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Abstract

We consider one space dimension scalar conservation law with strict convex
flux. The problem is to study exact controllability of entropy solutions. Some
partial results have been obtained in [17] and we investigate the precise condi-
tions under which exact controllability problem admits a solution. The basic
ingredients in the proof of these results are [14], Lax-Oleinik [12] explicit for-
mula and finer properties of generalized characteristics introduced by Dafermos
[11].

Key words: Hamilton-Jacobi equation, scalar conservation laws, characteristic lines,
controllability.

1 Introduction:

In this paper we consider the following scalar conservation law in one space dimension.
Let f : IR → IR be a strictly convex C1 function satisfying the super linear growth,

lim
|u|→∞

f(u)

|u|
= ∞. (1.1)
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Let T > 0, 0 ≤ δ < T, A < B, I = (A,B), Ω = I × (δ, T ), u0 ∈ L∞(I), b0, b1 ∈
L∞((0, T )) and consider the problem

ut + f(u)x = 0 (x, t) ∈ Ω, (1.2)

u(x, δ) = u0(x) x ∈ I, (1.3)

u(A, t) = b0(t) t ∈ (δ, T ), (1.4)

u(B, t) = b1(t) t ∈ (δ, T ). (1.5)

This problem was well studied from last several decades starting from the pioneering
works of Lax-Oleinik [12], Kruzkov [19], Bardaux-Leraux-Nedeleck [8]. They have
studied the existence and uniqueness of weak solutions to (1.2)-(1.5) satisfying the
entropy condition. In spite of being well studied, still there are problems which are
open. Notably among them are

1. Profile of a solution, for example how many shocks can a solution exhibit and
the nature of the shocks.

2. Optimal controllability for initial and initial-boundary value problem.

3. Exact controllability of initial and initial-boundary value problem.

Problem (1) and (2) has been dealt in [3] and [2] respectively. In this paper
we investigate problem (3) for the entropy solution of (1.2). Through out the paper
solution of (1.2) always means a weak solution satisfying the entropy condition. The
basic ingredient in studying all these problems comes from the analysis of character-
istic curves R±. Originally this was introduced by Hopf [14] and later by Dafermos
[11], who studied them quite extensively to obtain information on the nature of solu-
tions. Independently this was used in [5] to obtain the explicit formula for solution
of discontinuous flux.

The plan of the paper is as follows:
In section (1) we state the main results. In section (2) we prove these results assuming
four Lemmas without proof. First two Lemma deal with backword construction which
will be proved in section (3). The remaining two Lemma deals with free regions. In
order to prove these Lemmas, one has to study the finer properties of the generalized
characterictics namely

(i). Comparison properties with respect to the initial data.

(ii). Failure of the continuity with respect to the initial data.

(iii). Behavior of the characteristics when one side of the initial data is large.
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This has been carried out in section (4). Main tool to study all these properties are
the Hopf [14], Lax-Oleinik [12] explicit formulas and we recall them without proof.

Main results, Exact Controllability: Normally for the non linear evolution equa-
tions, technique of linearization is adopted to study controllability problems. Unfor-
tunately this method does not work (see Horsin [17]) and very few results are available
on this subject. Here we consider the following three problems of controllability. Let
u0 ∈ L∞(IR) and

(I) Controllability for pure initial value problem: Assume that I = IR,Ω =
IR × (0, T ). Let J1 = (C1, C2), J2 = (B1, B2), g ∈ L∞(J1), a target be given.
The question is, does there exists a ū0 ∈ L∞(J2) and u in L∞(Ω) such that u is
a solution of (1.2) satisfying

u(x, T ) = g(x) x ∈ J1, (1.6)

u(x, 0) =

{
u0(x) if x 6∈ J2,
ū0(x) if x ∈ J2.

