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Abstract
Following previous work on CCS, we propose a compositional model for the pi-calculus in which
processes are interpreted as sheaves on certain simple sites. We define an analogue of fair testing
equivalence in the model and show that our interpretation is intensionally fully abstract for it.
That is, the interpretation preserves and reflects fair testing equivalence; and furthermore, any
strategy is fair testing equivalent to the interpretation of some process. The central part of our
work is the construction of our sites, whose heart is a combinatorial presentation of pi-calculus
traces in the spirit of string diagrams. As in previous work, the sheaf condition is analogous to
innocence in Hyland-Ong/Nickau games.
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1 Introduction

Operational semantics of programming languages standardly model the execution of programs
as paths in a certain labelled transition system (lts). Under this interpretation, different
possible interleavings of parallel actions yield different paths. Verification on ltss thus incurs
a well-known state explosion problem. Similarly, causality between various actions, visible in
the syntax, is lost in the lts, thus making, e.g., error diagnostics difficult [17].

Causal models, originally designed for Petri nets [37] and Milner’s CCS [42], intend to
remedy both problems, but have yet to be applied to full-scale programming languages. They
have recently been extended in two different directions: (1) by Crafa et al. [10] to Milner’s
π-calculus, and (2) by Melliès [32] to Girard’s linear logic. The former extension accounts for
the subtle interaction of channel creation with synchronisation in π, a significant technical
achievement, 30 years after the first causal semantics for CCS. The latter is the first causal
model for functional languages (inspired by Hyland-Ong’s and Nickau’s games models for
PCF [36, 24]). An important challenge is now the search for a causal model of full-fledged
languages with both concurrent and functional features. Winskel and collaborators are
currently working in this direction, using extensions of Melliès’s approach [39, 43, 8].

In previous work [23, 21, 22], we have proposed a causal model for CCS based on a
different approach. We here push this approach further by applying it to the π-calculus.
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1.1 Traces and naive concurrent strategies
In standard causal models, execution traces essentially consist of partially ordered sets of
atomic ‘events’. Our approach relies on a new notion of trace, which we briefly sketch. There
is first a (straightforward) notion of configuration, which is essentially a finite hypergraph
whose nodes are thought of as agents, and whose hyperedges between nodes x1, . . . , xn are
thought of as communication channels shared by x1, . . . , xn. There is then a notion of atomic
action from one configuration to another, thought of as a ‘rule of the game’. Examples of
atomic actions are: an agent creates a new, private communication channel; an agent forks
into two new agents connected to the same channels; an agent sends some channel a over
some channel b to some other agent. We finally have a notion of trace which allows several
atomic actions to occur, in a way that only retains some minimal causality information
between them. We here mean, e.g., information such as: ‘such agent outputs on such channel
only after having created such other channel’.

The main purpose of our notion of trace is to interpret π-calculus processes as some kind
of strategies over them. Most naively, a strategy on some configuration X is a prefix-closed
set of ‘accepted’ traces from X. But what should prefix mean in our setting? Well, we may
view traces with initial configuration X and final configuration Y as morphisms Y X.
Sequential composition of traces, denoted by •, yields an analogue of prefix ordering, defined
by t ≤ t • w. This however fails to suit our needs on three counts.

We start by examining the first two problems. The first, easy one is that there is an
obvious notion of isomorphism between traces, under which strategies should be closed. The
second problem is more serious: until now, these too naive strategies are not concurrent
enough to adequately model CCS or the π-calculus.

I Example 1 (Milner’s coffee machines). Consider the CCS processes P = (a.b+ a.c) and
Q = a.(b + c). The process P has two ways of inputting on a and then, depending on
the chosen way, inputs either on b or on c. The process Q inputs on a and then has both
possibilities of inputting on b or c. Both processes, however, accept exactly the same traces
(in the standard sense), namely {ε, a, ab, ac}, where ε denotes the empty trace.

Thus, taking strategies to be prefix-closed sets of traces would prevent us from directly
modelling any reasonably fine behavioural equivalence on processes. Inspired by presheaf
models [26], we remedy both problems at once by passing from prefix-closed sets of traces to
presheaves (of finite sets) on traces. Indeed, in the simple case where traces on X form a mere
poset T(X) by prefix ordering, a prefix-closed set of traces is nothing but a contravariant
functor from T(X) to the ordinal 2, viewed as a category. The latter has two objects 0 and 1
and just one non-trivial morphism 0→ 1. The idea is that a functor S : T(X)op → 2 maps
any trace to 1 when it is accepted, and to 0 otherwise. Furthermore, if t ≤ t′, i.e., t is a prefix
of t′, then we have a morphism t → t′ which should be mapped by S to some morphism
S(t′) → S(t). If t′ is accepted then S(t′) = 1, so this has to be a morphism 1 → S(t).
Because there are no morphisms 1→ 0, this entails S(t) = 1, hence prefix-closedness of the
corresponding strategy.

