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Our recent findings indicate that
cells exposed to transmembrane

(m-CD95L) or metalloprotease-cleaved
CD95L (cl-CD95L) undergo a localized
Ca2+entry that not only inhibits the initial
steps of the CD95-mediated apoptotic
signal but also promotes cell motility.
Based on recent findings published on
the non-apoptotic signals induced by
CD95, we discuss how m-CD95L and
cl-CD95L diverging by their stoichio-
metry could both contribute to the
immune response by first recruiting
activated T lymphocytes in the inflamed
area and later by eliminating infected and
transformed cells.

Emergent Functions

for the Death Receptor CD95

CD95 (also known as Fas) belongs to the
TNF (Tumour Necrosis Factor) -receptor
superfamily. Fifteen years ago, it has been
shown that when exposed to an agonistic
anti-CD95 mAb (APO1–3), the aggre-
gated receptor recruits the adaptor protein
FADD (Fas-Associated protein with Death
Domain), which then binds caspase-8/-10
and ultimately elicits the apoptotic signal
and the death of the cell. This complex
was designated the DISC for Death Induc-
ing Signaling Complex1 and since numer-
ous factors have been found to modulate
the implementation of this complex and
thus, the transmission of death receptor-
mediated apoptotic signal. The cognate
CD95 ligand, CD95L (also known as
FasL or CD178) is a transmembrane
“cytokine” belonging to the TNF family.

CD95L exhibits a restricted expression
pattern, being expressed primarily at the
surface of activated T lymphocytes and
NK cells, where it contributes to the
elimination of infected and transformed
cells. However, CD95L is also found
under inflammatory conditions, at the
surface of epithelial cells, macrophages or
dendritic cells where its biological function
remains elusive. This type II transmem-
brane protein can be cleaved by metallo-
proteases such as MMP3,2 MMP7,3

MMP94 or ADAM-10 (A Disintegrin
And Metalloproteinase 10)5,6 and released
as a soluble ligand into the connective
tissue and the bloodstream. Cleaved
CD95L (cl-CD95L) was described initi-
ally as an inert ligand competing with
its membrane-bound and pro-apoptotic
counterpart (m-CD95L) for binding to
CD95.7,8 More recent studies confirmed
that the homotrimeric cl-CD95L fails to
trigger cell death but more importantly,
they also bring to light that this soluble
ligand possesses indeed a biological func-
tion by eliciting non-apoptotic signals
leading to cell migration9-13 and/or proli-
feration.14 In this regard, we and others
demonstrated that the metalloprotease-
processed CD95L actively participates
in aggravating inflammation and auto-
immunity both in mouse model12 and
humans affected by systemic lupus erythe-
matosus (SLE).13 Overall, these findings
ascribe non-apoptotic rolesto CD95 through
the implementation of different signals
(i.e., JNK, PI3K and NF-kB). The role(s)
of each CD95-mediated non-apoptotic
signal remains however to be finely charac-
terized in pathophysiological contexts.
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A Novel Actor in the Initial Events

of the CD95 Pathway

Calcium ions (Ca2+) participate in cell
signaling as a second messenger that relies
on magnitude (cytosolic concentration),
temporal parameters (i.e., duration and
frequency) and spatial localization to
trigger a variety of cellular responses.
Following membrane receptor stimulation,
Ca2+ responses mainly occur through a
biphasic signal caused by activation of IP3
receptors and the release of Ca2+ from the
endoplasmic reticulum (ER) followed by a
Ca2+ entry across the plasma membrane.15

This store-operated Ca2+ entry (SOCE),
mediated in T-lymphocytes by Ca2+

release-activated Ca2+ (CRAC) channels,
plays a pivotal role in both the replenish-
ment of the ER store and in cell signal-
ing.16 Recently, STIM1 was identified as
the ER-stored Ca2+ sensor that links ER
depletion to activation of the plasma
membrane CRAC channel formed by
Orai1 subunits, allowing Ca2+ to selec-
tively enter the cell.17 Following contact
of a T cell with an antigen-presenting
dendritic cell, STIM1 and Orai1 colocalize
with T cell receptors (TCRs) in the
immunological synapse and contribute to
a localized Ca2+ influx.18

