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Control and stabilization of steady-states in a finite-length
ferromagnetic nanowire

Yannick Privat* Emmanuel Trélat!

Abstract

We consider a finite-length ferromagnetic nanowire, in which the evolution of the magneti-
zation vector is governed by the Landau-Lifshitz equation. We first compute all steady-states
of this equation, and prove that they share a quantization property in terms of a certain en-
ergy. We study their local stability properties. Then we address the problem of controlling
and stabilizing steady-states by means of an external magnetic field induced by a solenoid
rolling around the nanowire. We prove that, for a generic placement of the solenoid, any
steady-state can be locally exponentially stabilized with a feedback control. Moreover we de-
sign this feedback control in an explicit way by considering a finite-dimensional linear control
system resulting from a spectral analysis. Finally, we prove that we can steer approximately
the system from any steady-state to any other one, provided that they have the same energy
level.

Keywords: Landau-Lifshitz equation, nanowire, control, Kalman condition, feedback stabiliza-
tion.

AMS classification: 58F15, 58F17, 53C35

1 Introduction

Semiconductor nanowires are emerging as remarkably powerful tools in nanoscience, with the po-
tential of having a significant impact on electronics, but also on numerous other areas of science
and technology such as life sciences and healthcare. Nanotechnologies based on semiconductor
nanowires promise new generations of devices benefiting from large surface to volume ratios,
small active volumes, quantum confinement effects and integration in complex architectures on
the nanoscale. Among the applications, magnetic storage on devices such as hard-disks or mag-
netic MRAMSs is one of the most important issues (see, e.g., [25]). Indeed the use of spin injection
opens the door towards new spintronic applications and storage technologies while allowing a quick
access to information, with a speed which can be millions of times larger than the one in today’s
hard-disks.

The magnetic moment of a ferromagnetic material represented by a domain Q C IR® is usually
modelled as a time-varying vector field

m:RxQ— S
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where S? is the unit sphere of R?, the evolution of which is governed by the Landau-Lifshitz
equation (see [21])

Im
ot
where the effective field h(m) is defined by

h(m) = 2A0m + hg(m) + hext-

= —m A h(m) —m A (m A h(m)), (1)

The constant A > 0 is called the exchange constant. By normalization we assume that A =
1/2. The demagnetizing field hq(m) is the solution of the equations div(hq(m) +m) = 0 and
curl(hq(m)) = 0 in D’(IR?), where m is extended to R? by 0 outside Q, and D’(R?) is the space of
distributions on R?. The field hext is an external one, for instance it can be an external magnetic
field. Other relevant terms may be added for a more accurate physical model, for instance giving
an account for the anisotropic behavior of the crystal composing the ferromagnetic material.

The magnetization is usually assumed to satisfy homogeneous Neumann boundary conditions,
that is, the normal derivative of m along 92 vanishes.

The existence of solutions of (1) is a challenging issue in general. We refer to [3, 8, 22, 23, 29]
for results on the existence of global weak solutions or on the existence and uniqueness of local
strong solutions. It can be noted that h(m) = —VE(m) with

1 1
E(m) = 5/9\Vm|2dﬂc+§/l)\3 \hd(m)|2dx—/9hext~mdx, (2)

which is the energy functional given in [6] in the thermodynamical static model description of fer-
romagnetic materials. Whereas the Landau-Lifshitz equation (1) describes the dynamic evolution
in time of the magnetization, the static theory stipulates that the steady-states states of the mag-
netization field are the minimizers of the energy E: in the ferromagnetic material represented by
the domain €2, there appears a spontaneous magnetization m (of norm 1), minimizing the energy
E(m) (see [17]). Note also that, given a solution m of (1) with a constant (in time) external field
hext, there holds

Bt ) = = [ hm(t,) = (h(n(t,2) - m(t, )t ) do Q

and thus this energy functional is naturally nonincreasing along a solution of (1).

Since the two terms at the right-hand side of (1) are orthogonal, every steady-state of (1) must
satisfy

m A h(m) =0,

and accordingly the set of steady-states coincides with the set of extremal points of the energy F.

The set of steady-states of (1) is known to be very rich in the sense that it contains a number
of diverse pattern configurations, such as Bloch or Néel walls (see [14, 18]). This diversity could be
used in magnetic storage technologies in order to encode information or to perform logic operations

(see [2, 5, 16, 28]).

In this paper we focus on ferromagnetic nanowires with finite length. Such ferromagnetic

materials are represented by a domain {2 which is a truncated cylinder whose ratio ¢ = % is
very small (see Figure 1). From the mathematical point of view, it has been proved in [26, 9] with

T" convergence arguments that, if £ tends to 0 then one ends up with a one-dimensional model of
the ferromagnetic nanowire, with a domain = (0, L) (here, L > 0 is the length of the nanowire)
and the 1D Landau-Lifshitz equation

om

—p = ~mAh(m) = m A (m A h(m)), (4)
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Figure 1: Ferromagnetic nanowire

where m(t,z) € 8% is the magnetization vector, for every time t and for every z € (0, L), and
where the effective field h(m) takes the more particular form

h(m) = Opem — Maey — m3es + Next.

The nanowire is here assumed to be parallel to ey, the first vector of an orthonormal basis (eg, es, €3)
of ]RB, as on Figure 1, and m = mje; + maoes + mses3. Morever m satisfies the Neumann boundary
conditions

my(¢,0) =my(t, L) = 0. (5)

It can be noted that infinite-length 1D nanowires (that is, £ = IR) have been the subject of
many studies in physics or in mathematics. Indeed it is well-known that steady-states of infinite
nanowires are Bloch walls, analytically described by usual hyperbolic functions, and whose main
physical feature is to induce two almost linear regimes separated by a wall (brutal change of the
magnetization). The location of this wall evolves when the nanowire is submitted to an external
magnetic field. The dynamics of walls and their stability features have been investigated in many
physical studies (such as [4, 5, 24, 28]), and then has been analyzed mathematically in [7] together
with control and stabilization properties by means of an external magnetic field in [10, 11].

