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Abstract

By assuming that orientation information of brain white matter fibers can be

inferred from Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) mea-

surements, tractography algorithms provide an estimation of the brain connec-

tivity in-vivo. The two key ingredients of tractography are the diffusion model

(tensor, high-order tensor, Q-ball, etc.) and the means to deal with uncertainty

during the tracking process (deterministic vs probabilistic mathematical frame-

work). In this paper, we investigate the use of an analytical Q-ball model for

the diffusion data within a well-formalized particle filtering framework. The

proposed method is validated and compared to other tracking algorithms on

the MICCAI’09 contest Fiber Cup phantom. Tractographies of in-vivo adult

and fetal brain Diffusion-Weighted Images (DWI) are also shown to illustrate

the robustness of the algorithm.
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1. Introduction

In the last decade, Magnetic Resonance Imaging (MRI) has become a pop-

ular and powerful tool for medical imaging and brain understanding. In partic-

ular, Diffusion-Weighted MRI is a non-invasive imaging system, which gives in-

formation on water diffusion in human brain. These indirect observations of the

white matter geometry in vivo (Basser et al., 1994) allow nerve fiber reconstruc-

tion by using tractography algorithms. The two key points of a tractography

algorithm are the diffusion model (Lenglet et al., 2009) and the mathematical

framework describing the tracking process.

Water diffusion is historically modeled by diffusion tensors (Basser et al.,

1994). This model is particularly suited to homogeneous regions of tissue fiber

orientation, such as the corpus callosum. However, complex fiber architectures

have been detected in approximately a third of voxels of the brain (Behrens

et al., 2007) and the second-order tensor model does not handle such fiber

bundle geometry well. A way to deal with these issues is to use High Angular

Resolution Diffusion Imaging (HARDI) with appropriate diffusion models such

as high-order tensors (HOT) (Liu et al., 2004, Özarslan and Mareci, 2003) or

Q-ball (Tuch, 2004). The first is a generalization of the diffusion tensor and

the Bloch-Torrey equation whereas Q-ball is a projection on the Q-space by a

Funk-Radon transform. Q-Ball Imaging (QBI) has benefits over other HARDI

reconstruction approaches by being linear and easy to compute (Tuch, 2004).

In the last few years, spherical deconvolution (Barnett, 2009, Descoteaux et al.,

2009, Tournier et al., 2007) and normalization (Aganj et al., 2010, Tristan-Vega

et al., 2009) techniques have been developed to improve the accuracy Q-Ball

modeling and its robustness to noise. In addition, the use of orientation diffusion

functions (ODF) in Q-Ball provides a straightforward density probability of the

orientation of diffusion displacement.

The second key point in tractography algorithms concerns tracking process

modeling. Tractography methods can be categorized using the two following

features: the way they use DW-MRI data (local vs global modeling) and the
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underlying mathematical framework (deterministic vs probabilistic approaches)

(see Lazar (2010) for a recent review of tractography methods).

The first proposed tractography methods (Basser et al., 2000, Mori et al.,

1999) were local and deterministic. Starting from a seeding point, the fiber tra-

jectory is computed in a step-wise fashion based on local measurement (such as

the principal direction of the second order tensor). Stopping criteria are usually

a brain mask (the trajectory exits the brain mask), low Fractional Anisotropy

(FA) values (such as measured in CSF) or maximum curvature (assuming some

smoothness of the fibers). These local deterministic approaches can be affected

by the accumulation of errors and influenced by local irregularities in the diffu-

sion data. A way to avoid such issues is to consider a filtering approach (Malcolm

et al., 2010, Savadjiev et al., 2010). Another way to avoid such issues is to use a

global framework for optimal trajectory estimation (Fillard et al., 2009, Jbabdi

et al., 2007, Lifshits et al., 2009, Parker et al., 2002, Staempfli et al., 2006, Wu

et al., 2009). Global optimization algorithms estimate fiber bundles using an

energy-based framework. Global trajectories are obtained by optimizing global

parameters related to the underlying diffusion data and possibly additional con-

straints such as fiber path smoothness. However, the estimation of the entire

tractogram of the brain used to be often computationally expensive. Recent

techniques, such as Reisert et al. (2011), require less computation time (few

hours on a standard PC) to provide whole brain tractograms.

The fiber path estimation may be affected by local irregularities in diffusion

data due to noise, partial volume effect or ambiguity induced by the diffusion

model. A way to manage this uncertainty is to describe the tractography prob-

lem within a probabilistic framework. The uncertainty in fiber path estimation

is then characterized by a set of possible propagation directions for a given

voxel. Probabilistic methods generate multiple trajectories to provide a distri-

bution of fiber bundles for a given seed point. The output of such algorithms

is a probability map of connection between the given seed voxel and other vox-

els of the brain. Probabilistic streamline (Berman et al., 2008), probabilistic

optimization-based (Jbabdi et al., 2007, Lifshits et al., 2009) and stochastic
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path sampling (Behrens et al., 2007, 2003, Bjornemo et al., 2002, Friman et al.,

2006, Jeurissen et al., 2011, Lazar and Alexander, 2005, Parker and Alexander,

2003) algorithms can be discerned. In such a framework, a key point is the

effectiveness of the sampling stage (Parker and Alexander, 2003, Zhang et al.,

2009). In particular, as fiber paths can be modeled as Markov chains, Markov

Chain Monte Carlo (MCMC) methods can be efficiently used for the sampling

stage (Zhang et al., 2009).

Extending previous work (Zhang et al., 2009), we investigate in this study the

use of a high order modeling, such as Q-ball within a particle filtering framework.

The reliability of these recent models allows us to extract more information

from data, such as the orientation distribution function (ODF) which provides

a precise idea of the underlying fiber architecture at every voxel. Then, a non-

linear state-model is used for the tracking modeling and the probabilistic maps of

fibers are estimated using a particle filtering algorithm. Therefore, the proposed

algorithm depends only on spherical functions, such as ODF, and not on the

diffusion model used. Experimental results on synthetic data, phantom data

and real data, both adult and fetal, illustrate the robustness of the proposed

algorithm.