Now our traces naturally form a proper category T(X), encompassing both prefix ordering
and isomorphisms between traces, so we are led to considering functors T(X)op → 2. This
retains prefix-closedness and solves our first problem: for any t ∼= t′, functoriality imposes
S(t) ∼= S(t′). Our second problem is then solved by replacing such functors with presheaves,
i.e., functors T(X)op → Set.

I Example 2. In Example 1, the two ways that P has to accept inputting on a may be
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88 An Intensionally Fully-abstract Sheaf Model for π

reflected by mapping the trace a to some two-element set. More precisely, P may be modelled
by the presheaf S defined on the left and pictured on the right:

S(ε) = {?},
S(a) = {x, x′},
S(ab) = {y},
S(ac) = {y′},

S empty otherwise,
S(ε ↪→ a) = {x 7→ ?, x′ 7→ ?},
S(a ↪→ ab) = {y 7→ x},
S(a ↪→ ac) = {y′ 7→ x′},

?

x x′

y y′.

a a

b c

Presheaves thus may ‘accept a trace in several ways’: the trace a is here accepted in two
ways, x and x′. The process Q is of course modelled by identifying x and x′.

As it turns out, we actually only need finitely many ways of accepting each trace. Thus, we
arrive at a first sensible notion of strategy given by presheaves of finite sets, i.e., functors
T(X)op → set, where set denotes the category with as objects all finite subsets of N, with all
maps between them. We call them (naive) strategies in the sequel.

I Notation 3. For any C, let ÛC denote the category of presheaves of finite sets over C.

1.2 Innocence as a sheaf condition
The third problem evoked above is that functors T(X)op → set allow some undesirable
behaviours. Intuitively, in π just as in CCS, agents should not have any control over the
routing of messages.

I Example 4. Consider a configuration X with three agents x, y, and z sharing a communic-
ation channel a, and a strategy S accepting (1) the trace where x outputs on a, (2) the trace
where y inputs on a, and (3) the trace where z inputs on a. Then, both synchronisations
should be accepted by S. However, one easily constructs a naive strategy in which one is
refused (see Example 19).

In order to rectify this deficiency, we enrich strategies with ‘local’ information. The idea is
that a strategy should not only accept or refuse traces on the whole configuration X, but
also traces on all possible subconfigurations of X. Furthermore, this local information should
fit together coherently.

I Example 5. Consider the configuration X of Example 4. Any strategy on X should now in
particular include independent strategies for each of the three agents x, y, and z. Coherence
means that in order for a trace to be accepted, it should be enough for it to be ‘locally
accepted’, i.e., at every stage in the trace, each agent should approve what she sees of the
next action. E.g., if the next action is a synchronisation x � y with x outputting and y

inputting on some channel a, then all that’s required for the synchronisation to be accepted
is that x accepts to output and y accepts to input. Consequently, if some other agent z also
accepts to input on a at this stage, then the synchronisation x � z is also accepted.

We call this putative coherence condition innocence by analogy with Hyland and Ong’s
notion [24]. In order to formalise it, we first extend our category of traces T(X) on X with
new objects representing traces on subconfigurations of X. We also add new morphisms,
which are about ‘locality’:

I Example 6. Consider the configuration X with two unary agents x1 and x2. There is a
trace t on X in which both agents fork. Consider now the subconfiguration Y of X consisting
solely of x1 and the trace t′ on Y in which x1 merely forks. There is a morphism t′ → t in
our new category.
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This extended category, TX , yields an intermediate notion of strategy, given by functors
Top
X → set. Among the new objects, we have in particular traces on just one agent of X,

which are obtained by sequentially composing atomic actions whose final configuration again
consists of one agent. We call this particular kind of trace a view. Views are the most ‘local’
kind of objects in TX . They form a subcategory VX of TX .

I Example 7. If X merely consists of an agent x linked to n communication channels,
consider the atomic action given by x forking into two new agents, say x1 and x2. This
action, viewed as an object of TX has three subobjects which are views: (1) the ‘identity’
view, in which nothing happens, (2) πln, which represents the left-hand branch (to x1), (3)
and πrn, which represents the right-hand branch (to x2).

The inclusion VX ↪→ TX induces a simple Grothendieck topology [30] on TX , which amounts
to decreeing that any trace is covered by its views. We finally call any S : Top

X → set innocent
precisely when it is a sheaf for this Grothendieck topology. In particular, giving an innocent
presheaf on TX is equivalent (up to isomorphism) to separately giving an innocent presheaf
for each agent of X, which rules out the undesirable behaviour described in Example 4.

Sheaves on TX form a category SX , which is small thanks to our use of set instead of Set.
They furthermore map back to naive strategies, i.e., presheaves on T(X), by forgetting the
local information. (This forgetful functor has a left adjoint.) Finally, because the considered
topology is particularly simple, sheaves are equivalent to presheaves on views, i.e., SX ' ṼX
(recalling Notation 3). In summary, we have three categories of strategies: naive strategies
are presheaves on traces T̆(X), innocent strategies SX are sheaves on the extended category
of traces TX , and so-called behaviours BX are presheaves on the category of views VX . The
last two are equivalent, and we furthermore have an adjunction T̆(X) ⊥ SX .

