used so as to, e.g., make the

decision based on the sizes and types of the files to be

uploaded.

V. EVALUATION

We evaluate HOOP with respect to its security (e.g., the con-

fidentiality and the integrity of the user’s data), its efficiency

(e.g., technical feasibility of HOOP on various devices), and

its efficacy (e.g., in terms of its offload potential). We do not

discuss the security of the features mentioned in Section IV-C

as they do not constitute the core of HOOP.

A. Security

We look at the security of HOOP by considering different

adversarial scenarios. As HOOP is designed for a wide deploy-

ment in the public domain, neither the gateway nor the user is

trusted, thus they constitute potential adversaries. In addition,

we consider (possibly active) adversaries such as a jammer,

an eavesdropper, or another user connected to the LAN. We

structure our security analysis with respect to the three entities

involved in HOOP.

a) Confidentiality and integrity of the users’ data: The

confidentiality and the integrity of the data (users’ data, as well

as the key K, and the JavaScript or HTML codes) exchanged

directly between the user’s mobile device and the web service

is guaranteed by the TLS encryption of the HTTPS connection:

Neither the router nor an eavesdropper (should it snoop on the

LAN or on the Internet) can read or stealthily (i.e., without

being detected) tamper with this data. The confidentiality and

the integrity of the data exchanged between the user’s mobile

device and the web service, through the HOOP on the gateway

(over unsecured HTTP), is guaranteed by the application-layer

encryption (i.e., an authenticated encryption (AEAD) such as

AES in OCB, CCM or EAX mode), the encryption key K
being known only to the user and to the web service as

it is exchanged over HTTPS. The authenticated encryption

implements integrity checks that prevent an attacker from

tampering with the data. Therefore, an adversary, such as a

malicious gateway, cannot tamper with the data (D||T ) in the

post data as it does not know K.

b) Security of the gateway: An adversary can perform a

denial-of-service (DoS) attack against the gateway by issuing

a large number of offloading requests. It is in general difficult

to defend against DoS attacks, however they are not specific

to the use of HOOP; this means that traditional protection

mechanisms can be used and that HOOP does not create new

opportunities to attack the gateway.

c) Security of the web service: Relaxing the CORS

policy for the hoop_post.php page exposes the web service

to cross-site scripting attacks (XSS), e.g., a third-party website

stealthily posting data to this page by relying on an existing

authentication cookie in the user’s browser. However, as the

hoop_post.php page authenticates users based on the token

T encrypted with the secret key K instead of using cookies,

such XSS attacks cannot succeed. Finally, an adversary can

carry out a DoS attack against the web service, through HOOP,

by offloading a large number of requests on a gateway that runs

HOOP. Such an attack, however, does not give more power to

the adversary as it is similar to making the requests directly

from the LAN.

B. Efficiency

We evaluate the efficiency of the HOOP components running

on the mobile device and on the gateway based on a real

implementation on various platforms.

d) Mobile device: encryption: Encryption (along with

file access and communication) constitutes a potential bot-

tleneck when HOOP runs a mobile device. We considered

both OpenSSL and CryptoJS libraries for symmetric AES-

256 encryption as they constitute natural candidates for an

implementation of HOOP as a native app and as a web



application respectively. We conducted our experiments on

three different devices and settings: a laptop (Core i5-2520M)

running Chrome 30 on Windows 7, an iPhone 4 running

Safari for iOS 7.0, and a Galaxy S3 running Chrome 30

for Android 4.2. The results, summarized in Table I, show

that a native app can easily saturate a broadband connection

and, in some cases (i.e, Laptop and Galaxy S3), saturate a

Wi-Fi connection at 300 Mbps. The results are not as good

for JavaScript. However, service providers are most likely

to provide native apps on mobile devices (e.g., Dropbox,

iCloud, YouTube uploader), and the performance of JavaScript

on laptops, which are likely to use the web version of

HOOP within the browsers, is good. Furthermore many factors

foresee significant improvements for JavaScript encryption:

The processing power of smartphones increases rapidly (the

iPhone 4 and the Galaxy S3 have been released in 2010

and 2012 respectively and their successors have significantly

improved processing capabilities); developers actively work on

improving the JavaScript performance of browsers in general;

and the WebCryptoAPI [15] specification of W3C could lead

to the use of native code for JavaScript encryption for web

applications.