(1.7)

(II) Controllability for one sided initial boundary value problem: Assume
that I = (0,∞), Ω = IR × (0, T ), J = (0, C) and a target function g ∈ L∞(J)
be given. The question is, does there exists a u ∈ L∞(Ω) and b ∈ L∞((0, T ))
such that u is a solution of (1.2) satisfying

u(x, T ) = g(x) if x ∈ J, (1.8)

u(x, 0) = u0(x) if x ∈ (0,∞), (1.9)

u(0, t) = b(t) if t ∈ (0, T ). (1.10)

(III) Controllability from two sided initial boundary value problem:

(a). Let Ω = IR × (0, T ), I1 = (B1, B2) , B1 ≤ C ≤ B2. Given the target
functions g1 ∈ L∞(B1, C), g2 ∈ L∞(C,B2), does there exists a ū0 ∈ L∞(IR \ I1)
and u ∈ L∞(Ω) such that u is a solution of (1.2) satisfying

u(x, T ) =

{
g1(x) if B1 < x < C,
g2(x) if C < x < B2.

(1.11)

and

u(x, 0) =

{
u0(x) if B1 < x < B2,
ū0(x) if x < B1 or x > B2.

(1.12)

(b). Here we consider controllability in a strip. Let I = (B1, B2), Ω = I ×
(0, T ), B1 < C < B2. Let g1 ∈ L∞((B1, C)), g2 ∈ L∞((C,B2)) be given. Then
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the question is, does there exist b0, b1 ∈ L∞((0, T )) and a u ∈ L∞(Ω) such that
u is a solution of (1.2) and satisfying

u(x, 0) = u0(x), (1.13)

u(x, T ) =

{
g1(x) if B1 < x < C,
g2(x) if C < x < B2.

(1.14)

u(B1, t) = b0(t), (1.15)

u(B2, t) = b1(t). (1.16)

In view of the Lax-Oleinik (Chapter (3) of [12]) explicit formula for solutions
of pure initial value problem and by Joseph-Gowda [18] for initial boundary
value problem, the targets g or g1, g2 cannot be arbitrary. They must satisfy
the compatibility condition, for example in the case of problem (I), there exists
a non-decreasing function ρ in (C1, C2) such that for a.e x ∈ (C1, C2)

f ′(g(x)) =
x− ρ(x)

T
. (1.17)

In the case of problem (II), there exists a non-decreasing function ρ in (0, C)
such that

f ′(g(x)) =
x

T − ρ(x)
. (1.18)

Assuming that the target functions satisfies the compatibility conditions, then the
question is

whether the problems (I),(II) and (III) admit a solution? In fact, it
is true and we have the following results. First we describe the class of functions
satisfying compatibility conditions.

Definition (Admissible functions): Let J = (M,N) and T > 0,

S(J) = {ρ : J → IR : ρ is monotone and left or right condinuous function}.

Then define admissible class of target functions by

(i) Target space for initial value problem (IA):

IA(J) = {g ∈ L∞(J) : f
′
(g(x)) =

x− ρ(x)

T
, ρ ∈ S(J),

ρ is a non-decreasing funtion }. (1.19)

(ii) Target space for left boundary problem (LA):

LA(J) = {g ∈ L∞(J) : f
′
(g(x)) =

x−M

T − ρ(x)
, ρ ∈ S(J),

ρ is a non-increasing right continuous function}. (1.20)
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(iii) Target space for right boundary problem (RA):

RA(J) = {g ∈ L∞(J) : f
′
(g(x)) =

x−N

T − ρ(x)
, ρ ∈ S(J),

ρ is a non-decreasing left continuous function}.(1.21)

Then we have the following
Main Theorems :

THEOREM 1.1 Let J1 = (C1, C2), J2 = (B1, B2). Let g(x) = (f ′)−1

(
x− ρ(x)

T

)
be in IA(J1) and B1 < A1 < A2 < B2, satisfying

A1 ≤ ρ(x) ≤ A2 if x ∈ J1, (1.22)

then there exists a ū0 ∈ L∞(J2), u ∈ L∞(Ω) such that (u, ū0) is a solution to problem
(I) (see Figure 1).

(A1,0)

(C1,T) (C2,T)x

u(x,t)=?

u0(x)=?

u(x,t)=?

u(x,t)=?