In this paper we first compute and characterize all steady-states of a finite-length 1D nanowire.
We prove that there exists a finite number of one-parameter families of steady-states that we
express analytically in terms of elliptic functions. This finite number increases with the value of
the length L of the nanowire. Note that this study of steady-states is similar (but simpler) to the
one of [20] where steady-states have been computed for a 1D network of nanowires. Moreover, as
in [20] we exhibit a quantization property of the steady-states, showing that a certain notion of
energy can only take some discrete values. Using spectral tools, we investigate the local stability
features of the steady-states.

Then we address the problem of control and stabilization of the steady-states of a finite-length
nanowire by means of an external magnetic field. This magnetic field is generated by a solenoid
(inductance coil) localized along the nanowire (see Figure 2). More precisely, assuming that the
nanowire is represented by the interval = (0, L), the solenoid is assumed to generate a magnetic
field only along the portion (a,b) of (0, L) (with 0 < a < b < L arbitrary). From the physical point
of view this approximation is acceptable, since outside of the domain of the solenoid the norm
of the magnetic field generated by this inductance is rapidly decreasing according to Biot-Savard
laws. Moreover, we assume that the axis of the solenoid has an angle of nonzero measure with the



Figure 2: The solenoid used as controller

axis of the nanowire. Therefore we assume that the magnetic field generated by the solenoid is

-

Pext (t) = u(t)X(a,b) (.T)d,

where d = dye; + dses is a fixed vector of R® with ds # 0. Here, the notation x j(x) stands for the
characteristic function of a measurable set J, that is, x () = 1 whenever x € J and x (z) =0
otherwise. The scalar u(t) denotes the magnitude at time ¢ of the magnetic field and is our control.
The Landau-Lifshitz equation yields the control system
om - =
S =" A ho(m) —m A (m A ho(m)) — uX(apymAd—uX(@pnmA (mAd)
my(t,0) = m,(t,L) =0,

(6)

with
ho(m) = Opem — moes — maes. (7)

The problem that we address in the present paper is the following: given two steady-states
m! and m?, do there exist a time 7' > 0 and a control function u defined on (0, 7)) such that the
corresponding magnetization vector m, solution of (4) with Neumann boundary conditions (5) and
starting at m!', reaches m? within time T? Moreover, can such controls be designed in a nice and
robust way?

Moreover we investigate the following practical question: how does the orientation d impact
the above controllability issue? For instance, can the choice d= ey solve the problem?

In the paper we prove that, with a solenoid with d3 # 0 as on Figure 2 and for generic values of
a and b that we will characterize in the sequel, any steady-state can be locally exponentially stabi-
lized with an explicit feedback control, which can be moreover designed from a finite-dimensional
linear control system. As a second result, we prove that it is possible to steer approximately the
magnetization vector from a steady-state to any other one, provided that they have the same level
of (quantized) energy. We will actually show that our result holds true for all values of a and b
but a finite number of (resonant) values, and hence our result shares some robustness properties.

We stress on the fact that the system is acted upon with a localized magnetic field only (as on
Figure 2), however our results hold in the particular case a =0, b = L.

In [9], the authors consider a particular steady-state and investigate the case where ds, the third
direction of the solenoid, is zero. They prove that the resulting control system is stabilizable, but
is not asymptotically stabilizable with their feedback law. More details are provided in Remark 7.
We stress that the main novelty of our paper consists of the asymptotic stabilization results stated
in Section 3.1, under generic conditions on the direction of the solenoid.



2 Quantized steady-states and their stability properties

2.1 Computation of all steady-states

Recall that the steady-states of (4), in the absence of control (u = 0) are characterized by
(0, L)
(0, L) (8)

m A ho(m) =0
|m| =1
m4(0) = mg(L) =0,

x e
x e

)

where hg is defined by (7).

Theorem 1. Let Ny = [%], the integer part of % There exist Ny real numbers Eq,...,En, in

[0,1) such that every steady-state of (4) is either of the form

+1
m(z)=| 0 | = =£ey, (9)
0
or
cos 0(x)
m(z) = | coswsinf(x) |, (10)
sin w sin 6(x)
for some w € R, where 0 is a solution of the pendulum equation
0" (x) =sinf(z)cosf(z), 0<zx <L, (11)
0'(0) = /(L) = 0,

satisfying
0% +cos’0 =Cst = E,, € {Ey,Es,...,En, }.

In particular the set of steady-states reduces to the two functions given by (9) whenever L < .

Note that the two steady-states (9) can be actually written in the form (10) (with 6 = 0 or
7), but with 6”2 + cos? § = Cst = 1. We prefer however the presentation above, putting apart the
trivial steady-states (9).

The steady-states (10) consist of Ny one-parameter families of steady-states, where the con-
tinuous parameter is w € R. They are quantized by the value of what we can call their energy
02 + cos? § (which is constant in x over (0,L)): this energy can only take certain precise val-
ues among the set {E, Eo, ..., En,}. This quantization of the set of steady-states is due to the
Neumann conditions 6'(0) = §’(L) = 0, as shown in the proof below.

Note that if L = 7 then there must hold § = Cst = 7/2. This particular steady-state corre-
sponds to the center of the phase portrait of the pendulum (see Figure 3).

Proof. Every steady-state of (4) can be written as m = mye; + maes + mges (function of x only),
and (8) yields

myim4 —mims —mymz =0 on (0, L),
mam¥4 — mamy =0 on (0, L),
mymy —mimg —myma =0 on (0, L), (12)
m?+m3+m3=1 on (0,L),

m'(0) = m/(L) = 0.