We use both sides of the equivalence: behaviours directly lead to our compositional
interpretation J−K : Pi → S of π-calculus processes, and innocent strategies are used below
as the basis for our semantic definition of fair testing equivalence.

1.3 Main result
What should we do in order to demonstrate adequacy of our model? By definition, causal
models expose some intensional information. Hence, equality is generally much finer than
any reasonable behavioural equivalence, so we should not base our main result on it. On
the other hand, causal models are supposed to be ‘compositional’, i.e., to come equipped
with an interpretation of syntactic operations in the model. The natural thing to do is thus
to choose some behavioural equivalence from the operational side, use compositionality to
transpose it to the model, and prove that the two coincide. More precisely, the considered
equivalence induces by quotienting two ‘extensional collapses’, one syntactic and the other
semantic, and we want to prove that the translation J−K induces a bijection between both
extensional collapses. Following [1], we call this intensional full abstraction for the considered
equivalence.

We here focus on so-called testing equivalences [11, 35, 5, 38], which are defined in two
stages. First, one chooses a ‘mode of interaction’. That is, one defines what the relevant
tests are for a given process and specifies how the two should interact. Typically, tests for
P are other processes T with the same free communication channels as P , and interaction
is just parallel composition P | T . The second stage amounts to choosing when P | T is
successful. E.g., in may testing equivalence P | T is successful just when there exists a
transition (P | T ) ♥=⇒ P ′ (that is, a ♥ transition, possibly surrounded by silent transitions),
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where ♥ is some action fixed in advance. In must testing equivalence, success is when all
maximal (possibly infinite) transition sequences contain at least one ♥ transition. In fair
testing equivalence (see [7] for some motivation and an adaptation to π), one requires that
all silent sequences (P | T ) =⇒ P ′ extend to some sequence P ′ =⇒ P ′′

♥−→ P ′′′ ending with a
♥ transition. In this paper, we focus on the latter, i.e., we prove (Theorem 25) that our
model is intensionally fully-abstract for fair testing equivalence. However, we show in the
long version [12] that our proof applies to a wide range of testing equivalences.

1.4 Contributions

Since this paper follows the same approach as previous work on CCS [23, 21, 22], we should
explain in which sense extending the approach to π is more than an easy application.

A first contribution comes from the fact that, in order to even define composition in our
category of traces (see our online draft [12] for details), we need to show that traces form
the total category of a fibration [25] over configurations. In previous work, this was done
in an ad hoc way. We here introduce a more satisfactory approach based on factorisation
systems [28, 15].

A second significant contribution is prompted by the interplay between synchronisation
and private channels in π, which is notoriously subtle to handle. And indeed, our proof
method for CCS fails miserably on π. One reason for this, we think, is that our notion of
trace for π, though simple and natural, is not ‘modular’ enough, in the sense that a trace
contains strictly more information than the collection of all ‘local’ information accessible to
agents (i.e., of all of its views, in the above sense). Thus, adapting our proof technique from
CCS would have required us to define a much more complex but more modular notion of
trace. Instead, we here take a somewhat rougher route, as sketched in Section 4.

Finally, as mentioned above, our proof now applies not only to fair testing equivalence,
but also to a whole class of testing equivalences.

1.5 Related work

Beyond the obviously closely related, already mentioned work of Winskel et al., we should
mention other causal and interleaving models for π, e.g., [34, 13, 4, 9, 10, 6, 14, 40, 19]. All
of these models are based on some lts for π. Instead, ours is rather based on reduction rules.
The subtleties usually showing up in ltss, related to mixing synchronisation and private
channels, do resurface in our proof of intensional full abstraction, but not in the definition of
our model. Indeed, it merely goes by describing the ‘rule of the game’ in π, and applying the
general framework of playgrounds [22].

Another general framework relating operational and denotational descriptions of programs
is Kleene coalgebra [3], which is mainly designed for automata theory. Playgrounds may be
viewed as adapting ideas from Kleene coalgebra to the process algebraic setting.

We should also mention Laird’s games model of (a fragment of) π [27], which accounts
for trace (a.k.a. may testing) equivalence. Standard game models view strategies as sets
of traces (with well-formedness conditions), so, as we have seen, lend themselves better to
modelling trace equivalence. In a non-deterministic, yet not concurrent setting, Harmer and
McCusker [18] resort to an explicit action for divergence, which allows them to recover a
finer behavioural equivalence. We feel that the presheaf-based approach is more general.

Furthermore, recent work by Tsukada and Ong [41] adapts and extends some ideas
of [23, 21] to nondeterministic, simply-typed λ-calculus.
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Let us moreover mention less closely related work: Girard’s ludics [16], Melliès’s game
semantics in string diagrams [33], Harmer et al.’s categorical combinatorics of innocence [18],
McCusker et al.’s graphical foundation for schedules [31]. Finally, Hildebrandt’s work [20]
also uses sheaves, though for a quite different purpose.

1.6 Plan
We describe our notion of trace at length in Section 2. We then sketch the model produced
by the machinery of playgrounds, and state our main result in Section 3. We then conclude
in Section 4, with a brief sketch of the proof and some future directions.