Dev. (Lib.) Throughput

Laptop Core i5-2520M (OpenSSL) 640 Mbps

Laptop Core i5-2520M (JavaScript) 58 Mbps

iPhone 4 (OpenSSL)5 96 Mbps

iPhone 4 (JavaScript) 5.1 Mbps

Galaxy S3 (OpenSSL)6 416 Mbps

Galaxy S3 (JavaScript) 6.5 Mbps

TABLE I
BENCHMARK OF SYMMETRIC CRYPTOGRAPHIC LIBRARIES ON VARIOUS

DEVICES (AES-256 ENCRYPTION).

e) Gateway component: offload and upload: We imple-

mented the gateway component in charge of receiving and

(re-)posting offloaded data on two different devices: a wireless

router running OpenWRT and a set-top box (see Table II for

the detailed configuration). The set-top box has similar hard-

ware to a typical NAS. We implemented the HOOP component

in C and compiled it to a standalone native executable linked

against the libevhtp 1.2.6 (static link) and libevent 2.0.5

(dynamic link) libraries. The implementation has ∼350 source

lines of code (excluding the libraries) that compile to a binary

of ∼60 KB (excluding a dynamic library of ∼250 KB) on

both platforms. The wireless router embeds a Wi-Fi 802.11n

access point and the set-top-box is connected to the router/AP

through a 100 Mbps Ethernet network interface.

We conducted our experiments with HOOP running either on

the router or on the set-top box and with our Laptop Core i5-

2520M connected to the local network either over 100 Mbps

Ethernet or over Wi-Fi 802.11n (the actual negotiated link

5Obtained from http://hmijailblog.blogspot.fr/2011/02/
openssl-speed-on-iphone-4.html (Last visited Oct. 2013)

6Obtained from https://jve.linuxwall.info/ressources/taf/aesmeasurements.
txt (Last visited Oct. 2013)

Dev. Arch. Proc. RAM HDD

Router MIPS Atheros AR7241@400 Mhz 32 MB USB 320 GB

Set-top x86 Intel Atom@1.66 Ghz 1 GB SATA 250 GB

TABLE II
TECHNICAL SPECIFICATIONS OF THE DEVICES USED FOR THE

EVALUATION. THESE TWO DEVICES ARE REPRESENTATIVE OF

ISP-PROVIDED EQUIPMENTS: A MODEM WITH LIMITED CAPABILITIES

AND A HIGH-END SET-TOP BOX.

speed was 78 Mbps). Our experiments with a wired connection

between the mobile device and the gateway enable us to

assess the performance of the HOOP component running at

the gateway (as a wireless connection could have constitute a

bottleneck), whereas our experiments with a wireless connec-

tion enable us to assess the global performance of HOOP as a

whole. We used ApacheBench on our laptop to execute HTTP

POST requests and collect statistics.

We evaluate the performance of the HOOP component

running on the gateway, in a wired setting, along the following

metrics: (1) the offload speed (as a function of the size of

the POST, for different concurrency levels7), and (2) the CPU

usage (and the breakdown between system and user time).

The results are presented in Figure 8. It can be observed on

Figures 8a and 8b that for small POSTs (e.g., 50-200 KB)

offloaded onto the set-top box, sending concurrent requests

improves the offload speed as the requests are processed con-

currently at the gateway, thus amortizing the connection de-

lays. For large POSTs (i.e., > 1 MB), which constitute the main

use-case of HOOP, both the router and the set-top box saturate

the LAN connection (i.e., Ethernet at 100 Mbps∼12 MBps) at

10 and 11 MBps respectively. The performance of HOOP is not

altered when concurrent POST requests are issued. Figures 8c

and 8d show that the system accounts for a large proportion

of the CPU usage; this means that the CPU usage is mostly

devoted to performing I/Os (i.e., reading from and writing to

the network and the disk). It can be observed that, unlike for

the set-top box, the CPU of the router saturates; this explains

the slight performance gap between the two devices, with

respect to the offload speed, observed in Figures 8a and 8b.

C. Efficacy

We evaluate the efficacy of HOOP: first experimentally

in a static setting where the users do not move and stay

connected to the same access point, and then through trace-

driven simulations in a mobile setting.