2. Theory

The tractography challenge can be treated as a tracking process where the

trajectory of the most likely fiber path is evaluated. MCMC methods are usually

employed to solve this kind of problem. First, the fiber trajectory is modeled

as a Markov Chain. Then, the posterior density of the fiber’s trajectory is

estimated using a Sequential Importance Sampling (SIS) framework (Doucet

et al., 2000).

The tractography problem is formulated as a dynamic system. Using a state

space model, prior probability defines the expected trajectory of a fiber and

likelihood probability characterizes the uncertainty of its geometry. Considering

a non-Gaussian state space model, prior and observation densities are non-
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Figure 1: As observations, the algorithm use spherical functions describing the orientation

probability of the diffusion at each location in the volume, i.e. the orientation of fiber bundles.

In this work, Descoteaux et al. (2009) is used for diffusion modeling (see Appendix A). It

can be noted that the presented model is sufficient for the data processed in this work, but

the presented algorithm can use any recent model providing such spherical functions. On the

illustration, a field of spherical function is plotted on an axial slice of a fetal brain (the model

order is l = 4).

Gaussian. The problem of white matter tractography is then a dynamic non-

linear system. Contrary to linear filtering methods such as Kalman filtering,

particle filtering techniques are well suited to estimating the posterior density

of non-linear systems.

2.1. Observations

The raw diffusion signal (i.e. DWI data) forms the observations of the pro-

cess but it is not used directly. The algorithm need rather spherical functions

ψx of the orientation of the diffusion along fiber bundles at each location x in

the image volume (see figure 1). These functions model a spherical probability

of the fiber configuration at x and can be computed from the DWI data.

In this work, a spherical harmonics modeling of water diffusion in brain is

used (Descoteaux et al., 2009). The two main advantages of this model are its

accuracy (with respect to the second order tensor model) and its analytical form.

The diffusion signal is decomposed into spherical harmonics and the fODF is

5



then computed by applying the Funk-Radon theorem (see Appendix A and De-

scoteaux et al. (2009) for more details). The experiments in this work reveal

that the chosen modeling of diffusion provides satisfactory brain tractograms on

such data (low b-factor and moderate number of gradient directions). Never-

theless, other diffusion models could be considered (Aganj et al., 2010, Barnett,

2009, Tournier et al., 2007, Tristan-Vega et al., 2009). Since the algorithm only

needs a spherical function modeling the distribution of the fibers configuration

at any location in the image volume, any of these models can be used instead.

Considering the diffusion modeling (Descoteaux et al., 2009), the fODF is

normalized between 0 and 1. In our experiments, this diffusion modeling pro-

duces satisfactory results for order l = 4. For higher order, spurious and nega-

tive peaks can be removed if needed by applying a low pass filter on it (as used

in Tournier et al. (2007)). During the process, the maxima of the spherical func-

tions have to be extracted. Several methods are available in the literature (Bloy

and Verma, 2008, Jiao et al., 2011, Schultz and Seidel, 2008). In this work,

a space discretization and an exhaustive search has been used. Due to noise,

small peaks can appear on the spherical function. As used in Descoteaux et al.

(2009), a threshold on the fODF magnitude has been implemented in order to

avoid the extraction of such peaks (see Descoteaux et al. (2009) for details).

2.2. Fiber trajectory model

In a volume Ω ⊂ R3, a fiber trajectory can be modeled as a sequence of n

displacement vectors vk with k = 1, . . . , n. From a given starting point x0 ∈ Ω,

each point of the path is defined recursively as

xk+1 = xk + λvk , (1)

where λ ∈ R is the step size which is assumed to be constant in this work and vk

is a unit vector at step k. Hence, in space state model, the trajectory v0:k can be

built iteratively. The fiber trajectory model is depicted in figure 2. During the

sequential construction of the solution, at each step, only local information of

the diffusion is available. Therefore, fiber paths are assumed to have Markovian
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Figure 2: A fiber trajectory is modeled as a sequence of displacement vectors. The real fiber

path is displayed in blue and the corresponding sequence of vectors is illustrated by black

arrows and points. Diffusion data is shown at each point. Considering states yt = {xt, vt} for

t = 0, . . . , k, the fiber path modeling forms a Markov chain since each state depends only on

previous state and observations.

nature. As illustrated in figure 2, this means that each step depends only on

previous step and on current observation data.

2.3. Fiber tracking model

Observations are DWI intensities in a volume Ω ∈ R3 and the fiber trajectory

model consists in a sequence of displacement vectors in Ω. The displacement

vectors are the parameters to be estimated. For this purpose, the Sequential

Importance Sampling (SIS) algorithm is used (see algorithm 1).

2.3.1. Sequential Importance Sampling (SIS)

Let the DWI intensities be denoted as U . Given a location x ∈ Ω, the

diffusion signal Sx and the fODF ψx are constructed from intensities Ux. In a

dynamic system, state and observation process, respectively yk = {xk, vk} and

zk = {Uxk
}, are defined as follow:




yk = fk(yk−1, γk)

zk = hk(yk, δk)

, (2)

where no linear assumption is made on functions fk and hk and where γk and

δk are independent, eventually Gaussian, white noise. The dynamic system is

entirely defined by three densities : initial, prior and likelihood (Doucet et al.,

2000).
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Algorithm 1: Sequential Importance Sampling

Input:

U ⊂ Ω Image intensities

M Number of particles

ǫESS Resampling threshold

Output:

C = {y(m)
0:k , w̃

(m)
0:k }Mm=1 Particles’ cloud

foreach particle in C do

y0 ∼ p(y0)

w̃0 = 1
M

end

for k = 1 to K do

foreach particle in C do

yk ∼ π(yk|Θ(yk−1, zk))

wk = wk−1
p(zk|yk)p(yk|yk−1)
π(yk|Θ(yk−1,zk))

w̃k = wk
∑

wj

end

NESS = 1
∑

(w̃j)2

if NESS < ǫESS then

resample all particles (last state) according to importance weights

end

end
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Conditionally to step k, measures at same and next step are assumed to be

independent:

p(zk, yk+1|yk) = p(zk|yk)p(yk+1|yk) . (3)

Due to the Markovian nature of fiber trajectory and independent condition given

by (3), a fiber path is modeled as a Markov chain. Thus, dynamic system is

only described by the following densities:

p(y0) , (4)

p(yk|y0:k−1, z1:k−1) = p(yk|yk−1) , (5)

p(zk|y0:k, z1:k−1) = p(zk|yk) . (6)

Considering (3), (5) and (6) and applying Bayes theorem, we have an expression

of the posterior density:

p(y0:k|z1:k) = p(y0:k|z1:k−1, zk)

=
p(y0:k, zk|z1:k−1)

p(zk|z1:k−1)

∝ p(zk|y0:k, z1:k−1)p(y0:k|z1:k−1)

∝ p(zk|yk)p(yk|y0:k−1, z1:k−1)p(y0:k−1|z1:k−1)

∝ p(zk|yk)p(yk|yk−1)p(y0:k−1|z1:k−1) .

(7)

The principle of particle filtering is to sample sequentially a set of M paths

from the starting point x0 ∈ Ω. This means that M weighted particles are

placed at point x0 at step k = 0 and are propagated as time progresses. Given

the set of particles {y(m)
0:k , w

(m)
k }Mm=1 at step k, the propagation to the next step

k+1 is performed following three stages: prediction, weighting and selection. In

prediction stage, since the posterior p(y0:k|z1:k) cannot be evaluated, the impor-

tance density π(y0:k|z1:k) (which is an approximation of the posterior density) is

used to simulate each of the vectors at each point in the fiber paths. Assuming

causality of the importance density, i.e. for all t ≥ k, π(y0:k|z1:t) = π(y0:k|z1:k),
a recursive formulation along the path can be chosen (Doucet et al., 2000), such

that

π(y0:k|z1:k) = π(x0)
k∏

t=1

π(yt|y0:t−1, z1:t) , (8)
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which leads to

π(y0:k|z1:k) = π(yk|y0:k−1, z1:k)π(y0:k−1|z1:k−1) . (9)

Therefore, at step k, by considering the Markovian nature of fiber paths, the

state yk of a path y0:k−1 is sampled according to π(yk|y0:k−1, z1:k).

After the prediction stage, a weighting stage giving an estimate of the relia-

bility of the approximation of the posterior density is performed. Using a ratio

between the unknown posterior distribution and its approximation, a particle’s

weight is given by

w
(m)
k =

p(y
(m)
0:k |z1:k)

π(y
(m)
0:k |z1:k)

. (10)

By inserting (7) and (9) in (10), we get a recursive definition of a particle’s

weight:

w
(m)
k =

p(y
(m)
0:k |z1:k)

π(y
(m)
0:k |z1:k)

∝ p(zk|v(m)
k )p(y

(m)
k |y(m)

k−1)p(y
(m)
0:k−1|z1:k−1)

π(y
(m)
k |y(m)

0:k−1, z1:k)π(y
(m)
0:k−1|z1:k−1)

∝ w
(m)
k−1

p(zk|y(m)
k )p(y

(m)
k |y(m)

k−1)

π(y
(m)
k |y(m)

0:k−1, z1:k)
.

(11)

Here the weight w
(m)
k at step k is computed using the weight w

(m)
k−1 at step

k − 1, the prior density p(y
(m)
k |y(m)

k−1), the likelihood density p(zk|y(m)
k ) and the

importance density π(y
(m)
k |y(m)

0:k−1, z1:k). A normalization step is then applied:

w̃
(m)
k =

w
(m)
k∑M

n=1 w
(n)
k

. (12)

Choosing an importance distribution of the form (9) leads to an increasing

variance of the weights as the time progresses (Kong et al., 1994). As a result,

early in the estimation process, a significant fraction of the weights may fall

rapidly. So, the purpose of the final stage selection is to avoid this degeneracy.

We first measure degeneracy of the cloud of paths using an estimate of the

effective sample size (ESS) (Kong et al., 1994, Liu, 1996):

N̂ESS =
1

∑M
m=1

(
w̃

(n)
k

)2 . (13)
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When NESS decreases below a fixed threshold εESS, a resampling procedure is

applied in order to eliminate particles with low weight (Doucet et al., 2000).

2.3.2. Densities

To help illustrate the form of the distributions and understand the com-

ponents of the Bayesian framework, figure 4 shows the configurations of the

distributions for a simple example of crossing fibers.

Prior density. As in (Zhang et al., 2009), the von Mises-Fisher (vMF) distri-

bution has been selected as the prior because it is a parametric distribution for

directional data. Another common choice in the literature is the Watson dis-

tribution (see for instance Malcolm et al. (2010)). On the (d − 1)-dimensional

sphere, vMF distribution of unit vector x ∈ Rd is given by

fd(x|µ, κ) = Cd(κ) e
κµTx , (14)

where κ ≥ 0, ||µ|| = 1 and Cd(κ) is a normalization constant defined as

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
(15)

where Id/2−1 denotes the modified Bessel function of the first kind and order

d
2 − 1. This distribution is parametrized by µ and κ, respectively called mean

direction and concentration. The greater the value of κ, the stronger is the

concentration of the distribution around mean direction µ. The distribution is

uniform over the sphere if κ = 0 and when κ → ∞, the distribution is focused

on a point of the sphere defined by µ.

In this work, directions are defined on the 2-dimensional unit sphere in R3.