2 Traces

In this section, we introduce our notion of trace, which is based on certain combinatorial
objects, close in spirit to string diagrams. We first define these string diagrams, and then
use them to define traces. Configurations are special, hypergraph-like string diagrams whose
vertices represent agents and whose hyperedges represent channels. A perhaps surprising
point is that actions are not just a binary relation between configurations, because we not
only want to say when there is an action from one configuration to another, but also how this
action is performed. This will be implemented by viewing actions from X to Y as cospans
Y → M ← X in a certain category ÛC, whose objects we call higher-dimensional string
diagrams for lack of a better term. The idea is that X and Y respectively are the initial and
final configurations, and that M describes how one goes from X to Y . By combining such
actions (by pushout), we get a bicategory Dv of configurations and traces.

2.1 String diagrams
The category ÛC will be a category of presheaves over a base category, C. Let us motivate the
definition of C by recalling that (directed, multi) graphs may be seen as presheaves over the
category with two objects ? and [1], and two non-identity morphisms s, t : ?→ [1]. Any such
presheaf G represents the graph with vertices in G(?) and edges in G[1], the source and target
of any e ∈ G[1] being respectively G(s)(e) and G(t)(e), or e · s and e · t for short. A way to
visualise how such presheaves represent graphs is to compute their categories of elements [30].
Recall that the category of elements

∫
G for a presheaf G over C has as objects pairs (c, x)

with c ∈ C and x ∈ G(c), and as morphisms (c, x)→ (d, y) all morphisms f : c→ d in C such
that y · f = x. This category admits a canonical functor πG to C, and G is the colimit of the
composite

∫
G

πG−−→ C y−→ Ĉ with the Yoneda embedding. E.g., the category of elements for
y[1] is the poset (?, s) s−→ ([1], id [1])

t←− (?, t), which could be pictured as , where
dots represent vertices, the triangle represents the edge, and links materialise the graph of
G(s) and G(t), the convention being that t connects to the apex of the triangle. We thus
recover some graphical intuition.

Our string diagrams will also be defined as particular presheaves over some base category
C. However, since we’ll only be interested in finite structures, we restrict ourselves to the
category ÛC of presheaves of finite sets. In the case of graphs, presheaves of finite sets are
graphs whose nodes and edges are identified by natural numbers. Such graphs are thus finite.
In our case, the base category C is infinite, so presheaves of finite sets may represent infinite
structures. However, our notion of trace will only involve finite ones.

Let us give the formal definition of C for reference. We advise to skip it on a first reading,
as we then attempt to provide some graphical intuition.
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(?, s1) (?, s2) (?, s3)

([3], id [3])

ls rs

lss1 l idπ2 r lss2

lt = rtεs ρs

εts3

εts1 ε ρ

εts2

εt ρt

idτn,a,m,c,d

β

α

x′

x

y′

y

Figure 1 Categories of elements for [3], π2, and τ1,1,3,2,3, with graphical representation.

I Definition 8. Let GC be the graph with, for all n, m, with a, b ∈ n and c, d ∈ m:
vertices ?, [n], πln, πrn, πn, νn, ♥n, τn, ιn,a, on,a,b, and τn,a,m,c,d;
edges s1, ..., sn : ?→ [n], plus, ∀v ∈ {πln, πrn,♥n, τn, on,a,b}, edges s, t : [n]→ v;
edges [n] t−→ νn

s←− [n+ 1] and [n] t−→ ιn,a
s←− [n+ 1];

edges πln
l−→ πn

r←− πrn and ιn,a
ρ−→ τn,a,m,c,d

ε←− om,c,d.

Let C be the free category on GC, modulo the equations

s ◦ si = t ◦ ti l ◦ t = r ◦ t ρ ◦ t ◦ sa = ε ◦ t ◦ sc ρ ◦ s ◦ sn+1 = ε ◦ s ◦ sd.

The first equation should be understood in C(?, v) for all n ∈ N, i ∈ n, and v ∈ ∪a,b∈n{πln, πrn,
♥n, τn, ιn,a, on,a,b, νn}. (This is rather elliptic: if v has the shape ιn,a or νn, s ◦ si is really
?
si−→ [n+ 1] s−→ v.) The second equation should be understood in C(?, πn) for all n, and the

last two in C(?, τn,a,m,c,d), for all n,m, a ∈ n, and c, d ∈ m.

Our category of string diagrams is the category of finite presheaves ÛC. To explain the
design of C, let us compute a few categories of elements. Let us start with an easy one, that
of [3] ∈ C (we implicitly identify any c ∈ C with yc). An easy computation shows that it is
the poset pictured in the top left part of Figure 1. We think of it as a configuration with one
agent ([3], id [3]) connected to three channels, and draw it as in the top right part, where the
bullet represents the agent, and circles represent channels. In the presheaf, elements over
[3] represent ternary agents, while elements over ? represent channels. Configurations are
finite presheaves empty except perhaps on ? and [n]’s. Other objects will represent actions.
A morphism of configurations is a morphism between presheaves which is injective except
perhaps on channels. The intuition for a morphism X → Y between configurations is thus
that X embeds into Y , possibly identifying some channels.