1) Experimental Results: We experimentally assess the

global performance of HOOP in terms of the time needed to

complete an offload, based on our implementation on a lap-

top/router as described in Section V-B. This metric reflects the

immediate gain of a user in a static setting, as it corresponds

to the time after which the user can switch off her mobile

device and/or start moving out of the range of the Wi-Fi access

point. For the web service, we enhance the Gallery [9] web

7Browsers can issue requests in parallel by opening up to 6-8 concurrent
connections.

http://hmijailblog.blogspot.fr/2011/02/openssl-speed-on-iphone-4.html
http://hmijailblog.blogspot.fr/2011/02/openssl-speed-on-iphone-4.html
https://jve.linuxwall.info/ressources/taf/aesmeasurements.txt
https://jve.linuxwall.info/ressources/taf/aesmeasurements.txt
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Fig. 8. Performance of the Hoop component running at the gateway. CPU
usage is for POSTs of size 1,000 KB with a concurrency level of 1.

photo organizer with HOOP compatibility8, and we host it on a

server connected to the Internet through a dedicated symmetric

connection at 100 Mbps. The local network is connected to the

Internet through an ADSL broadband connection synchronized

at 12 Mbps (down)/1.15 Mbps (up). Neither the LAN link

nor the broadband link has background traffic (i.e., other

applications that use the links). Figure 9 shows the results

for different POST sizes ranging from 1 to 50 MB in wired

and wireless settings (for the connection between the mobile

device and the gateway), with and without HOOP. It can be

observed that HOOP significantly outperforms regular Wi-Fi

offloading (i.e., without HOOP): The offload time is reduced

by up to a factor of 85 in a wired setting and by up to a

factor of 46 in the wireless settings. These factors roughly

correspond to the ratios between the LAN and the broadband

link speeds (100/1.15≈ 84 for Ethernet; the observed speed

for Wi-Fi 802.11n is consistent with the actual speed of a link

at 78 Mbps taking into account the MAC and TCP overheads).

2) Trace-Driven Simulations Results: We evaluate, through

trace-driven simulations, the efficacy of HOOP in the scenario

of a mobile user, equipped with a Wi-Fi/3G-enabled device,

moving in a region covered by a community/commercial

network of Wi-Fi access points and a 3G network. When

the user is in the range of an access point of the network, it

connects automatically to it; this is usually done by the mobile

OS (e.g., through the EAP-SIM [17] protocol for AT&T [4]

or Swisscom [18] hotspots) or by a dedicated app (e.g., the

FON app [5] that uses the user’s credentials). In addition, the

8We implemented HOOP on ResourceSpace [10] as well to demonstrate
HOOP’s feasibility for Java-based uploaders.
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Fig. 9. Global performance of HOOP compared to the baseline in a (a) wired
and (b) wireless setting.

user could have 3G data plan that enables her to connect to

the Internet from anywhere in the region.

a) Dataset: The evaluation is based on a dataset of Wi-

Fi access points from the FON network [5]. FON is a large

community network with over 10 million hotspots worldwide

(most of them are located in Belgium, France, Japan, Portugal,

and the UK–and soon in Germany and in the Netherlands –

due to to strategic partnerships with leader national ISPs). The

access points composing the FON network are mostly routers

and set-top boxes provided and operated by the ISPs that hold

total control over them (through automatic firmware updates);

as such, they constitute first-class candidates to run HOOP.

Users who host a FON access point at their home places or

pay a subscription can connect (automatically) to the FON

hotspots through a dedicated mobile app. The map of FON

hotspots is available at http://corp.fon.com/maps. In early

2013, we collected the geographic coordinates of the Wi-Fi

access points from SFR, a leader French ISP, that is part of

the FON network. In urban and residential areas, the density

of the network ranges from hundred to more than a thousand

of hotspots per square kilometers. In Paris, France, the average

density is 853±346 APs/km2; 47% of the area is covered by

at least one access point and the number of visible access

points in covered areas is 2.75± 1.86 on average, assuming a

communication range of 25 m.