Thus, the prior is defined by a vMF distribution in dimension d = 3 and a

concentration parameter κ:

p(yk|yk−1) = f3(uk|uk−1, κ) , (16)

where uk and uk−1 are spherical coordinates versions of respectively vectors vk

and vk−1. The value of concentration parameter κ is a smoothness constraint of

the fiber path. It can be set manually as a general parameter of the algorithm.
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Importance density. The iterative solution estimation relies on the approxima-

tion of the posterior, i.e. on the importance density. At each step, knowing

a path’s vector sequence and its observation information, next direction added

to the path is sampled according to the importance density. The optimal im-

portance density is p(yk|yk−1, z1:k), because conditionally upon yk and y1:k, the

variance of the importance weights wk is then minimal (Doucet et al., 2000).

Since it is difficult to sample from p(yk|yk−1, z1:k), a usual choice is to use the

same distribution as prior for importance. Nevertheless, this approach, called

bootstrap filter or condensation algorithm, may not be efficient enough : since

no observation information is used, the particles generated using the prior are

often outliers of the true posterior distribution.

As importance function, we choose a local parametrization π(yk|θ(yk−1, zk)),

where θ(yk−1, zk) is a finite dimensional parameter determined by yk−1 and

zk (Doucet et al., 2000). The ODF functions model water diffusion in the brain

and give an estimation of the underlying fiber architecture. Each ODF’s maxima

should indicate fibers’ directions. Let Λk be a set of directions in the solid angle

defined by a threshold angle θ around the previous direction vk−1, where ψxk
is

locally maximum. Then, importance density is defined in dimension d = 3 as a

vMF mixture:

π(yk|θ(yk−1, zk)) =





∑

µ∈Λk

ωµ f3(uk|µ, κµ) if Λk 6= ∅

f3(uk|uk−1, κ) else

, (17)

where uk is the unit vector in spherical coordinates corresponding to the unit

vector vk in Cartesian coordinates, κµ is the concentration depending on obser-

vations, κ is the concentration parameter and ωµ are mixture proportions such

that 0 ≤ ωµ ≤ 1 and
∑

µ∈Λk
ωµ = 1. Each ωµ is proportional to the ODF value

in direction µ:

ωµ =





Ψxk
(µ)

∑

ν∈Λk
Ψxk

(ν) if ûk−1µ ∈ [−Θ,Θ]

0 else
. (18)

The use of a vMF mixture leads to an efficient sampling procedure, in compu-

tation time, of the importance distribution (Ulrich, 1984).
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Figure 3: Fitting concentration parameter κµ as a function of NRMSE in direction µ.

The more fitted are intensities Uxk
to model Sxk

, the more focused in direc-

tion µ should be the importance distribution. Thus, concentration parameter

κµ can be set according to the uncertainty of the model in the direction µ. The

Normalized Root Mean Square Error (NRMSE) of the model gives a measure of

fitting between the intensities and the model. Let ξµ be the NRMSE restricted

to the solid angle defined by a threshold angle θ around the mean direction µ.

The parameter κµ can be empirically computed as a function of ξµ. The figure 3

indicates that the relationship between concentration parameter κµ and ξµ is

well described by an exponential function:

κµ = α exp
(
βξµ + γξ2µ

)
, (19)

where α, β and γ are estimated from the fitting in figure 3.

Likelihood density. Partially due to noise, there is uncertainty in MRI diffusion

information. The observation density is supposed to be a measure of this uncer-

tainty. In term of probabilities, likelihood defines a measure of how observations

match the current model. We model the likelihood density as a distance error
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between measured observations and observations matching perfectly the current

state model. At step k, uk is the direction sampled according to the importance

and µ is assumed to be the mean vector of the sampled vMF distribution (in

order to get a direction uk). According to section Appendix A.2, the diffusion

signal at position xk is described by Sxk
. Let S̃xk

be the diffusion signal at

position xk if the sampled direction uk was exactly the mean direction µ, i.e.

µ = uk. Then, S̃xk
is determined from Sxk

by a rotation of angle µ̂uk in three

dimensional space:

S̃xk
= Rot(µ̂uk, Sxk

) , (20)

where µ̂uk denotes the angle between µ and uk.

Let consider S̃xk
as the diffusion signal and the MRI intensities Uxk

a noisy

version of it, i.e. Uxk
= S̃xk

+ ǫ. Noise in MRI images can be described

for moderate-large signal-to-noise ratio (SNR ≥ 4 dB) by a normal distribu-

tion (Nowak, 1999), i.e. ǫ = Uxk
− S̃xk

∼ N (0,Σ2). The standard deviation

of diffusion weighted image in each gradient directions σi is estimated by least

square estimation and pseudo-residuals (Gasser et al., 1986). Assuming that the

error distributions in each gradient direction gi are independent, the likelihood

is given by:

p(zk|vk) =

N∏

i=1

N (Uxk
(gi)− S̃xk

(gi) | 0, σ2
i )

=

N∏

i=1

1

σi
√
2π

e
− 1

2

(

Uxk
(gi)−S̃xk

(gi)

σi

)2

.

(21)

If there is no mean direction µ in the solid angle defined by an threshold angle

θ around vk−1, i.e. Λk = ∅, likelihood is set to 1. Thus, particles are weighted

considering only prior and importance densities.

2.4. Algorithm’s behaviour

The particle filtering algorithm propagates for each seed a cloud of particles

representing the density probability of the fiber path passing through the seed

voxel. When some particles reach a multi-directionnal point, such as crossing,

the cloud splits in any possible direction which fullfill the angle condition and
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(a) fODF (b) Prior density (c) Likelihood

density

(d) Posterior

density

(e) Importance

density

Figure 4: Likelihood, prior and posterior densities are displayed above for 2 crossing fibers

configuration. The corresponding importance density is shown too. Starting from the fODF,

the Bayesian framework of the particle filtering method is illustrated here. Posterior density

is defined as the product of prior and likelihood density. The final weighting function of the

particles includes the fraction of the posterior density on the importance density.

the parameters of the probabilistic model with respect to the previous direc-

tion. The sampling proportions in each direction depends on the probability of

each direction defined by the densities used in the algorithm (see section 2.3.2).