I Definition 9. Configurations and morphisms between them form a category Dh.

A more difficult category of elements is that of π2. It is the poset generated by the
left-hand graph in the second row of Figure 1 (omitting base objects for conciseness). We
think of it as a binary agent (lt) forking into two agents (ls and rs), and draw it as on the
right. The graphical convention is that a black triangle stands for the presence of idπ2 , l,
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♥ ♠

[p]

πl
p

[p]

[p]

πr
p

[p]

[m]

om,c,d

[m]

[n+ 1]

ιn,a

[n]

[p]

♥p

[p]

[p]

τp

[p]

[p+ 1]

νp

[p]

Figure 2 Pictures and corresponding cospans for πl
p, πr

p, om,c,d, ιn,a, ♥p, τp, and νp.

and r. Below, we represent just l as a white triangle with only a left-hand branch, and
symmetrically for r. Furthermore, in all our pictures, time flows ‘upwards’.

Another category of elements, characteristic of the π-calculus, is the one for synchronisa-
tion τn,a,m,c,d. The case (n, a,m, c, d) = (1, 1, 3, 2, 3) is the poset generated by the graph on
the bottom left of Figure 1, which we will draw as on the right. The left-hand ternary agent
x outputs its 3rd channel, here β, on its 2nd channel, here α. The right-hand unary agent
y receives the sent channel on its 1st channel, here α. Both agents have two occurrences,
one before and one after the action, respectively marked as x/x′ and y/y′. Both x and x′
are ternary here, while y is unary and y′, having gained knowledge of β, is binary. There
are actually three actions here, in the sense that there are three higher-dimensional objects.
The first is the output action ε from x to x′, graphically represented as the middle point of

(intended to evoke the point where β enters channel α). The second is the input
action ρ from y to y′, graphically represented as the middle point of (where β
exits channel α). The third action is the synchronisation itself, which ‘glues’ the other two
together, as represented by the squiggly line.

We leave the computation of other categories of elements as an exercise to the reader.
The remaining string diagrams are depicted in the top row of Figure 2, for p = 2 and
(n, a,m, c, d) = (1, 1, 3, 2, 3).

The first two are views, in the game semantical sense, of the fork action π2 explained
above. The next two, om,c,d (for ‘output’) and ιn,a (for ‘input’), respectively are views for
the sender and receiver in a synchronisation action. The τp action is a silent, dummy action
as standard in the π-calculus. The ♥n action is a special ‘tick’ action used for defining fair
testing equivalence. The last one is a channel creation action.

2.2 From string diagrams to actions
In the previous section, we have defined our category of string diagrams as ÛC, and provided
some graphical intuition on its objects. The next step is to construct a bicategory whose
objects are configurations, and whose morphisms represent traces. We start in this section
by defining in which sense higher-dimensional objects of C represent actions, and continue in
the next one by explaining how to compose actions to form traces. Actions are defined in
two stages: seeds, first, give the local forms of actions, which are then defined by embedding
seeds into bigger configurations.

 
To start with, until now, our string diagrams con-

tain no information about the ‘flow of time’, although
we mentioned it informally in the previous section. To
add this information, for each string diagram M representing an action, we define its initial
and final configurations, say X and Y , and view the whole action as a cospan Y s−→M

t←− X.

CALCO’15



94 An Intensionally Fully-abstract Sheaf Model for π

We have taken care, in drawing our pictures before, of placing initial configurations at the
bottom, and final configurations at the top. So, e.g., the initial and final configurations for
the synchronisation action are pictured above and they map into (the representable presheaf
over) τ1,1,3,2,3 in the obvious ways, yielding the cospan Y s−→M

t←− X.
[p] | [p]

πp

[p]

[m] c,d |a,n+1 [n+ 1]

τn,a,m,c,d

[m] c |a [n]

We leave it to the reader to define, based on the
above pictures, the expected cospans for forking and
synchronisation as on the right, plus the remaining ones
specified in the bottom row of Figure 2 (where again
p = 2 and (n, a,m, c, d) = (1, 1, 3, 2, 3)). Initial configurations are at the bottom, and we
denote by [m] a1,...,ap |c1,...,cp [n] the configuration consisting of an m-ary agent x and an
n-ary agent y, quotiented by the equations x · sak = y · sck for all k ∈ p. When both lists are
empty, by convention, m = n and the agents share all channels in order.

I Definition 10. These cospans are called seeds.

We now define actions from seeds by embedding the latter into bigger configurations.
E.g., we allow a fork action to occur in a configuration with more than one agent.

I Definition 11. The interface IX of a seed Y
s−→ M

t←− X denotes the configuration
consisting only of the channels of the initial configuration X.

Y Y ′

M M ′

IX Z

X X ′

Since channels occurring in the initial configuration remain
in the final one, we have for each seed a cone from IX to the
seed. For any morphism of positions IX → Z, pushing the
cone along IX → Z using the universal property of pushout
as on the right yields a new cospan, say Y ′ →M ′ ← X ′.