In order to build connectivity traces, we correlate the

coordinates of the Wi-Fi access points with mobility traces

from users moving in the Paris area, France. Our dataset

comprises two types of traces: touristic paths and commuter

paths. The first corresponds to pedestrians who explore the city

by hopping from one point of interest to another (including the

Eiffel Tower, Notre-Dame, and the Arc de Triomphe); the latter

corresponds to workers who commute between their homes

and their work places using the street public transport system

(i.e., bus and tram).

b) Methodology: We developed a trace-based discrete-

event simulator to compute the various metric along which we

evaluate HOOP. The mobility traces provide discrete samples

of the user’s position over time. We model the communication

range of the access points with a fixed-radius (i.e., R) disc

and we use a simple connectivity model. Initially, users are

connected to the closest access point in their range: in practice,



this would correspond to the visible access point with the

strongest received signal strength indication (RSSI), if any.

While a user remains in the range of the access point her

device is connected to, it does not change access points. As

a users moves out of the range of the access point her device

is connected to, the connection is interrupted and her device

connects to the visible access point with the strongest RSSI,

if any. Connecting to a new access point is assumed to take

a constant time δt. When connected to an access point, a

mobile device can communicate with the access point (and

the devices on the same local network) at speed bLAN and the

devices on the local network (including the mobile device)

can communicate with remote Internet hosts at speed bWAN.

We assume that there is no background traffic on the LAN

and on the Internet connection, and that the upload buffers

of the gateways are empty. We denote by b3G the speed

of the 3G connection. Users from touristic traces generate

photos of size Spic at a rate rgopic while moving, and at a

rate rPOI
pic while at a point-of-interest. Users from commuter

traces generate documents (or edit documents and upload the

modified versions, e.g., to Dropbox or iCloud) of size Sdoc

at a rate rdoc. The generated files are stored in a buffer on

the mobile device and uploaded to a web service in first-

in first-out order. When the connection to an access point is

lost, the on-going upload is aborted and it is restarted when

the mobile device establishes a new connection. Table III

summarizes the different simulation parameters together with

a brief description and the value used in the evaluation.

We consider the following connectivity scenarios and upload

strategies:

• Wi-Fi only (always mobile): Users always move accord-

ing to their mobility trace and upload their data (w/ or w/o

HOOP) over Wi-Fi whenever they are connected to an access

point.

• Wi-Fi + 3G (always mobile): Users always move accord-

ing to their mobility trace and upload their data (w/ or w/o

HOOP) over Wi-Fi whenever they are connected to an access

point, and otherwise over 3G.

• Wi-Fi (mobile + static): Users move according to their

mobility traces and upload their data (w/ or w/o HOOP)

over Wi-Fi whenever they are connected to an access point.

When connected to an access point, users move only when

their upload buffer is empty (i.e., they wait until their upload

buffers are empty before moving).

c) Metrics: We assess the performance of HOOP accord-

ing to the following metrics, that reflect together the gains

and costs of using HOOP for the mobile users, in different

scenarios:

• Per-session Wi-Fi offload capacity: The maximum

amount of data a mobile user can offload/upload over Wi-Fi

during the connection time at an access point.

• Total Wi-Fi offload capacity: The maximum amount of

data offloaded/uploaded over Wi-Fi (i.e., assuming that the

upload buffer on the user device is never empty).

9We estimated the value of this parameter experimentally.

Param. Description Value

R Wi-Fi communication range 25 m

δt Wi-Fi connection establishment delay9 10 s

bWiFi Wi-Fi connection speed 30 Mbps

b3G 3G connection speed (upload) 0.8 Mbps

bWAN Broadband connection speed (upload) 1.15 Mbps

Spic Picture size 3 MB

Sdoc Document size 1 MB

r
go
pic Picture generation rate (on-the-go) 0.2/min

r
POI
pic Picture generation rate (at POIs) 5/min

rdoc Document generation rate (e.g., auto-save) 1/min

TABLE III
SIMULATION PARAMETERS: DESCRIPTION AND VALUES.

• Delay: The delay between the time a file is generated (e.g.,

the photo is shot) and the time it is uploaded on the web

service.

• Wi-Fi usage: The amount and the fraction of data up-

loaded to the web service over Wi-Fi and the time spent

uploading it.

• 3G usage: The amount and the fraction of data uploaded

to the web service over 3G and the time spent uploading it

(in the Wi-Fi + 3G scenario).