The output connectivity map should reflect the integrated motion of the parti-

cles. Then, the fiber path is estimated by computing the MAP of the posterior

density.

2.5. Connectivity map and fiber bundle estimation

The SIS algorithm provides as output a particles cloud which approximates

the posterior density. This cloud is not the expected output data structure, such

as connectivity map and fiber pathway. Both representation are important: the

connectivity map represents the uncertainty of the process whereas the fiber

tract represents the estimated optimal path. The probability map of connections

from the seed point is computed as the frequency of particles passing through

each voxel. It could have been generated using the importance weights, however,

in our experiments, the two methods lead to very similar maps.

The fiber trajectory estimate can be approximated by the MAP of the pos-

terior density. Usually, particle’s trajectory with the higher importance weight

is used as MAP estimate (Zhang et al., 2009). Nevertheless, this choice induces

irregularities of trajectory due to both the resampling stage and the probabilis-
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tic simulations. A better approach is to search the optimal pathway in particles

cloud. This solution is at least equal to the particle’s trajectory with the best

importance weight (Godsill et al., 2001). This process is detailed in algorithm 2.

2.6. Implementation considerations

The discrete nature of DWI requires algorithms working in a discrete space.

When a particle fall between two voxels of the image domain, the properties

of this particular location, such as the diffusion signal, have to be interpolated.

This can implies several issues: interpolation of the data and its impact on the

tractography algorithm. The chosen model provide a solution to the first issue.

Indeed, this model is analytical and linear, allowing to interpolate directly the

spherical harmonics coefficients. During the experiments, the data have been

interpolated using B-Spline of order 1 (equivalent to trilinear interpolation).

The second issue raises essential problems on boundaries, when the diffusion

signal changes drastically (e.g. the boundary between the white matter and

the cerebrospinal fluid). The interpolated spherical functions on the boundaries

may not be correct. In this work, a mask has been used to prevent the particles

going out the white matter, which is a common strategy (Descoteaux et al.,

2009, Savadjiev et al., 2010).

3. Experimental results

For all the experiments presented in this article, the stopping criterion of

the tractography algorithm is the exit of all particles of a predefined mask and

the chosen model is used at order l = 4. Other parameters of the modeling are

set as advised in Descoteaux et al. (2009).

3.1. Synthetic data

For validation purposes, a synthetical slice of size 16 × 16 mm representing

two crossing fiber bundles has been used (figure 5). The dataset has been

generated using Matlab code of Barmpoutis et al. (2009).
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Algorithm 2: MAP estimation of particles cloud

Input:

C = {v(m)
0:k , w̃

(m)
0:k }Mm=1 Particles’ cloud

Output:

v̂MAP

0:k Maximum a posteriori (particle’s path)

for m = 1 to M do

δ
(m)
1 = log p(v

(m)
1 |v(m)

0 ) + log p(z
(m)
1 |v(m)

1 )

end

for k = 2 to K do

for m = 1 to M do

δ
(m)
k = log p(z

(m)
k |v(m)

k ) + max
n

[
δ
(n)
k−1 + log p(v

(m)
k |v(n)k−1)

]

ϕ
(m)
k = argmax

n

[
δ
(n)
k−1 + log p(v

(m)
k |v(n)k−1)

]

end

end

mK = argmax
m

δ
(m)
K

v̂MAP

k = v
(mK)
K

for k = K − 1 to 1 do

mk = ϕk+1(mk+1)

v̂MAP

k = v
(mk)
k

end

v̂MAP
0 = v

(m1)
0

v̂MAP

0:k , (v̂MAP
0 , v̂MAP

1 , . . . , v̂MAP

K )
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(a) Synthetic dataset (b) Tensor and

fODF fields

(c) Tensor and

fODF

Figure 5: A tractography of a synthetic dataset is shown in 5(a). The ground truth, the result

of Zhang’s algorithm and the proposed algorithm are respectively displayed in green, blue and

red. Details of the fODF and tensor fields located in the red square in the dataset 5(a) are

exposed in 5(b). In 5(c), both fODF and tensor located in the red squares in 5(b) are depicted.

The directions estimated by the model and the true directions are illustrated respectively by

red and black lines.

Figure 5(a) shows the results obtained with the proposed method compared

to our implementation of the tensor-based approach of Zhang et al. (2009).

The proposed algorithm (in red) is able to track the ground truth (in green)

whereas the tensor-based algorithm (in blue) fails on the crossing configuration.

As shown by details of tensor and fODF fields in figure 5, the tensor model

does not capture the local diffusion directions and may mislead the tracking

algorithm.

3.2. Fiber Cup phantom

The Fiber Cup is a tractography contest proposed at the MICCAI confer-

ence help in London in 20091. By containing several crossing, kissing, split-

ting and bending fiber configurations, this phantom (Poupon et al., 2008) is

1The website http://www.lnao.fr/spip.php?rubrique79 provides details and results

about this contest. The phantom used to compare tractographies and the comparison program

are also available on this website.
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Table 1: Quantitative results of the proposed algorithm on the Fiber Cup phantom compared

to the contest winner’s quantitative results.