I Definition 12. Let actions be all such pushouts of seeds.

Intuitively, taking pushouts glues string diagrams together. Let us do a few examples.

I Example 13. The seed [2] | [2] [ls,rs]−−−−→ π2
lt←− [2] has as interface the presheaf I[2] = ?+ ?,

consisting of two channels, say a and b. Consider the configuration [2] + ? consisting of an
agent y connected to two channels b′ and c, plus an additional channel a′. Further consider
the map h : I[2] → [2] + ? defined by a 7→ a′ and b 7→ b′. The pushout

I[2] [2] + ?

π2 M ′

is .

x1 x2

x

y ca=a′ b=b′

The meaning of such an action is that x forks while y is passive.

I Example 14. Because we push along initial channels, the interface of a seed may not
contain all involved channels. E.g., in an input action (not part of any synchronisation), the
received channel cannot be part of the initial configuration.

2.3 From actions to traces
Having defined actions, we now define their composition to yield our bicategory Dv of
configurations and traces. Consider Cospan(ÛC), the bicategory which has as objects all
presheaves of finite sets on C, as morphisms X → Y all cospans X → U ← Y , and obvious
2-cells. Composition is given by pushout, and hence is not strictly associative.
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x1 x2 y1 y2

x y

ca=a′ b=b′ a b ca

c

x y z

y′

y′′

Figure 3 Example traces.

I Notation 15. By convention, the initial configuration is the target of the morphism in
Cospan(ÛC). We denote morphisms in Cospan(ÛC) with special arrows X Y ; composition
and identities are denoted with • and id•.

I Definition 16. A trace is a finite, possibly empty composite of actions in Cospan(ÛC). Let
Dv denote the locally full subbicategory of Cospan(ÛC) with configurations as objects and
traces as morphisms.

Thus, arrows X → Y in Dh denote embeddings of X into Y (up to identification of
channels), whereas arrows Y X in Dv denote traces with X initial and Y final. Intuitively,
composition in Dv glues string diagrams on top of each other, which yields a truly concurrent
notion of trace: the only information retained in a trace about the order of occurrence of
actions is their causal dependencies.

I Example 17. Composing the action of Example 13 with a forking action by y yields the
first string diagram of Figure 3, which shows that the ordering between remote actions
is irrelevant. To illustrate how composition retains causal dependencies between actions,
consider the second string diagram. It is unfolded for readability: one should identify both
framed nodes, resp. both circled ones. In the initial configuration, there are channels a, b, and
c, and three agents x(a, b), y(b), and z(a, c) (channels known to each agent are in parentheses).
In a first action, x sends a on b, and y receives it. In a second action, z sends c on a, and
the avatar y′ of y receives it. The second action is enabled by the first, by which y gains
knowledge of a.

3 Strategies, behaviours, and semantic fair testing

3.1 Strategies and behaviours

Y ′

Y

X

w

u

u′
∼=
α

We now investigate notions of strategies. As announced in the introduction, we
define a category T(X) combining prefix ordering and isomorphism of traces:
T(X) has traces u : Y X as objects, and as morphisms u → u′ all pairs
(w,α) with w : Y ′ Y and α an isomorphism u •w → u′ in the hom-category
Dv(Y ′, X), as on the right1. Thus, u′ is an extension of u by w.

I Definition 18. Let the category of (naive) strategies on X be T̆(X).

Strategies do not yield a satisfactory model for π:

1 There is a small problem, however: morphisms should only describe how u maps to u′, not w. We
actually quotient them out to rectify this.

CALCO’15
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I Example 19. Consider the configuration X with three agents x, y, z sharing a channel a,
and the following traces on it: in ux,y, x sends a on a, and y receives it; in ux,z, x sends
a on a, and z receives it; in iz, z inputs on a. One may define a strategy S mapping ux,y
and iz to a singleton, and ux,z to ∅. Because ux,y is accepted, x accepts to send a on a; and
because iz is accepted, z accepts to input on a. The problem is that S rejecting ux,z roughly
amounts to x refusing to synchronise with z, or conversely.

T Z ′

u • w u′

Y Y ′

X

s

k

h

r

h′

We want to rule out this kind of strategy from our model, by adapting
the idea of innocence. We start by extending T(X) with objects representing
traces on sub-configurations of X. For this, we consider the following
category TX . It has as objects pairs (u, h) of a trace u : Z Y and a
morphism h : Y → X in Dh. A morphism (u, h) → (u′, h′) consists of a
trace w : T Z and a triple (s, k, r) making the diagram on the right commute1.

T Z ′

Z

Y Y ′

w

u

u′

r

s

Xh h′

[3] Y

[2]

[1] X

ι2,2

ι1,1

u

y

y′′

X.y

I Example 20. We adopt the convention of picturing the
above diagram for morphisms as the left-hand diagram
below: Now recalling the right-hand trace of Figure 3,
say u : Y X, y’s first action is an input on its unique
channel b. This yields a trace ι1,1 : [2] [1].
There is a morphism (ι1,1, y)→ (u, idX) in TX , pictured
as the right-hand diagram, which we think of as an occurrence of the trace ι1,1 in u. Thus,
morphisms in TX account both for prefix inclusion and for ‘spatial’ inclusion, i.e., inclusion
of a trace into some other trace on a larger configuration.