The integration of the second equation of (12) yields the existence of a real number a such that
maom4 —mbhms = a on (0, L). Moreover, since m takes its values in S?, we set

my(x) = cosb(z),
ma(z) = cosw(x) sin 6(z), (13)

ms(z) = sinw(z) sin (),

for every x € (0, L). Then, it follows from (12) that

20" sinw + w” coswsin(26) — (w'? + 1) sinwsin(260) + 4w'6’ cosw cos® § = 0, (14)
20" cosw — w” sinwsin(26) — (w2 + 1) coswsin(26) — 4w'0’ sinw cos® 6 = 0, (15)
w'sin? 0 = a. (16)

Moreover, since

my = —6'sin6,

mby\  [(cosw —sinw) (6 cosf
mh sinw  cosw w'sing )’

the boundary conditions yield ¢'(y)sinf(y) = ¢'(y)cosf(y) = w'(y)sinf(y) = 0 for y = 0 and
y = L, hence
0'(0)=0'(L)=0 and w'(0)sinf(0) =w'(L)sinf(L) = 0.

In particular, it follows from (16) that necessarily o = 0 and hence
W’ sin? @ = constant = 0.

Then, except the particular cases § = 0 or § = 7 (which yield the steady-states (9)), we get that
w is constant.
Now, multiplying (14) by sinw and (15) by cosw and adding these two equalities, it follows
that
0" = sinf cos 6.

In particular 6”2 + cos? # is constant. This is a pendulum equation. Since the solutions 6 of this
pendulum equation must satisfy the Neumann conditions 6'(0) = 6’(L) = 0, they must correspond
to pieces of particular closed curves drawn on the phase portrait of Figure 3. More precisely, they
must be pieces of periodic solutions, inside the domain enclosed by the separatrices of the pendulum
in the phase portrait, with terminal points along the horizontal axis, and with a period T that
has to be in a certain ratio with respect to the length L of the nanowire. Indeed the condition
0’'(0) = 0'(L) = 0 imposes that L is an integer multiple of T'/2: there must exist n € IN* such that
T

L=n 5" (17)
The explicit expression of the solutions of the pendulum equation, as well as their periods, is
well-known in function of the elliptic functions'. More precisely, one has

0'(z) = k en (x +en! (,1(; cos6(0), k) k) , (18)
cosf(z) = k sn (:c +sn! <I1€ cos 0(0), k) k) , (19)

LRecall that, given k € (0,1), k = /1 — k2 and 7 € [0, 1], the Jacobi elliptic functions cn, sn and dn are defined
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Figure 3: Phase portrait of (11) in the plane (6, 6")

for every z € (0, L), with 8% + cos? @ = k? (with 0 < k < 1, the modulus of the elliptic function).
The period of § is T = 4K (k). Hence we have obtained that

L =2nK(k).

Since K is an increasing function from [0, 1) in [7/2,4+00), the modulus k can take only certain
precise values: this equation has exactly Ny solutions. The result follows. O

Remark 1. What is interesting here is the quantization property of the steady-states, whose
energy 6’2 + cos? § can only take certain values. A similar result was obtained in [20] for a network
of nanowires. Note that in [9] the authors consider throughout their work the particular steady-
state (up to the rotation parameter w) given by (10)-(11) with n =1 (that is, with 6 making half
a period in the phase portrait).

2.2 Linearized system around a steady-state

Let us linearize the control system (4) around a steady-state. Let My be an arbitrary steady-state
(we have seen that they exist provided that L > m). Without loss of generality we assume that

from their inverse functions with respect to the first variable,

1
et k) [ d
n o\ J(1 = 2)(R2 + k22)

sn-

n dt
b, k) — /0 VI —2)(1 — k2t2)

! dt
dn~1! k >—>/ > 1/1 — k2 in that case
R ) e )
and the complete integral of the first kind is defined by
/2 4o
K(k) = —_—
0 1 —k2sin?6

The functions cn and sn are periodic with period 4K (k) while dn is periodic with period 2K (k).



w = 0 (since Equation (4) is invariant with respect to rotations in w), and thus that

cos 0(x)
My(x) = sing(x) , (20)

with 6 solution of the pendulum equation (11), and with
02 + cos’ 0 = E,,,
for some given n € {1,..., No}.

Note that the trivial steady-states (9) can be put in this form provided that one takes E,, = 1.
In what follows, to avoid triviality we assume that the steady-state My is not of the form (9).

Following [7, 9, 20], we complete M into the mobile frame (My(x), M1 (x), M), with
—sinf(z) 0
Mi(z)= | cosb(z) |, Ma= 10
0 1

For every solution m of the controlled Landau-Lifshitz equation (6), considering m as a perturbation
of the steady-state My, since |m(t,x)| = 1 pointwisely, we decompose m : Ry x R — S§? C R3 in
the mobile frame as

m(t,z) = \/1 —r2(t,z) — r3(t,x) Mo(z) + r1(t,x) My (x) + ro(t, x) Ms. (21)

According to [9, Section 4] and [20, Section 3.1], m is solution of (4) if and only if r = <;1>
2

satisfies 5
6—: =Ar + Bu+ R(z,r, 1y, Tya, u), (22)
where N N
B +1d A+ E,Id
A= ((A +1d) A+ E, Id) (23)
with
A=02, —2cos’0 1d (24)
defined on the domain
D(A) = {f e H*(0,L) | f'(0) = f'(L) = 0}
(and hence D(A) = D(A) x D(A)), where
- ds — dy sinf(x)
Bla) = xan(@ (1 gt ) (25)

and where the higher-order terms are
R(z,r, vy, rox, ) = G(r)ree + Hi(z,7)ry + Ho(r)(rg, re) + Pz, r,u),

where

2
riTo T3 \/ﬁ_
ErE Vi TVl

S T—r2+1 __rrs

Vi=lr?




o = 2L (/TP o))
VISP o) VISP nd)

Hy(r) is the quadratic form on R? defined by

(o) ¢, x) = LA E AR (Vb 472y

(1—[r])3/2 V1= rPry =
and ( )
_ (Pi(z,ru
P(x,r,u) - (PQ(.’IJ,’I",U)) B
with
Py(z,r,u) = —ri\/1—|r|2cos@ + (r} —ry)sinf

—UX[a,b] A1 ((7’2 + 1 m) cos @ — r? sin 9)

_UX[a,b]dS (1 - 1-— |7’|2 + 7'17’2)
and

Py(z,r,u) = (r1 —ray/1—|r?)cosf +sinf(rirg + /1 —|r]2 = 1)
—UX[a,p]d1 ((1 — /1= |72 = rire)sind + (roy/1 —|r|2 — 71) cos@)
—UX[a,5)d373 -
What is important is the estimates
G(r)=O(r*),  Hi(r)=O(rl), Hz(r)=O(r]),
and in particular the fact that there exists a constant C' > 0 such that, if [r|? < 1, then
|R(z,r,p, q,w)| < C(|r?lgl + |rllp] + rllpf* + [ullr]), (26)
for every x € R, (r,p,q) € (R?)3, and v € R?. This estimate shows that R(x, 7,74, rpe,u) is a
term of higher order in (22) (remainder term).