Fibers
Proposed algorithm Reisert et al. (2011)

L2 tan curv L2 tan curv

F1 2.39 14.78 0.0484 2.24 9.33 0.0254

F2 2.40 13.87 0.0515 2.37 12.38 0.0400

F3 3.14 8.81 0.0339 4.98 6.35 0.0213

F4 1.90 7.71 0.0316 2.18 5.37 0.0141

F5 2.86 9.29 0.0306 1.98 6.20 0.0204

F6 3.95 9.63 0.0242 4.25 8.10 0.0263

F7 4.33 13.72 0.0523 5.62 11.44 0.0230

F8 4.65 14.94 0.0427 2.11 8.26 0.0433

F9 15.40 44.56 0.0683 2.61 6.73 0.0168

F10 13.81 54.25 0.1017 5.78 12.1 0.0262

F11 2.33 9.64 0.0232 3.36 4.85 0.0128

F12 3.07 12.98 0.0482 17.02 46.74 0.0326

F13 3.41 14.03 0.4499 4.66 12.75 0.0703

F14 2.18 15.08 0.0763 2.56 14.74 0.0687

F15 2.58 10.34 0.0344 2.16 4.25 0.0107

F16 4.50 7.29 0.0320 5.81 7.54 0.0208

a very convenient way to compare the proposed method with other existing

approaches (Fillard et al., 2011). The Fiber Cup phantom size is 64 × 64 × 3

voxels with a resolution of 6×6×6 mm. It contains 2 repetitions of 65 gradient

directions each, including 1 baseline direction for each repetition. The b-value

is 2650 for each direction. Parameters are chosen for each fiber but in most of

the cases, 5000 particles were used with a propagation step length of 0.5 mm, a

concentration κ = 30 and a resampling threshold ǫESS = 0.01.

The quantitative results of our algorithm are summarized in the table 1 and
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(a) Ground truth (b) Estimated fiber paths using the proposed

algorithm

(c) Estimated connectivity map using

FSL (Behrens et al., 2007)

(d) Estimated connectivity map using

the proposed algorithm

Figure 6: Fibers trajectories and connectivity map estimations of our algorithm on the Fiber

Cup phantom compared respectively to the ground truth and the result of FSL (Behrens et al.,

2007). Tractographies of all seeds are displayed on the same map.
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estimated fibers from the particles cloud are shown in figure 6. The algorithm

is also compared to a probabilistic algorithm (Behrens et al., 2003)2. The algo-

rithm gets 71 points according to the Fiber Cup contest and would be at the

2nd position in the ranking. Nevertheless, satisfactory results are generated in

a short computation time. For instance, the winner of this contest Reisert et al.

(2011) uses a global algorithm which performed the tractography in one day of

computation time whereas our implementation ran in 2 minutes on a computer

with 8 processor Intel Xeon 2.4 GHz (including the preprocessing, i.e. the model

estimation, the noise estimation, the maxima extraction, etc.).

3.3. In-vivo data

In this section, experiments have been completed on two in-vivo data: adult

and fetal brain.

3.3.1. Adult brain

Data. First, in-vivo adult brain dataset comes from the MIDAS / National

Alliance for Medical Image Community (NAMIC)3 and was acquired from a

healthy adult volunteer using a 3 Tesla GE system. It contains a 144× 144× 85

volume image with 1.7×1.7×1.7 mm voxel resolution. The diffusion signal was

measured in 51 directions with b = 900 s.mm−2 and there are 8 baseline images

(b = 0 s.mm−2). During the model estimation, the 8 baseline images have been

used by averaging them.

Number of particle parameter. A critical parameter in the proposed methodol-

ogy is the number of particles used for each seeds. Indeed, the more particles

that are used, the more accurate and the slower the algorithm is. Therefore,

the accuracy depending on the number of particles is an essential information.

The purpose of this paragraph is to evaluate the convergence of the algo-

rithm. Based on previous experiments, it has been observed that the use of 1000

2Thanks to Ting-Shuo Yo and Pierre Fillard for their help when setting up FSL’s param-

eters for the phantom of the Fiber Cup contest.
3http://insight-journal.org/midas/collection/view/190
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Figure 7: Number of particle parameter study. The similarity measure (correlation) of a

tractography of N particles compared to an initial tractography with 1000 particles depending

on the number of particles is plotted. This experiment shows how the number of particles

parameter influences the accuracy of the solution. The major gain is to decrease the amount

of the algorithm run time while preserving a good estimation of the solution searched.

particles provides a good estimation of the posterior density. This experiment

consists in estimating probability maps with decreasing numbers of particles

and evaluating the quality of the estimates based on a correlation measure with

the probability map obtained using 1000 particles. In order to get coherent

observations, experiment is made on a large number of seeds (about 105) in the

adult brain data.

Results are plotted in figure 7. The curve seems to stabilize at 400 particles

with a correlation of 0.95. Note that even with 100 particles, the correlation

measure is above 0.9. Considering that 1000 particles gives a good estimation,

this experiment shows that running the algorithm with a small number of par-

ticles (e.g. 100) provides a solution which is a least 90% correlated to this

estimation during shorter elapsed time of computation.

Experiments. The proposed algorithm was applied on adult brain data with a

seed spacing of 1 mm, a step length of 0.5 mm, a concentration κ = 60, a resam-
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(a) Mori et al. (1999) (b) Descoteaux et al. (2009) (c) Proposed algorithm

Figure 8: Tractography results of an adult brain using Tensor-based streamline, fODF-based

streamline and the proposed algorithm. The first and the last row show respectively tractogra-

phy of the corpus callosum and the pyramidal fasciculus. The corpus callosum and pyramidal

fasciculus are respectively displayed in blue and orange. Seed regions are depicted in yellow.

pling threshold ǫESS = 5 and 100 particles. In order to get only motor tracts in

the pyramidal fasciculus, the fiber paths estimates were cropped using a region

of interest in the brainstem. Comparisons of the proposed algorithm with deter-

ministic streamline algorithms Descoteaux et al. (2009) and Mori et al. (1999)

and with probabilistic algorithm Zhang et al. (2009) are respectively displayed

in figures 8 and 9-10. The figure 11 illustrate the tractography provided using

the proposed method with the full tracts colored by their local orientation.