We now define views within TX :

I Definition 21. Let basic seeds be all seeds of any shape among ιn,a, on,a,b, νn, ♥n, τn, πln,
and πrn, for a, b ∈ n. Views are (possibly empty) composites of basic seeds in Dv. Let VX
denote the full subcategory of TX spanning pairs (u, h) where u is a view.

Intuitively, basic seeds follow exactly one agent through an action. An object of VX consists
of a view, say v : [n′] [n], plus a morphism h : [n]→ X in Dh, which by Yoneda is just an
agent of X. So an object of VX is just an agent of X and a view from it.

I Definition 22. The inclusion VX ↪→ TX induces a Grothendieck topology, for which a
family (ui

αi−→ u)i∈I of morphisms to some trace u is covering iff it contains all morphisms
from views into u. Let the category SX ↪→ T̂X of innocent strategies be the category of
sheaves of finite sets for this topology. Let the category BX of behaviours over X be ṼX .

Vop
X Top

X T(X)op

setB

jop

U(SB)
SB

As promised, SX and BX are equivalent. We obtain
the innocent strategy SB associated to a behaviour B ∈
BX , by taking its right Kan extension [29] along the in-
clusion jop : Vop

X ↪→ Top
X , as on the right. Explicitly, using standard results, we ob-

tain the end SB(u, h) =
∫

(v,x)∈VX B(v, x)TX((v,x),(u,h)), which is a kind of generalised
product. In the boolean setting (functors to 2), this end reduces to a conjunction∧
{(v,x)∈VX |∃α : (v,x)→(u,h)}B(v, x), demanding precisely that all views of u are accepted

by B. In the general case, the intuition is that a way of accepting u for SB is a compatible
family of ways of accepting the views of u for B. Existence of the right Kan extension
is proved in the general case in [22, Lemma 4.34], and follows from the general fact that
the considered limits are essentially finite. The forgetful functor U to naive strategies is
then given by restricting along T(X)op ↪→ Top

X as above right. Some local information may
be forgotten by U , which is neither injective on objects, nor full, nor faithful. E.g., if two
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behaviours differ, but are both empty on the views of some agent, then both are mapped to
the empty naive strategy.

I Example 23. Recalling X and S from Example 19, let us show that for any B ∈ BX ,
the associated strategy U(SB) ∈ T̆(X) cannot be S. Indeed, assuming it is, then because S
accepts ux,y and iz, B accepts the following views: (1) iz, (2) ox, in which x sends a on a
(without any matching input), (3) iy, in which y inputs on a, and (4) all identity views on x,
y, and z. But then U(SB) accepts both ux,y and ux,z, because B accepts all views mapping
into them.

3.2 Semantic fair testing

We now define our semantic analogue of fair testing equivalence, sketch our translation from
π, and state our main result. Semantic fair testing rests on two main ingredients: a notion
of closed-world trace, and an analogue of parallel composition in game semantics.

Vop
X1

Vop
X Vop

X2

set
B1 B2

[B1,B2]

The intuitive purpose of parallel composition is to let strategies
interact. If we partition the agents of a configuration X into two
teams, we obtain two subconfigurations X1 ↪→ X ←↩ X2, each
agent of X belonging to X1 or X2 according to its team. The crucial fact is that the category
VX of views on X is isomorphic to the coproduct category VX1 + VX2 . Parallel composition
of any B1 ∈ BX1 and B2 ∈ BX2 is then simply given by copairing [B1, B2] as above.

We now describe closed-world actions and traces, which are then used as a criterion for
success of tests. Closed-world actions are those which do not involve interaction with the
environment, i.e., formally, pushouts of a seed of any shape among νn,τn,♥n,πn, and τn,a,m,c,d.
A trace is closed-world when it is a composite of closed-world actions. Let W(X) i T(X)
denote the full subcategory of T(X) consisting of closed-world traces, and let the category
of closed-world strategies be Ẇ(X). Further, denote by B 7→ B the composite functor
ṼX → T̆(X) ∆iop−−−→ Ẇ(X), where ∆iop denotes restriction along iop.

A closed-world trace is successful when it contains a ♥ action, and unsuccessful otherwise.
A state σ ∈ S(u) of a strategy S ∈ W̆(Z) over a closed-world trace u : Z ′ Z is successful
iff u is. Define ⊥⊥Z as the set of closed-world strategies S ∈ W̆(Z) such that any unsuccessful
closed-world state admits a successful extension, i.e. S ∈ ⊥⊥Z iff for all unsuccessful u ∈W(Z)
and σ ∈ S(u), there exists a successful u′ ∈ W(Z), a morphism f : u → u′, and a state
σ′ ∈ S(u′) such that σ′ · f = σ. Finally, in order to compare behaviours for semantic fair
testing equivalence, we specify what a test is for a given behaviour B ∈ BX . A test consists of
a configuration Y and a behaviour T ∈ BY . The behaviour B then should pass the test (Y, T )
iff IX = IY and [B, T ] ∈ ⊥⊥Z , where IX consists of all channels of X (recall Definition 11)
and Z is the pushout X +IX Y (X and Y thus form two teams on Z). At last, we define
semantic fair testing equivalence, for any B ∈ BX and B′ ∈ BX′ :

I Definition 24. Let B ∼f B′ iff B and B′ should pass the same tests.