• Waiting time: The time spent waiting for the offload or

upload to complete (in the Wi-Fi: mobile + static scenario).

d) Results: Figure 10 shows the Wi-Fi offload capacity

per session. This metric is directly proportional to the duration

of the Wi-Fi sessions while moving. It can be observed that

without HOOP, the 95-th percentile of the amount of data

a user can upload is 4.9 MB for the touristic trace (more

than the size of a photo) and 0.93 MB (less than the size

of a document). This means that, without HOOP, the users

from the commuter trace cannot complete any document

upload. Finally, we note that the capacity is significantly

higher (i.e., ×5) for the touristic trace than for the commuter

trace; this is because users from the touristic trace move more

slowly than for the commuter trace (pedestrian vs. public

transportation passengers), thus the sessions are longer.
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Fig. 10. Wi-Fi offload capacity per session for the (a) touristic and the
(b) commuter traces.

We now look at the total Wi-Fi offload capacity, i.e., the

total amount of data that is offloaded over Wi-Fi, assuming



that mobile users have an infinite number of files to upload,

normalized by the total time of the simulation. Note that this

metric takes into account only the amount of useful offloaded

data: the offloads that are aborted due to Wi-Fi connection loss

are not taken into account. We also look at the total upload

capacity, that takes into account only the amount of data that

is actually uploaded to the web service during the time of

the simulation. It can be observed that the offload and upload

capacities are zero for the commuter trace. This is because the

Wi-Fi sessions are too short to upload even a single document

(as shown in Figure 10). Finally, we can observe that for the

touristic trace HOOP increases the upload capacity by a factor

of 42 and the offload capacity by a factor of 45. Note that

the upload capacity with HOOP is significantly higher than the

speed of the Internet link (i.e., 1.15 Mbps), which corresponds

to the upload capacity in a static scenario where the users

stay connected to the same access point during the entire

experiment. This is because mobile users offload their data on

different access points; therefore the uploads are performed

simultaneously, thus increasing the total upload capacity.
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Fig. 11. Total Wi-Fi upload and offload capacities for the (a) touristic and
the (b) commuter traces.

Figure 12 shows the cumulative distribution functions

(CDF) of the delay in the different connectivity scenarios.

For the commuter trace, the CDF is not visible for the “w/o

HOOP, always mobile” scenario as the delays are very long.

This is because the Wi-Fi connection sessions are too short

to enable the user to upload a single document. It can be

observed that the delays are drastically reduced with HOOP.

Surprisingly, we observe shorter delays “w/ HOOP always

mobile” scenario than for the “mobile + static” (i.e., Wait)

scenarios. This is because in the mobile scenario, users offload

the different files in their buffers to different access points.

Hence, the files are uploaded simultaneously, whereas in the

wait scenario, the files are uploaded sequentially as they are

all offloaded at the same access point. Finally, the results show

that 3G connectivity helps reducing the delays. This is because

it enables the user to upload some of the files as soon as they

are produced while the user stays at a point of interest with

no Wi-Fi coverage.

We now look at the active time (i.e., the time spend upload-

ing/offloading data over Wi-Fi or 3G). Figure 13 summarizes

the results for different scenarios: it can be observed that
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Fig. 12. Delay between the content generation and the upload in different
connectivity scenarios for the (a) touristic and the (b) commuter traces.

HOOP consistently decreases the active time while increasing

the amount of data offloaded. This is consistent with the

increase of the amount of data sent over Wi-Fi (and the

decrease of the amount of data sent over 3G). This translates

into energy savings as the consumption per MB is lower for

Wi-Fi than for 3G [2]. Note that the results from the two

traces are not directly comparable as the traces have different

durations, and that the users generates files of different sizes, at

different rates. Note also that for the same trace, the duration

of the experiment is longer in the “Wait” scenario. In our

simulations, the waiting periods increase the duration of the

experiment by 8% with HOOP, and by 106% without HOOP,

for the touristic trace.
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Fig. 13. Time spent sending data and amount of useful data uploaded/of-
floaded over Wi-Fi and 3G for the touristic (top) and the commuter (bottom)
traces.