3.3.2. Fetal brain

Data. Second, in-vivo fetal brain dataset was performed on a 1.5 T Siemens

Avanto MRI Scanner (SIEMENS, Erlangen, Germany) using a 6-channel phased

array coil combined to the spine array positioned around the mother abdomen.

An axial spin echo single-shot echo-planar sequence was acquired in free breath-
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(a) FSL (Behrens et al., 2007) (b) Proposed algorithm

Figure 9: Coronal view of connectivity maps of the corpus callosum tractographies on an

adult brain using FSL (Behrens et al., 2007) and the proposed algorithm.

ing along 30 non-collinear diffusion gradient encoding directions with a b value of

700 s.mm2. The following pulse sequence parameters were used: TR = 6800 ms;

TE = 99 ms; FOV = 250× 250 mm2; matrix = 128× 128; 41 contiguous axial

slices of 3.5 mm thickness covering the whole fetal brain; no gap; 2 excitations.

The resolution of the T2 weighted HASTE sequence (TE/TR = 147/3190 ms)

is : 0.74× 0.74× 3.45 mm. The gestation age of the fetus was 32 weeks.

Experiments. The proposed algorithm was applied with a seed spacing of 1 mm,

a step length of 0.5 mm, a concentration κ = 60, a resampling threshold ǫESS =

5 and 100 particles. Comparisons of the proposed algorithm with streamline

algorithms Descoteaux et al. (2009) and Mori et al. (1999) and with probabilistic

algorithm Zhang et al. (2009) are respectively displayed in figures 12 and 13-14.

A whole fetal brain tractography is illustrated in figure 15.

3.3.3. Discussion on experiments

As shows figure 8, tensor-based (Mori et al., 1999) and fODF-based (De-

scoteaux et al., 2009) streamline algorithms recover close fiber paths solutions

with slight local differences. Main structures of corpus callosum and pyramidal

tracts are reconstructed. These similar results may be due to the low b-values
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(a) FSL (Behrens et al., 2007) (b) Proposed algorithm

Figure 10: Connectivity maps of the pyramidal fasciculus tractographies on an adult brain

using FSL (Behrens et al., 2007) and the proposed algorithm. Top row: sagittal views ; last

row: coronal views.
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Figure 11: Tractography of the corpus callosum and the pyramidal tracts using the presented

algorithm. This is the same result as in figure 8, but without cutting the pyramidal tracts

and with the opacity of the display set to 1. The tracts are colored by their local orientation

(red to yellow for respectively horizontal to vertical axes).
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(a) Mori et al. (1999) (b) Descoteaux et al. (2009) (c) Proposed algorithm

Figure 12: Tractography results of a fetal brain using Tensor-based streamline, fODF-based

streamline and the proposed algorithm. The first and the last row show respectively the

sagittal and the coronal views. The corpus callosum and pyramidal fasciculus are respectively

displayed in blue and orange. Seed regions are depicted in yellow. The perspective effect of

the illustrations suggests that some tracts go out of the brain but this is not the case.

(a) Zhang et al. (2009) (b) Proposed algorithm

Figure 13: Coronal view of connectivity maps of the corpus callosum tractographies on a fetal

brain using our implementation of Zhang et al. (2009) and the proposed algorithm.
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(a) Zhang et al. (2009) (b) Proposed algorithm

Figure 14: Connectivity maps of the pyramidal fasciculus tractographies on a fetal brain using

our implementation of Zhang et al. (2009) and the proposed algorithm. Top row: sagittal

views ; last row: coronal views. Because the fetal brain is not perfectly oriented, the coronal

view suggests that the solution of the proposed algorithm in the brainstem is not symmetric

but this is not the case (see the symmetry of pyramidal tracts of the proposed algorithm in

figure 12).
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Figure 15: Tractography of the whole fetal brain using the presented tractography technique.

The seed region is defined by using a mask of the white matter obtained by tissue segmentation.

The seed spacing is 1 mm. The opacity of the display has been set to 0.1. The tracts are

colored by their local orientation (red to yellow for respectively horizontal to vertical axes).
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(b < 1000) which tends to make the high order model almost looks like tensor.

The proposed method provides long fiber tracts with a small fanning effect at

the end (see for instance pyramidal fasciculus and some fibers of the corpus

callosum). In fetal brain (see figure 12), tensor-based streamline tractography

algorithm produces short tracts. This might be due to low FA in fetal DW-MRI,

which prevents the tensor model from providing valuable information on local

diffusion configuration. fODF-based algorithm is able to trace longer tracts, al-

lowing it to discern the entire corpus callosum form in coronal view. As in adult

brain experiments, the proposed method reveals long fiber paths with a small

fanning effect at the end of the tracts (see pyramidal fasciculus and the end

of corpus callosum’s tracts of the U-shaped structure when entering grey mat-

ter). Since some fiber tracts link the two pyramidal fasciculus in both solutions

produced by Descoteaux et al. (2009) and the proposed algorithm (figure 12),

this might be due to artifacts in Q-Ball model (these two methods use the same

diffusion model). The tractographies displayed in figures 11 and 15 illustrate

the capacity of the presented algorithm to perform valuable solutions, even with

low b-values data.

Results of FSL (Behrens et al., 2007) and of our implementation of Zhang

et al. (2009) on in-vivo data (figures 9, 10, 13 and 14) allows to distinguish

the searched structures (corpus callosum and pyramidal fasciculus) with having

a visualization of uncertainty. The proposed method offers in the presented

experiments an accurate description of the searched structures (see for instance

the sagittal views of adult and fetal pyramidal tracts in figure 10 and 14) and

is able to recover pyramidal fasciculus in the brainstem in both experiments.