3.3 Intensional full abstraction

We now sketch our translation from π-calculus processes to behaviours and state our main
result. First, we consider processes to be infinite terms as generated by the grammar

P,Q ::=
∑
i∈nGi | (P |Q) G ::= ā〈b〉.P | a(b).P | νa.P | τ.P | ♥.P ,
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up to renaming of bound variables as usual. Such a coinductive definition requires some
care [12]: notably, processes come equipped with their finite set Γ of free channels, which we
denote by Γ ` P . In order to translate processes to behaviours, we denote the coproduct in
BX by ⊕ (which is the pointwise coproduct of presheaves). Furthermore, let us denote by
B[n] the set of basic seeds b : [nb] [n] from [n]. For any family (Bb)b∈B[n] of behaviours,
where each Bb is a behaviour over [nb], we denote by 〈(Bb)b∈B[n]〉 the behaviour B′ over [n]
such that B′(id•[n], id [n]) = 1, and for any view b • v, B′(b • v, id [n]) = Bb(v, id [nb]). Armed
with this notation, we coinductively map processes with free channels in {1, . . . ,Γ} for some
Γ ∈ N to behaviours on [Γ] like so:
JΓ `

∑
i αi.PiK = 〈b 7→ ⊕{i|JαiK=b}JΓ · αi ` PiK〉 JΓ ` P |QK =

Æ
πlΓ 7→ JΓ ` P K
πrΓ 7→ JΓ ` QK

∏
,

where (1) Jā〈b〉K = oΓ,a,b, Ja(b)K = ιΓ,a, JνaK = νΓ, J♥K = ♥Γ, and JτK = τΓ, (2) all
unmentioned basic seeds are mapped to the everywhere empty behaviour ∅, (3) Γ · αi
denotes Γ + 1 when αi is an input or a channel creation2, and Γ otherwise. E.g., we have
JΓ ` a(b).P + a(b).QK = 〈ιΓ,a 7→ JΓ + 1 ` P K ⊕ JΓ + 1 ` QK〉. We then define fair testing
equivalence ∼Pi

f for π-calculus processes as in [7]: let ⊥Pi denote the set of processes P such
that for all P =⇒ P ′ there exists P ′ =⇒ P ′′

♥−→ P ′′′, and, given any two processes Γ ` P and
Γ ` Q, let P ∼Pi

f Q iff for all Γ ` T we have (P | T ∈ ⊥Pi) ⇔ (Q | T ∈ ⊥Pi). Finally, our
main result is:

I Theorem 25.
1. For all P,Q, (Γ ` P ) ∼Pi

f (Γ ` Q) iff JΓ ` P K ∼f JΓ ` QK.
2. For all B over [Γ], there exists a process Γ ` P such that JΓ ` P K ∼f B.

4 Conclusion and future work

We have described our notion of trace and the induced model of π. We then have stated our
main theorem. In our online long version [12], the interested reader may find the proof that
our traces organise into a playground [22], and the proof of Theorem 25. For lack of space,
we cannot give any detail. Still, we sketch the latter.

The idea is to reduce semantic fair testing equivalence to fair testing equivalence in the
standard sense for some ad hoc lts S. We then single out a particular quotient M of S,
which admits a syntactic description very close to Berry and Boudol’s chemical abstract
machine [2], though with a kind of persistent explicit substitutions. Elements of M thus
roughly consist of finite multisets of molecules. Multisets are here thought of as chemical
soups, in which synchronisation is viewed as interaction between compatible molecules. In
order to simplify matters, we also work with a chemical abstract machine presentation of the
π-calculus. We then define a candidate ‘pseudo-inverse’ ζ to the translation map J−K. These
are maps between molecules for π and molecules forM, which extend straightforwardly to
chemical soups. We finally design a relation between π-calculus soups andM soups, which
modularly allows π-calculus processes to correspond to their translation, andM-molecules
to correspond to their image under ζ. We are then able to show that this relation is a weak
bisimulation which straightforwardly entails that J−K both preserves and reflects fair testing
equivalence and is surjective up to fair testing equivalence, i.e., is intensionally fully-abstract.

Regarding future work, we of course plan to extend our approach to more complex calculi,
e.g., calculi with passivation or functional calculi, and eventually consider some full-fledged

2 W.l.o.g., we choose representatives of processes so that if Γ ` a(b).P or Γ ` νb.P , then b = (Γ + 1).
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functional language with concurrency primitives. Furthermore, we consider generalising our
technique for constructing playgrounds and applying them, e.g., to graph rewriting, error
diagnostics, or efficient machine representation of reversible π-calculus processes.
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