Finally, we evaluate the energy consumption of the data

uploads in different scenarios. To do so, we rely on the values

of energy consumption of smartphones network interfaces

from [2] (including active time and scan energy consumption

for Wi-Fi), summarized in Table IV. We further assume that

smartphones perform 1-second scans every 8 seconds. We

show the results in Figure 14. It can be observed that HOOP

consistently reduces energy consumption. The first reason is

that the amount of aborted data uploaded (hence the amount of

wasted energy) is reduced with HOOP. Secondly, in the case



Transfer (J/MB) Idle (W) Scan (W)

Wi-Fi 5 0.77 1.29

3G 100 0 0

TABLE IV
ENERGY CONSUMPTION OF SMARTPHONES NETWORK INTERFACES [2].

where 3G is used when there is no Wi-Fi connectivity, HOOP

also reduces the energy consumption. This is due to the fact

that HOOP offloads larger amounts of data over Wi-Fi (because

it offloads data at a higher speed); therefore it uploads lower

amounts of data over 3G (which is more energy consuming

that Wi-Fi). We can also observe the price to pay, in terms of

energy consumption, for the delay improvement brought by

the use of 3G connectivity (shown in Figure 12).
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Fig. 14. Energy consumptions for data upload, per sent KB, over Wi-Fi
(incl. active time and scans) and 3G for the touristic (top) and the commuter
(bottom) traces.

VI. DISCUSSION

In this section, we discuss the incentives for the users to

use HOOP; and the incentive and the costs, for the commercial

parties involved (e.g., the web service), to implement and to

deploy HOOP. These factors are key to its wide deployment

and adoption. We also discuss additional features that can

make HOOP more attractive to the different parties.

HOOP is beneficial for the users, as shown in Section V-C,

and it does not require any user intervention as it operates

seamlessly. As such, HOOP increases the brand/product value

(1) of gateway/access point/NAS/set-top box manufacturers,

(2) of the ISPs that provide gateways and/or set-top-boxes

to their subscribers, and (3) of Wi-Fi access point (network)

operators. The cost of deploying HOOP on such devices is

minimal: The implementation is simple (∼350 source lines

of code) and can be easily deployed via (automatic) firmware

updates or via third-party applications available on specific

repositories (e.g., optware packages and Synology’s third-party

packages [19]). The fact that HOOP is generic, and thus can

be used by any web service, alleviates the need for the manu-

facturers and third-party application developers to implement

ad-hoc solutions for each service (e.g., YouTube, flickr, Picasa

and Facebook uploaders implemented on the Fonera [12]).

HOOP constitutes an interesting marketing argument for ser-

vice providers as well and offers them an efficient ready-to-

use solution that requires only limited changes to the web

service. Furthermore, HOOP offers a unique opportunity for

ISPs and service providers to control a fraction of their traffic

as they can delay the HOOP uploads. This enables them to

smoothen the traffic peaks hence reducing the investments for

dimensioning their equipment, as well as their bandwidth costs

in the case where burstable billing (e.g., 95-th percentile [20])

is used. Finally, should the use of HOOP be more beneficial to

the web service than for the ISP, the web service could pay the

ISP for the offloaded uploads, either directly (i.e., in currency)

of through advertisement. For instance, one can envision a

business model in which the photos uploaded to Facebook

through HOOP are displayed with an icon “Uploaded by a

Synology NAS” or “Uploaded from AT&T WiFi”.

VII. CONCLUSION

In this paper, we presented HOOP, a system for offloading

data uploads on devices with storage capabilities, e.g., gate-

ways, in a store-and-forward fashion. Our system enables mo-

bile users to fully exploit the Wi-Fi link by relaxing the speed

constraints due to the link that connects the LAN to the In-

ternet. Unlike existing systems, HOOP operates transparently–

from the stand point of the users–and provides a ready-to-use,

secure and generic solution to data uploads offloading: The

mobile users are not required to trust the gateway with their

credentials and the gateway can neither see nor alter their data.

We reported on our performance evaluation of HOOP, which

demonstrate its efficiency and its efficacy: HOOP can run on

devices with very limited capabilities (e.g., MIPS processor at

400 MHz with 32 MB of RAM) and decreases the waiting time

of mobile users by up to a factor of 46. We intend to conduct

a real-world field experiment to further assess the upload

performance of HOOP as well as the potential energy savings.

In addition, we plan to perform a sensitivity analysis to study

the effect of the different parameters on the performance of

HOOP.
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