(A2,0)

f (g(x))= (x)ρx−
T

(x)ρ(B1,0)u0(x) u0(x)(B2,0)

Figure 1:

THEOREM 1.2 Let ∧ > 0, C > 0, δ > 0, J = (0, C). Let g ∈ LA(J) given by

f
′
(g(x)) =

x

T − ρ(x)
for x ∈ J and satisfying

δ ≤ ρ(x) ≤ T, (1.23)∣∣∣∣ x

T − ρ(x)

∣∣∣∣ ≤ ∧. (1.24)

Then there exist a b ∈ L∞(0, T ), u ∈ L∞(Ω) such that (u, b) is a solution to Problem
II (see Figure 2).
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b(t)=?

(0,T)
x

u(x,t)=?

(0,0)

(0, δ)

(x)ρ

=(g(x))f (C,T)

u0(x)

u(x,t)=?

T−ρ (  x)
x

Figure 2:

THEOREM 1.3 Let I1 = (B1, B2), B1 < C < B2, J1 = (B1, C), J2 = (C,B2), then

(a). Let A1 < B1 < B2 < A2 and g1 ∈ IA(J1), g2 ∈ IA(J2) given by f
′
(g1(x)) =

x−ρ1(x)
T

, f
′
(g2(x)) =

x−ρ2(x)
T

, satisfying

ρ1(x) ≤ A1 if x ∈ J1, (1.25)

ρ2(x) ≥ A2 if x ∈ J2. (1.26)

Then there exists ū0 ∈ L∞((IR \ I1)), u ∈ L∞(Ω) such that (u, ū0) is a solution to
problem (a) of III (see Figure 3).

(b). Let ∧ > 0, 0 < δ < T, g1 ∈ LA(J1), g2 ∈ RA(J2), given by f
′
(g1(x)) =

x−B1

T−ρ1(x)
,f

′
(g2(x)) =

x−B2

T−ρ2(x)
satisfying for i = 1, 2, x ∈ Ji

δ ≤ ρi(x) ≤ T, (1.27)∣∣∣∣ x−Bi

T − ρi(x)

∣∣∣∣ ≤ ∧. (1.28)

Then there exists b0, b1 ∈ L∞((0, T )) and u ∈ L∞(Ω) such that (u, b0, b1) is a solution
to problem (b) of III (see Figure 4).

Before going for further results, let us recall some of the earlier works in this
direction and compare them with these results.

Problem (a) in III was considered by Horsin [17] for the Burger’s equation under
similar assumptions on g1 and g2 as in (a) of Theorem 1.3. He proves that given any
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u(x,t)=?
u(x,t)=?

u(x,t)=?

u0(x)

u0(x)=?

(B2,T)(B1,T)

x x

(x) (x)ρ ρ

u0(x)=?
1 2

(A1,0) (B1,0) (B2,0) (A2,0)

(C,T)
t=T

f (g (x))=
1

x−    (x)ρ
1

T
f (g (x))=

x−    (x)ρ
2

T2

Figure 3:

x

(B1,T) (B2,T)

(B1,   ) (B2,   )

u=?
b2(t)=?

b1(t)=?

(x) (x)

f (g(x))= 1 f (g (x))= 2

δ δ

ρρ

1

2

u0(x)

1

1

x−Bx−B

x
(C,T)

(B1,0) (B2,0)

2
ρρT−   (x) T−  (x)

Figure 4:
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T > 2 there exists a Tc ≥ T, such that (a) of problem III has an approximate
controllability solution. That is given ε > 0, there exist (u, ū0) such that

B2∫
B1

|u(x, Tc)− g(x)|dx = O(ε),

and u(x, Tc) = g(x) = χ(B1,C)(x)g1(x) + χ(C,B2)(x)g2(x), outside an interval of length
ε.

In the viscous case the same problem was considered by Glass-Guerrero [13] for
the control u(x, T ) = M is constant. Using the Cole-Hopf transformation, they show
that there exist T0 > 0 such that for all time T > T0 and small viscosity, they prove
the exact controllability. Also Guerrero-Imanuvilov [15] proves a negative result by
showing that M = 0 cannot be controllable.

Theorem 1.3 is stronger and much more precise result in the non viscous case
because

(i). It removes the condition on time Tc and obtains exact controllability.

(ii). It deals with general convex flux instead of Burger’s equation.

(iii). In section (5) we give a criterion when the constants are controllable.