2.3 Spectral properties of the steady-states

In this section we analyze the spectral properties of the steady-states of the uncontrolled Landau-
Lifshitz equation, that is, we take u(-) = 0 in (22), and we analyze the underlying linear operator
A defined by (23).

As we will see, A is not diagonalizable, however it can be diagonalized by blocks. We first need
to analyze the spectral properties of the operator A defined by (24). Note that

Ar=A(T) = (A4+1d)r + (A+ E, Id)re
"= ) T A+ 1) + (A4 B, Td)ry )

for every r € D(A) = D(A) x D(A).



Spectral analysis of A. The operator A = 92, —2cos? § Id defined on the domain D(A) = {f €
H2(0,L) | /(0) = f'(L) = 0} is clearly self-adjoint in L?(0,L). As a first preliminary remark, we
see using an integration by parts that

(A+ B, 1d)f, f)r2 = —||f' — 0'cotand f|7.,

for every f € D(A). Therefore,
<(A + En Id)f7 f>L2 < 0)

which means that the operator A + E,, Id defined on D(A) is nonpositive.
As a second preliminary remark, we are able to compute two eigenfunctions of A. Indeed, we

have
A sinf = —F,sinf,

and that
A cos = —(1+ E,)cosb.

Note that, if F,, = 0 then § = 7/2 and in that case cosf is not an eigenfunction. Similarly, if
E, =1 then § = 0 or m and in that case sinf is not an eigenfunction. For all other cases, one
has 0 < E, < 1, and we have thus computed two eigenfunctions. Moreover, since A + E, Id is
nonpositive, it follows that —F,, is the largest eigenvalue of A, associated with the eigenfunction
sin 6.

Proposition 1. There exists a Hilbert basis (e;)jen of L?(0,L), consisting of eigenfunctions of
A, associated with real eigenvalues A; that are simple, with

—00 < <A< <A < N = — By, (27)
and \j = —o00 as j — +00. Moreover,
e the largest eigenvalue \o = —FE,, is associated with the eigenfunction ey = sinf;
e the eigenfunction e; vanishes exactly j times on (0,L);
o the (n+1)-th eigenvalue is A, = —(1+E,,) and is associated with the eigenfunction e,, = cosf;
e —1 is not an eigenvalue of the operator A.

Remark 2. The fact that —1 is not an eigenvalue of the operator A will play an important role
in the sequel (see Section 3). It will ensure in particular that our controllability results hold true
by using only one single solenoid instead of two or more.

Proof. The existence of the Hilbert basis of eigenfunctions follows from the application of the
spectral theorem to the compact self-adjoint operator f € L?(0,L) + w € L?(0, L), where w is
the unique solution of

w” — (2cos?0+Nw=f, z€(0,L)

w'(0) = w'(L) = 0.
The simplicity of the eigenvalues of A and the nodal domain property are standard results for
Sturm-Liouville operators with Neumann boundary conditions (see for example [15, 30]). Since
Acosf = —(1+ E,,) cos 0 and since the function cos 6 vanishes n times along (0, L), we deduce that
—(14 E,) is the (n + 1)-th eigenvalue of A.

It remains now to prove that —1 is not an eigenvalue of A. We define the functions F; and F3

by Todt
Fi(z)=0'(z) and F,(z)= 0'(33)/ 7@

10



where v denotes any real number that does not belong to the set of zeros of the function §’. Denote
by xo any zero of the function . Notice that, since § satisfies (11), one has 83 (z() = 0. Using a
Taylor expansion with integral rest, it follows that there exist two functions 7; and 7, respectively
smooth in (0, L) and smooth at xg, such that n; (z) = n2(x0) = 0 and

0'(x) = 0"(zo)(x—z0) + (z — z0)*m(x)
S : + ()
02 T (@)@ —x)?

Moreover, the function 7 is smooth at z¢ and every point where 6’ does not vanish. According to
the expansions of 6’ and 9—}2 above, one easily computes

1 T — X0
F =— — o),

2,(7) 0" (20) + 0" (z0)(c — m0) + m_?xo(x o)
showing in particular that

1 dFM( ) = 1
07(xo) T Tdr T 9r(o)(a —ao)

F> o (z0) =

Moreover the space of solutions of the ordinary differential equation
w” —2cos® fw = —w in (0, L)

is exactly Span{Fi, F; ,}. It follows that —1 is an eigenvalue of A if, and only if there exists v € R

such that the function y : 2 — Fy _ (0)Fy(z) — F{(0)Fy , (z) satisfies y'(L) = 0. This is equivalent

to the condition ,
Fi(0) _ B3, (0)
Fi(L) ~ (L)

(28)

. F!(0 0"’ F; _(0) —LO'(L . . .
Noting that Ff((L)) = 9,,—((2)) d Fj:w( Iy = %0/%(0)) according to the previous computations, and
using that 6”(0)? = 6”(L)?, the condition (28) rewrites % = 1, which is not satisfied. The
conclusion follows. O

Hence, at this step, we have the following array, summarizing the spectral properties of A:

Aey = Xoeo, eg = sind, N = —-E,
Ae, = Apén, e, = cosb, A = —1-F,
Aej = )\jej, )\j
: !
—00

Let us now perform the spectral analysis of the operator A defined by (23).