Tissues in which infected or trans-
formed cells are disseminated require the
recruitment of immune cells to specifically
eliminate these threats. Based on our
findings, we surmise that the first line
of activated T lymphocytes infiltrating the
transformed or infected area expresses high
amount of membrane-bound CD95L to
trigger cell death in affected cells but also
to provide a pool of ligand that will be
processed by metalloproteases therefore
engendering a cl-CD95L gradient. This
gradient would in turn recruit a second
wave of activated T cells, which ultimately
amplifies if necessary the immune response
and leads to the total eradication of the
target cells. Of note, we established that
the amount of cl-CD95L is dramatically
increased in sera of SLE patients and
contributes to the endothelial transmigra-
tion of activated T cells that accumulate
in the damaged organs. We also observed
that cl-CD95L evokes a transient and
localized SOCE (Fig. 1), which is instru-
mental in enhancing PI3K activation,
actin remodeling and thus migration
of activated T cells.13 Seeking for their
cellular targets, these migrating T cells may
encounter CD95-expressing bystander
cells in the inflamed tissue raising the
question of how is prevented in these

healthy cells an accidental and irreversible
activation of the apoptotic signal that will
lead to their deleterious elimination. Our
recent findings uncovered that engage-
ment of CD95 by the membrane-bound
form of CD95L (experimentally replaced
by a home-made IgCD95L that mimics
the membrane-bound multi-aggregated
physiologic ligand) evokes a sustained
and localized Ca2+ entry (Fig. 1), which
freezes the initial steps of the CD95
apoptotic signal and doing so delays its
delivery.19 Although intensity and tem-
poral parameters of the CD95-mediated
Ca2+ signal diverge between cells exposed
to cl-CD95L and m-CD95L, both
ligands implement SOCE through the
co-localization of CRAC channel Orai1
with CD95. In addition, we observed
that whereas in presence of cl-CD95L,
cells undergo the formation of a caspase
and FADD-independent Motility-inducing
signaling complex (MISC), m-CD95L sti-
mulates the transient and Ca2+-dependent
recruitment of PKC-beta2 within DISC
that participates in delaying the multi-
protein complex formation and the
transduction of the apoptotic signal.

Accordingly, these findings support
the hypothesis that a non-specific T
lymphocyte/bystander cell contact would

Figure 1. Role of the Orai1-driven Ca2+ entry in T lymphocytes challenged with the different forms of CD95L. When exposed to the two forms of CD95L,

cleaved and membrane-bound, activated T lymphocytes, target cells (infected or transformed cells) or bystander cells undergo an Orai1-driven Ca2+ entry

that modulates differently the CD95-mediated signaling pathway. The Ca2+ traces obtained with cells exposed to cleaved-CD95L (1) or membrane-bound

CD95L (2) are depicted. MHC: Major Histocompatibility Complex.
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transiently engage the CD95receptor
and achieve a Ca2+-dependent Time-Of-
Decision (TOD) preventing the transmis-
sion of the CD95-mediated apoptotic
signal in the target cell. In contrast, the
selective recognition of the MHC/peptide
by cytotoxic T lymphocytes may provide
a sustained interaction that overrides the
Ca2+-driven TOD allowing the selective
elimination of infected or malignant
cells. Numerous questions still remain to
be addressed. First, whether cl-CD95L

induces cell motility of activated T cells in
general or only on specific T-cell sub-
populations involved in the etiology of the
autoimmune disorders is still unknown.
Second, how two ligands only distinguish-
able by their divergent stoichiometries, are
able to evoke such different intracellular
Ca2+ patterns and biological outcomes
using the same receptor is very puzzling,
and finally, the molecular ordering leading
to the activation of the Ca2+ signal remain
to be identified.
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