In the case of problem (II), Fabio-Ancona and Andrea-Marson [6],[7] studied
the problem from the point of view of Hamilton-Jacobi equations and studies the
compactness properties of {u(·, T )} when u(x, 0) = 0 and u(·, 0) ∈ U , here U is a set
of controls satisfying some properties.

In our results on controllability, superlinearity of f plays an important role in
removing the condition on Tc and by creating free regions (see Lemmas 2.3 and 2.4
). Next using convexity and backword construction, we explicitly construct solutions
in these free regions for particular data which allow to obtain solutions for control
problems (see Lemmas 2.1 and 2.2).

REMARK 1.1 The conditions in Theorems 1.1-1.3 are optimal. That is, in general,
we cannot take A1 = B1, A2 = B2 in Theorem 1.1 and δ = 0 in Theorems 1.2 and
1.3. This can be illustrated by a simple counter example (see counter example 4.2).

2 Exact controllability and main results

In this section we give the proof of Theorems 1.1 to 1.3. Basically following two main
ideas are used to prove these results
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(a) Free regions : By suitable variations of parameters in the initial data, one can
obtain sub region in Ω where the solution are prescribed as constants. These
sub regions are called free regions. This is achieved in Lemmas 4.7 and 4.8. For
example from (4.95), the region

{(x, t) : x < L1(t)} (2.1)

is a free region since uλ is constant.

(b) Backword construction : This is a method where for a given target function sat-
isfying the compatibility conditions, one can construct a solution which achieves
the given target at t = T.

Then the Theorems will follow from backword construction in free regions and
gluing the different solutions using Rankine-Hugoniot conditions across the bound-
aries of free regions.

We state the following Lemmas which deal with this construction.

Let u0 ∈ L∞(IR), 0 ≤ δ < T,A,C ∈ IR. Let l(., δ, A, C) be the line joining
between (C, T ) and (A, δ) with slope 1/f

′
(a(δ, A, C)), intersecting t = 0 axis at

D(δ, A, C) and is given by

f
′
(a(δ, A,C)) =

C − A

T − δ
, (2.2)

l(t, δ, A, C) = A+ f
′
(a(δ, A, C))(t− δ), (2.3)

D(δ, A, C) = A− δf
′
(a(δ, A, C)), (2.4)

= A− δ(C − A)

T − δ
. (2.5)

LEMMA 2.1 1. Let ∧ > 0, A < C and ρ ∈ LA((A,C)) satisfying

0 ≤ δ ≤ ρ(x) ≤ T, (2.6)∣∣∣∣ x− A

T − ρ(x)

∣∣∣∣ ≤ ∧. (2.7)

Let Ω = (A,∞)× (δ, T ). Then there exists a b̃1(t, δ, A, C) ∈ L∞((δ, T )) and a solution
ũ1(x, t, δ, A, C) of (1.2) satisfying

f
′
(ũ1(x, T, δ, A, c)) =

x− A

T − ρ(x)
, x ∈ (A,C), (2.8)

with initial and boundary conditions

ũ1(A, t, δ, a, C) = b̃1(t, δ, A, C), t ∈ (δ, T ), (2.9)

ũ1(x, t, δ, a, C) = a(δ, A, C), x > l(t, δ, A, C), (2.10)

ũ1(l(t, δ, A, C)−, t, δ, a, C) = a(δ, A, C). (2.11)

9



2. Let C < A and ρ ∈ RA((C,A)) satisfying (2.6) and (2.7) for x ∈ (C,A). Let
Ω = (−∞, A) × (δ, T ). Then there exist b̃2(t, δ, A, C) ∈ L∞((δ, T )) and a solution
ũ2(x, t, δ, a, C) of (1.2) satisfying

f
′
(ũ2(x, T, δ, A, C)) =

x− A

T − ρ(x)
, x ∈ (C,A), (2.12)

with initial and boundary conditions

ũ2(A, t, δ, A, C) = b̃2(t, δ, A, C), t ∈ (δ, T ), (2.13)

ũ2(x, t, δ, A, C) = a(δ, a, C), x < l(t, δ, A, C), (2.14)

ũ2(l(t, δ, A, C)+, t, δ, A, C) = a(δ, A,C), t ∈ (δ, T ). (2.15)