Spectral analysis of A. For every r = <:1> € D(A) = D(A)x D(A), one has, from Proposition
2
1

)

—+o0 “+oo
= E 1€, T2 = E T2k €Ck-
j=0 k=0

11



Hence

+o0o
Zrljej —+o00 . +o0 0 +oo
r=|2 —Zrlj((i)‘i’z'er <ek>—z7"jéj

j=0 k=0 =0
E T2k€k I J

k=0

where (é;);en is the orthonormal basis of L2(0, L;IR?) built from the orthonormal basis (e;)jen
of L?(0, L) by the usual diagonal procedure used to establish the countability of IN?, that is:

~ ej ~ o 0
€25 = 0/ €2j+1 = e )

for every j € IN. Here, we have set

ri = <7ﬁ7 éj)Lz(O,L;R2)>

for every j € IN. It can be noted that

roj = (meéy)rzome) = (r,€5)1200,L)
roj41 = <T762j+1>L2(0,L;R2) = <T276j>L2(07L)

T1j7
T2j7

for every j € IN. Moreover, we have

= () ATED - (R1)

€j

) = (A\j +1)éz; — (N + 1)ézj,

and

(A1) A+ EIA) (0 (BN o o
A€2]+1 — (-(A+Id) A+En Id e; = ()\j +En)€j = ()\] +En)€2] + ()\] +En)€2]+17

for every j € IN. In other words, the operator A restricted to the two-dimensional space Span(€s;, €2;41)
is represented by the 2 x 2 matrix

N+l N+E,
A]_(_()\j-l-l) >\j+En) (29)

in the basis (égj, égj.H).
We have thus obtained the following corollary.

Corollary 1. The operator A is diagonalizable in 2 x 2 blocks. More precisely in the orthonormal
basis (€;)jen the operator A is represented by the infinite-dimensional matriz

Ao O
0 A
0 0

A

which is diagonal by 2 x 2 blocks Aj, where A; is defined by (29).

12



Hence, in order to analyze the local stability of the steady-state M it suffices to analyze the
spectrum of A;. We have the following immediate lemma.

Lemma 1. The matriz A; is Hurwitz if and only if \; < —1.

Recall that a matrix is said to be Hurwitz if all its eigenvalues have a negative real part.

Since \g = —E, and A\; < —1 for every j > n, the following result follows (note here the
importance of the fact that —1 is not an eigenvalues of A, since the value —1 is a pivot value in
the stability properties).

Corollary 2. Only the two trivial steady-states (9) are stable. Any other steady-state (10) is
unstable for the uncontrolled Landau-Lifschitz equation (6) (that is, with w = 0). More precisely,
in the spectral expansion of Corollary 1, at most the 2n first equations are unstable and all others
are locally asymptotically stable.

Remark 3. Actually the two trivial steady-states (9) are even globally stable since they make
vanish the energy defined by (2), which besides is nonincreasing according to (3).

3 Control and stabilization results

3.1 The main results

Theorem 2. If ds # 0 then every steady-state is locally exponentially stabilizable in H' topology,
for all values of 0 < a < b < L but a finite number of choices, by means of feedback controls that
can be designed by usual pole-shifting from a finite-dimensional linear control system.

More precisely, let a € (0,L) arbitrary and let d = (dy,da,ds)T € R® be such that ds # 0.
There exists a finite discrete set Z C (0,L) such that, for every b in (0,L) \ Z such that a < b,
there exist a neighborhood W of m in H'(0, L;IR*) and a smooth feedback control function u such
that every solution m® of (6) associated with this control, with initial condition in W, converges
exponentially to m in H' topology.

The strategy of the proof is the following. We consider the linearization of (6) around a steady-
state, which is given by (22). Using the spectral decomposition of (22) into an infinite number of
two-dimensional systems, we isolate the n first (2 x 2 blocks) modes, which are known to contain all
unstable modes, whereas all other ones are naturally stable. On the finite-dimensional linear control
system containing all unstable modes, we verify that, under a generic condition on the lengths of
the solenoid, the Kalman condition holds true. Then using the pole-shifting theorem we design
an explicit feedback control stabilizing exponentially this finite-dimensional system, as well as an
explicit Lyapunov function. Finally, we prove that this control stabilizes exponentially as well the
whole infinite-dimensional system, by constructing an appropriate Lyapunov function. Note that
this last part is nontrivial since the feedback controls built on the finite-dimensional subsystem
could destabilize some stable modes of the other infinite-dimensional part (also, the remainder
terms have to be taken into account), and the design of an appropriate Lyapunov function requires
some care.

Remark 4. It can be noted that, with a little additional effort in the proof, one can establish a
stabilization result in any topology H® with s > 1.

Remark 5. It can be noticed that the feedback control u exhibited in the proof of Theorem 2
does not require the knowledge of the complete solution (t,z) — m(t,z) of the system (6), but

only the knowledge of a finite number of integral quantities of the kind f; m(t, z)e;(x) dx, where
(ej)jen denotes the Hilbert basis introduced in Proposition 1. This is physically more relevant,
and the quantities that have to be measured are moments of the magnetization field.
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Remark 6 (On the robustness of the control). As noted in Remark 5, the control law we exhibit in
the proof of Theorem 2 is constructed from the knowledge of several integral quantities. Practically
speaking, these quantities are evaluated with the help of measurements which may be noised.
However, since the strategy employed here is based on the use of a Lyapunov function, it is actually
robust. Moreover, the number of critical values of the real number b for which the conclusion of
this theorem does not hold true anymore is finite. It allows to claim that the sensitivity of the
control method presented in the proof of Theorem 2 with respect to all the parameters is minimal.

Remark 7. It is important to stress that our result (asymptotic stabilization with a linear feed-
back) cannot be established with a solenoid whose axis is parallel to the nanowire (that is, with
ds = 0). We will indeed prove further that the Kalman condition is then never satisfied for the
unstable finite-dimensional part of the system.