Fetal connectivity maps (figures 13 and 14) seems to be smoother and to have

more uncertainty than adult connectivity maps. Nevertheless, the desired fiber

bundles (corpus callosum and pyramidal fasciculus) are still recognizable.
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4. Discussion

In this article, a probabilistic tractography method has been presented based

on the well-formalized particle filtering framework and using a high order model

for diffusion data. The proposed method is not model-dependent: any model

providing ODF can be used. The output of the algorithm is an estimate of

the posterior density of the white matter fibers. The keypoints of the method

are the three densities: prior, likelihood, importance. First, the prior density

constrains the solution. Then, the likelihood density ensures the reasonableness

of the estimation with a noise model of DW-MRI data. Finally, fast and efficient

sampling is realized by a vMF mixture.

The proposed algorithm is an improvement of the method described in Zhang

et al. (2009). The basic idea of particle filtering tracking process is kept but

densities have been adapted to high order model requirements using spherical

diffusion function, such as Q-Ball models. For instance, the use of a vMF

mixture as importance density allows to use all the information provided by the

ODF. Using an optimal algorithm for MAP estimation (Godsill et al., 2001)

instead of considering particles’ importance weights (Zhang et al., 2009), the

MAP is better estimated and therefore the fiber’s trajectory estimation is more

accurate.

As shown by the experiments performed on the synthetic dataset and the

Fiber Cup phantom, the use of a Q-ball data modeling within the particle

filtering framework leads to accurate estimations of complex fiber configurations.

Experiments on in vivo data have shown the contribution of the particle filtering

framework compared to deterministic streamline approaches and tensor-based

particle filtering algorithm. Using the proposed method, main structures are

recovered, fiber tracts end with a fanning effect and connectivity maps describe

accurately the main structures and uncertainty.

Although the proposed method shows interesting results on the Fiber Cup

phantom (see section 3.2), the algorithm produces a small wavering effect on the

fiber estimates. This loss of precision is mainly due to the chosen ODF model,
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which is more sensitive to noise than the tensor model (tensors are smooth mod-

eling of diffusion signal). A stronger global regularization than concentration

parameter of local vMF density or a more recent diffusion model could provide

smoother estimates. Using another dynamic model (see equation 1) is also a

way to have a stronger constraint on the estimates. Furthermore, optimal trac-

tography results are obtained on the Fiber Cup phantom by setting slightly

different parameters. These parameters add flexibility to the proposed method

which is able to capture many different connection configurations, as shown by

the Fiber Cup phantom.

Initially, the particle filtering framework is not fast enough for whole brain

tractography applications in a short computation time. It is more suited for

local tractography of specific fiber bundles. However, as established in sec-

tion 3.3.1, the number of particle parameter has a major effect on algorithm’s

speed and can be decreased without having a substantial negative impact on

the estimated solution. Therefore, the whole brain tractography is practicable

for reasonable computation time. For instance, the computation time of a par-

ticle filter propagation from one seed in an adult brain is about 40 s using 100

particles and 3 mn using 1000 particles on a computer with one processor Intel

Core 2 Duo 2.93 GHz (including the preprocessing, i.e. the model estimation,

the noise estimation, the maxima extraction, etc.).

Further work could study the whole diffusion information available, without

any diffusion model constraint. Indeed, techniques for estimating models induce

approximations that can exaggerate uncertainty in the data. Other improve-

ment could involve parameters of the tracking process. For instance, the step

size λ (cf. section 2.2) can be estimated by the full 3D ensemble average prop-

agator (Descoteaux et al., 2011), which gives radial and angular information.

The use of recent spherical constrained deconvolution models (Aganj et al.,

2010, Tournier et al., 2007) could improve the capture of low angle crossing

configurations at high b-values. Furthermore, it would be interesting to define

the likelihood in an analytical formula depending on direction parameters to
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improve speed and accuracy of the proposed algorithm.
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Appendix A. Diffusion modeling

Appendix A.1. Spherical harmonics

Spherical harmonics are the angular portion of a set of solutions to Laplace’s

equation. They are generally used for representing spherical functions, such as

the diffusion signal. Given spherical coordinates (θ, φ) ∈ [0, π] × [0, 2π[, the

spherical harmonic basis at order l and degree m is written as

Ym
l (θ, φ) =

√
2l+ 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) eimφ , (A.1)

where Pm
l is the associated Legendre function. Since the assumption of the

diffusion signal being real and antipodally symmetric is made, the use of real

spherical harmonics is more suitable:

Ym
l (θ, φ) =





(−1)m
√
2 Re(Ym

l (θ, φ)) if − l ≤ m < 0

Y0
l if m = 0

√
2 Im(Ym

l (θ, φ)) if 0 < m ≤ l

. (A.2)

Appendix A.2. Diffusion signal

Let us consider an image domain Ω ⊂ R3 and diffusion weighted measure-

ment in N directions. According to the spherical harmonics decomposition

model (Descoteaux et al., 2007), the diffusion signal at a voxel x ∈ Ω and in

each of the N directions u = (θ, φ) is decomposed into real spherical harmon-

ics (A.2):

Sx(u) =

l∑

k=0

k∑

m=−k

cmk Ym
k (u) , (A.3)
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where l is the order of the decomposition and only even orders are used. The

coefficients cmk can be estimated by a regularized linear regression (Descoteaux

et al., 2006, 2007).

Appendix A.3. Fiber orientation distribution function (fODF)

Applying the Funk-Radon transform to (A.3), the diffusion ODF can be

analytically computed at point x ∈ Ω and in direction u = (θ, φ) (Descoteaux

et al., 2007). In order to get a sharper ODF, the fiber orientation distribution

function (fODF) is computed from the diffusion ODF by a deconvolution (De-

scoteaux et al., 2009). Using coefficients estimated from equation (A.3), this

function is defined at a point x ∈ Ω and in a direction u = (θ, φ) as

ψx(u) =

l∑

k=0

k∑

m=−k

2πPm
k (0)

cmk
fm
k

Ym
k (u) , (A.4)

where Pm
k is the associated Legendre function, cmk are the estimated coefficient

in (A.3) and fm
k are the sharper coefficients (see Descoteaux et al. (2009) for

more details).
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