LEMMA 2.2 Let A1 < A2, C1 < C2, ρ ∈ IA((C1, C2)) such that for all x ∈ (C1, C2),

A1 ≤ ρ(x) ≤ A2. (2.16)

Let Ω = IR × IR+, for i = 1, 2, li(t) = l(t, 0, Ai, Ci), ai = ai(0, Ai, Ci), then there
exist ũ0 ∈ L∞((A1, A2)) and a solution ũ of (1.2) such that for 0 < t < T,

f
′
(ũ(x, T )) =

x− ρ(x)

T
, for x ∈ (C1, C2), (2.17)

ũ(l1(t)+, t) = a1, (2.18)

ũ(l2(t)−, t) = a2, (2.19)

with initial conditions

ũ(x, 0) =


a1 if x < A1,
ũ0(x) if A1 < x < A2,
a2 if x > A2.

(2.20)

Let T > 0, µ, λ ∈ IR,A < B, l1(t) = l(t, 0, A, C), l2(t) = l(t, 0, B, C), a1 =
a1(0, A
, C), a2 = a2(0, B, C). Define uλ

0 and uµ
0 by

uλ
0(x) =


a1 if x < A,
λ if A < x < B,
u0(x) if x > B

(2.21)

and

uµ
0(x) =


a2 if x > B,
µ if A < x < B,
u0(x) if x < A.

(2.22)

Let uλ(x, t) and uµ(x, t) be the solutions of (1.2) with initial data uλ
0 and uµ

0 respec-
tively. Then we have the following
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LEMMA 2.3 There exist µ0 < λ0 such that for all µ ≤ µ0, λ ≥ λ0, 0 < t < T, x ∈
IR, uλ and uµ satisfies

uλ(x, t) = a1, if x < l1(t), uλ(l1(t)+, t) = a1 (2.23)

uµ(x, t) = a2, if x > l2(t), uµ(l2(t)−, t) = a2. (2.24)

Let δ > 0, T > 0, B1 ≤ B2, l1(t) = l(t, δ, B1, C), l2(t) = l(t, δ, B2, C), A1 =
l1(0) < B1, A2 = l2(0) > B2, a1 = a(δ, B1, C), a2 = a(δ, B2, C). For λ, µ ∈ IR, define
uλ,µ
0 by

uλ,µ
0 (x) =


a1 if x < A1,
λ if A1 < x < B1,
u0(x) if B1 < x < B2,
µ if B2 < x < A2,
a2 if x > A2

(2.25)

and uλ,µ be the solution of (1.2) with initial data uλ,µ
0 .

Then we have the following

LEMMA 2.4 Given any λ0, µ0, there exist λ2 ≥ λ0, µ2 ≤ µ0 such that for 0 ≤ t ≤
T, uλ2,µ2 satisfies

uλ2,µ2(x, t) =

{
a1 if x < l1(t),
a2 if x > l2(t),

(2.26)

uλ2,µ2(l1(t)+, t) = a1, uλ2,µ2(l2(t)−, t) = a2. (2.27)

Proof of Theorem 1.1 Let Ω = IR× (0, T ), Ai, Bi, Ci, g and ρ be as in Theorem 1.1
Let

f ′(a1) =
C1 − A1

T
, f ′(a2) =

C2 − A2

T
, l1(t) = A1 + tf ′(a1), l2(t) = A2 + tf ′(a2).

Then from Lemma 2.3 choose λ, µ and solutions uλ and uµ of (1.2) such that

uλ(x, t) = a2 if x < l2(t), uλ(l2(t)+, t) = a2 (2.28)

uµ(x, t) = a1 if x > l1(t), uµ(l1(t)−, t) = a1 (2.29)

with

uλ(x, 0) =


a2 if x < A2,
λ if A2 < x < B2,
u0(x) if x > B2

(2.30)
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and

uµ(x, 0) =


a1 if x > A1,
µ if B1 < x < A1,
u0(x) if x < B1

(2.31)

From (1.22) and Lemma 2.1 there exist a solution u1 of (1.2) and ũ0 ∈ L∞(A1,
A2) satisfying

u1(x, T ) = g(x), if x ∈ (C1, C2) (2.32)

u1(x, 0) =


a1 if x < A1,
ū0(x) if A1 < x < A2,
a2 if x > A2,

(2.33)

and

u1(x, t) =

{
a1 if x < l1(t),
a2 if x > l2(t).