In [9] the authors consider the particular steady-state My with n = 1 (that is, with § making
half a period in the phase portrait), with a = 0, b = L and d3 = 0, that is, with a coil rolling
around the whole nanowire and having the same axis. They provide an explicit linear feedback
control such that the closed-loop system is stable (but not asymptotically stable). More precisely,
all local variables of the system around the steady-state converge locally exponentially, except the
variable w describing the rotation of the magnetization vector, which is stable only.

For n > 1 and d3 = 0 it is not possible to stabilize asymptotically a nontrivial steady-state with
a linear feedback (since the Kalman condition is not satisfied) but the question is open to stabilize
it with a nonlinear one, or to design a linear feedback making the closed-loop system stable as in

[9]-

The next result shows that it is always possible to steer the system from a steady-state to any
other one, provided that they have the same level of energy 6'2 + cos® 6 = E,,.

Theorem 3. Under the generic assumptions of Theorem 2, given two steady-states

cos 0(x) cos ()
m*(z) = [ coswy sinf(z) |, m?(z) = [ coswasinf(z) |,
sin wy sin 6(x) sin wq sin 6(x)

with w; € R, wy € R, for every € > 0 there exist a time T > 0 and a controls u € L*(0,T) such
that every solution m of (6) satisfying

[m(0,-) — m1||H1(0,L;R3) <€,

satisfies at time T
lm(T,-) — mzHHl(o,L;R?’) e

Moreover this can be done with an explicit smooth feedback control that is built from a finite-
dimensional linear control system.

The strategy of the proof consists in stabilizing the system along a path of steady-states joining
m! and m?. Such a path exists whenever the two steady-states have the same level of energy. This
strategy is inspired by [12, 13] where it has been used in order to control semilinear heat and wave
equations to steady-states.

Note that, of course, the approximate controllability result (in large time) claimed in Theorem
3 follows by using repeatedly Theorem 2, by jumping from one neighborhood to the other along
a path of steady-states. The strategy that we propose is however more direct and effective and
consists of stabilizing a slowly-varying in time finite-dimensional linear control system.

An interesting open question is to know whether or not it is possible to steer the system from
a steady-state to any other one, not necessarily having the same level of energy. The question

14



is probably difficult and does not seem to be solvable with the above strategy, due to the fact
that there does not seem to exist any path of generalized steady-states (that is, steady-states with
nonzero constant controls) joining m! and m?.

Another interesting issue is to determine, whenever it exists, the location of the solenoid used
as control ensuring optimal controllability properties.

3.2 Proof of the results

Let us first prove Theorem 2. Our objective is to design an explicit feedback control locally
stabilizing the system (4) around a given steady-state (10) (note that the trivial steady-states (9)
are stable so there is nothing to do).

We follow the steps described in the above strategy.

Consider a steady-state, assumed to be M, without loss of generality, as in Section 2.2. Then,
locally around My, every solution m can be written as (21) in the frame (Mg, My, M3), and the
Landau-Lifshitz equation is then locally equivalent to (22).

Linearized system and spectral expansions. First of all, we consider the linearized system
around My, that is (22) without the remainder term R(z,r, 7y, 72z, u), which is

or
5% Ar + Bu, (30)

with A defined by (23) and B defined by (25). Using the spectral expansions developed in Section
2.3, and following in particular the analysis made to derive Corollary 1, this system is equivalent
to the series of linear autonomous control systems

d le(t) - T’lj(t) "
dt (rzj(t)) = (’I“gj(t)) +Bju(t), keN (31)
(note that ry;(t) = ro;(t) and r9;(t) = r2;41(t)), with
b
A = ( )\j +1 )\j —+ En) B /ab(d?, —dy sinﬁ(a:))ej(g;) dx
~(Nj 1) N+ B, / (ds + dy sin () )e; (x) da

As explained above, we first focus on the n first systems of (31), which contain all unsta-
ble modes according to Corollary 2, and which can be written as the finite-dimensional linear
autonomous control system in R?"

with
r10(t) ro(t)
20 (t) r1(t)
T1n—1(t) Ton—2(t)
7251 (t) Ton—1(t)
and
AO 0 0 BO
B,
A = | © A and B, = (33)
0
0 0 Ap B



This is the first, finite-dimensional part, of the complete system (31), whereas the second (infinite-
dimensional) part of it, containing only stable modes, is written as

’I."st(t) = Astrst(t) + Bstu(t), (34)
with
1, (t) ron(t)
T2, (t) Tont1(t)
() = : _ :
=1 | T
r2;(t) r2j+1(t)
and
A, O B,
A=t a (33)
st = . ) and By = 35
! . 0 Aj T, ‘ B]
Note that
2n—1 400
ran(t) = > ri(0)&,  rat) =Y ri(t)é.
j=0 j=2n

Stabilization of the unstable finite-dimensional part. Let us analyze the finite-dimensional
linear autonomous control system (32).

Lemma 2. Let a € (0,L). Assume that d3 # 0. There exists a finite discrete set Z C (0, L) such
that, for every b in (0,L) \ Z such that a < b, the pair (Ayn, Bun) satisfies the Kalman condition,
that is,

rank(Byyn, AunBun, - - -, Ai’jleun) = 2n.

Proof. Let us diagonalize A,,, in C by writing A,, = QDQ~! with Q an invertible complex matrix
of size 2n and D a diagonal matrix of size 2n whose diagonal is (po, Yo, - , tbn—1, Un—1), where the
pair (u;,v;) is the spectrum of A; for every j. In other words, p; and v; are the two roots of the
polynomial

Ta,(X)=X? -7, X+,

where 7; = 2)\; + 1+ E,, and 6; = 2(\; + 1)(A; + E,). In particular, since Ay = —FE,,, we have
o =0,v9=1—-E,.
Noting that
rank(Bunv AunBuna ceey AizilB;cun)
= rank(Q ' Bun, DQ 'Bun, ..., D*" ' B.,),

and setting

B

QilBun = s
6211
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we easily compute

Bi 0 - 0
rank(Buyn, AunBun, - - - Ai’}leun) = rank| .
. Mﬁ
By 0 . 0
B2 vo B2 e vg" ! Ba
B3 1153 e B
= rank . .
Bon-1 fin—1Bon—1 - P2 Ban
ﬂ?n anlﬁ?n e VZﬁIIﬁQn

Identifying Vandermonde matrices inside the above matrix, we infer that this rank is equal to 2n
if and only if the following three conditions are satisfied:

C1. v, p1,V1, 42, V2, -« oy hn—2, Vn—2, fbn—1, Vn—1 are all distinct;

C2. B #0 for every k € {2,...,2n};

C3. 51 #0.

The end of the proof is devoted to prove that C1, C2 and C3 hold under the generic assumptions

announced in the statement of the lemma.

Condition C1. Fix j € {0,---,n — 1} and recall that A; € (—1,0). Let us first prove that the
roots of the polynomial 74, are distinct. It is easy to establish that

sup (332 + (En + 1).1‘ - (En - 1)2) < —(Bn — 1)27
z€[—1,0]

and therefore the equation A3 + (1 + En)\j — (E, — 1)> = 0 cannot hold. In other words, the
equation tr(4;)? = 4det(A;)? cannot hold.

It remains to prove that the roots of the polynomials 74, are all pairwise distinct for k €
{1,--- ,n — 1}. To prove that fact, we consider the resultant? Res(ma;,ma,) of ma, and m4,. We
compute

Res(ma,,m4,) = det

and hence Res(m4;,m4,) # 0 for all j,k € {1,---,n — 1}. Hence C1 is true.

Condition C2. We compute explicitly

Qo 0
Q71 = )
0 Q!

n—1

2Recall that the resultant of two polynomials is a polynomial expression of their coefficients, which is equal to
zero if and only if the polynomials have a common root.
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where

11
QO_ E(lo)

Q-l=_ Ak — Vg —(Ax + Ey)
k ()\k+E (v — pr) \Me — (A +1) A+ Ey
for every k € {1,--- ,n — 1}. Now, the condition C2 is not satisfied if and only if

2n
H B =0.
=2

This equation yields an analytic constraint equation in b. Since the set of zeros of an analytic
function over a compact interval is finite, we infer that, for all values of b such that a < b but
maybe a finite number of them, the condition C2 is satisfied.

and

Condition C3. Easy computations show that

2ds b

Bl:l_En

e1(x) dz, (36)

As previously, the quantity f e1(z) dx do not vanish except maybe for a finite number of values
of b and then the condition C3 is satlsﬁed.

This finishes the proof of the lemma. O

Remark 8. The formula (36) shows that, if the axis of the solenoid is parallel to the nanowire,
that is, if d3 = 0, then 8y = 0. Then the Kalman condition is never satisfied in this case. This
justifies the contents of Remark 7.

Remark 9. Let us stress once again the importance of the fact that —1 is not an eigenvalue of A
(see Proposition 1). Indeed if —1 were to be an eigenvalue, then the conclusion of Lemma 2 would
not hold true anymore since the first and last rows of the Kalman matrix

(Buna AunBun, ey AizilBun)

would be collinear. In such a case, it would have been necessary to have two solenoids (and hence
two controls) instead of a single one in order to perform the same analysis and to get the same
kinds of results.

Since the control system (32) satisfies the Kalman condition, we get the following corollary, as
a consequence of the pole-shifting theorem (see, e.g., [19, 27]).

Corollary 3. In the conditions of Lemma 2, there exists a 2 x 2n matriz K such that the matrix
M = Ay, + Bun K is Hurwitz, and there exists a symmetric positive definite matrix P of size 2n
such that

P'M +MP = —1Is,. (37)
In particular this means that the feedback control
u(t) = Kryn(t) (38)

stabilizes the finite-dimensional control system (32). Moreover, the functional

Vun(run) 2
is a Lyapunov function for the closed-loop system

un P Tun
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Stabilization of the whole system. Let us prove that the feedback (38) stabilizes locally the
whole infinite-dimensional system (22) with the remainder term R.

Using the notations introduced previously, 7., and 7 are solutions of the infinite-dimensional
system

f’.‘un - (Aun + BunK)T.un + Rl (x, TTeyTax, u)a
Tst = AstTst + Bt Krun + R (33'7 T Tes Tox, u)a

Ry
R= ( R2> |
In order to prove the local asymptotic stability of this system yielding the desired stability property
in H! topology, we are going to design an appropriate Lyapunov function.
First of all, since the 2 x 2 matrix A; are Hurwitz for every j > n (see Lemma 1), and therefore,

as in Corollary 3, it follows from the well-known Lyapunov lemma that there exists a symmetric
positive definite matrix (); of size 2 such that

Al Q4+ QjA; = N\, (40)

Note the important fact that A\; appears at the right-hand side of (40), with A; = —oo as j tends
to +o0. The term J; is a weight that will be important to get the stability property in A ! topology,
combined with the following also instrumental lemma.

(39)

where

Lemma 3. The matrices Q; are uniformly bounded.

Proof. Clearly the matrix
+oo
Qj = )‘j/ €tA;r€tAj dt
0

is a solution of the Lyapunov equation (40), and it easily follows from the structure of the matrices
A; and from the fact that A\; - —oo as j tends to +oo that there exists C' > 0 such that

etA]‘ g Cre)\jt

for every t > 0 and for every j € IN. Therefore

+oo C
Qi el [ eta=
O 2
as desired. O
We define the infinite-dimensional matrix
AnQn 0
o= " | (an)
f— 3 41
0 X\Q
and we define the functional
1
V(r) = %r;rn Pryn,+ 57”;'; QM rg
+oo (42)
_cT 1 - T2
= grun Pry, + 5 Z |>\j\ (ng 7“2g+1) Qj <T2j+1>

j=n

for every r € H(0, L; ]Rz), where ¢ > 0 will be chosen large enough.
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Lemma 4. There exist Cy > 0 and Cy > 0 such that
Cillrll o, om2y < V() < Collrlli o0, L.m2)s

for every r € H'(0, L; R?). In other words the norm \/V(r) is equivalent to the H' norm.

Proof. We denote by ~ the equivalence of norms. Since P is symmetric positive definite, it is clear

that
1/2
2n—1

(Tjnp"ﬁun)l/2 ~ ||runll = Z 7“]2'
=0

in the finite-dimensional space R*". Besides, by definition of the operator A, one has

L
(—Af o) = / (F/(2)? + 2c0s? 0(x) f(2)?) dac

and then clearly
1/2
((=Af, Y r20,1)) 2 Ifll 20,z
It follows easily that

e 1/2
7l &1 0, m2) ~ Z |2 (ng + ng+1)
§=0
Therefore it suffices to prove that
. ) 1/2 . 1/2
0
> Nl (ra; 12i41) Qs (Tij-l> ~ DI (r3 4 13540)
j=n j=n
But this follows from the fact that the matrices ; are uniformly bounded. O
Remark 10. Note that, similarly,
+o0 1/2
71l 20, :m2) ~ Z )\? (ng + T§j+1)
§=0
Let 7 be a solution of (39). Using (37) and (40), we compute
d 2 - 2(,2 2
%V(T(ta D)) = —cllrun ()l gem — Z Aj (7"2]' + 7'2j+1) (43)
Jj=n

+rl PRy +7]Q*ByKry, +7,,QR,.

We have
—+oo

||Q/\7”st||2 < Cs Z A (ng + ngﬂ) )

Jj=n

for some constant C3 > 0, and hence using Young’s inequality and the fact that |A;| < )\? as j
tends to +oo it follows that there exists Cy > 0 such that

+oo
1
|75 Q* Bat Kun| < Callrun (8)l[am + 5 DN (r3; +13540) (44)

j=n
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Now, choosing ¢ > 0 large enough (for instance, ¢ > 2C}), we infer from Remark 10, from (43) and
(44) that there exists Cs > 0 such that

d
V() < =Cslir )i o, im2) = Colirt irzo, w2

+ Csllr(t, ) a0, 1Bl 2 0, 2:R2)

(45)

It follows from the estimate (26) of the remainder term R that

7 (t, ) 0,02 1 Bl 20, :m2) < C(||r(t, ) H%2(0,L;R2) 7 (s ) e o, w2y 17(E )L 20, 2512)

+ et ) 20,0217 (L ')H?{l(o,L;Pﬁ)

+ [l (t, L2 0,02 17 (L ')H:;{l(o,L;R?)

) o g ~>|H1<O,L;R2>)
< c(nr(t, e sy (8 20 Loty

2t Vs 0.y + It ~>||3%11(0,L;R2>)-

Here, we need an a priori argument: as long as V(r(t,-)) remains small enough, or equivalently as
long as ||7(t, )|l g1 (0,;r?) remains small enough (which will be verified a posteriori), we can write

It Mz 0,22y < It ) 0,22,

and hence, using again Young’s inequality, it follows that there exists Cg > 0 such that

Cs
Cslr(t, ) zr0,Lm2) |1 Rl 2(0,0:m2) < ?Hr(t, Wiz 0..m2) + Co v/ V(s Nt Mo pamey- (46)
Therefore, from (45) and (46) we infer that

C
SV(r(1,)) < = (Cs = CovVr(E)) It ) s 0,y — 2 I8 s o ey

< = (@5 = Cov/VIED) It s o oy

and hence, as long as V(r(t,-)) remains small enough (here, we need for instance the a priori

estimate Cg+/V(r(t,+)) < C5/2), we have, using Lemma 4,
d
V() < =CV(r(t, ). (47)

It follows that V(r(t,-)) decreases exponentially. This shows that the above a priori estimates are
valid, provided that V(r(0,-)) is small enough.
This proves the local stability result in H' norm claimed in Theorem 2.

Sketch of proof of Theorem 3. Considering m' and m? as in the statement of Theorem 3, it

is clear that
cos 0(x)

m(r,z) = | cos((1 — T)wy + Twsz) siné(x) |,
sin((1 — 7)wy + Tws) sin ()
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with 0 < 7 < 1, yields a path of steady-states joining m! to m?. The strategy developed in [12, 13]
consists of tracking the path m(et,-) for some £ > 0 small enough. The role of ¢ is to slow down
the time so that, when linearizing (6) along the path, we get a slowly-varying in time linear control
system.

We do not give all details since the proof is then very similar to the one written previously. We
only underline the slight differences in every step.

The first step consists of writing the linearized system. The resulting linear system is still of
the form (30). Note that, since every steady-state m(7,-) is the image of My by the rotation with
axis e; and angle w, the linearized system around m(7,-) is as well obtained by rotation of the
linearized system around M. The spectral properties are the same.

An important point to be underlined is the following, and here appears the crucial role of e.
The resulting finite-dimensional system, containing all unstable modes, is of the form

Y (t) = Aun(et)Y (t) 4+ Bun(et)u(t),

and the Kalman condition holds for the pair (A, (7), Bun(7)) for every 7 € [0,1]. If € were taken
equal to 1, then the Kalman condition could fail to imply the desired stabilization result (as is well-
known, see [19]). This implication is however recovered for slowly-varying in time linear systems.
Hence if one takes ¢ > 0 small enough then we get a statement similar to Corollary 3, with matrices
that depend on et. The feedback that we design is therefore of the form u(t) = K (&t)run(t).

Then the stabilization of the whole system follows the same lines as before, with the difference
that the equations (39) involve one additional remainder term, which is of the order of ¢ and
which comes from the derivative in time of m(et,-). This additional term is then recovered at the
right-hand side (47), and this means that V(r (¢, -)) may not decrease exponentially but anyway we
get that V(r(1/e,-)) is of the order of e, which yields the desired result.
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