(2.34)

u1(l1(t)+, t) = a1, u1(l2(t)−, t) = a2. (2.35)

Let

ū0(x) =


u0(x) if x /∈ (B1, B2)
λ if A2 < x < B2

ũ0(x) if A1 < x < A2

µ if B1 < x < A1.

From (2.28), (2.29) , (2.34) and RH condition, glue uλ, uµ, u1 to form a single
solution u of (1.2) for 0 < t < T by

u(x, t) =


uµ(x, t) if x < l1(t),
u1(x, t) if l1(t) < x < l2(t),
uλ(x, t) if l2(t) < x.

(2.36)

Then from (2.30), (2.31) and (2.33), (u, ū0) is the required solution. This proves the
Theorem.

Proof of Theorem 1.2 Let f ′(a) = C
T−δ

and l(t) be the line joining (C, T ) and (0, δ)
given by l(t) = (t − δ)f ′(a). Let A = l(0) = −δf ′(a) < 0. From Lemma 2.3 by
choosing λ large, we can find a solution uλ of (1.2) in Ω = IR× (0, T ) satisfying

uλ(x, 0) =


a if x < A,
λ if A < x < 0,
u0(x) if x > 0.

(2.37)

uλ(x, t) = a if x < l(t), (2.38)
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uλ(l(t)+, t) = a. (2.39)

From (1.23) , (1.24) and (1) of Lemma 2.1, choose a solution u1 of (1.2) and b1 ∈
L∞(δ, T ) such that

u1(x, T ) = g(x) (2.40)

u1(0, t) = b1(t) if δ < t < T, (2.41)

u1(x, t) = a if x > l(t), t > δ, (2.42)

u1(l(t)−, t) = a if t > δ. (2.43)

From (2.39), (2.43) and RH conditions we glue the solutions uλ and u1 to obtain a
solution u of (1.2) by

u(x, t) =

{
uλ(x, t) if x > l(t), 0 < t < T,
u1(x, t) if 0 < x < l(t), δ < t < T.

(2.44)

Define b ∈ L∞(0, T ) by

b(t) =

{
uλ(0+, t) if 0 < t < δ,
b1(t) if δ < t < T.

(2.45)

Then from (2.37) , (2.40), (u, b) is the required solution. This proves the theorem.

Proof of Theorem 1.3 Let f ′(a1) = C−A1

T
, f ′(a2) = C−A2

T
, l1(t) = A1 + tf ′(a1) =

A2 + tf ′(a2) be the respective lines joining (C, T ), (A1, 0) and (C, T ), (A2, 0).

From Lemma 2.4 choose (λ, µ) and a solution uλ,µ of (1.2) in IR× (0, T ) satisfying

uλ,µ(x, t) =

{
a1 if x < l1(t),
a2 if x > l2(t),

(2.46)

with initial condition

uλ,µ(x, 0) =


a1 if x < A1,
λ if A1 < x < B1,
u0(x) if B1 < x < B2,
µ if B2 < x < A2,
a2 if x > A2.

(2.47)

(a). Since gi is a non decreasing function for i = 1, 2 satisfying (1.23) , (1.26) and
hence

D1 = ρ1(B1) ≤ A1, A2 ≤ ρ2(B2) = D2.

Let ηi be the line joining (Bi, T ) and (Di, 0) with f ′(mi) =
Bi−Di

T
for i = 1, 2.

Then from Lemma 2.2, there exist solutions ui of (1.2) in IR × (0, T ) with initial
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condition ui
0 ∈ L∞(Di, Ai) for i = 1, 2 such that

u1(x, T ) = g1(x, T ) if x ∈ (B1, C), (2.48)

u2(x, T ) = g2(x, T ) if x ∈ (C,B2), (2.49)

u1(x, t) = m1 if x < η1(t), (2.50)

u1(l1(t)−, t) = u1(l1(t)+, t) = a1, (2.51)

u2(x, t) = m2 if x > η2(t), (2.52)

u2(l2(t)−, t) = u2(l2(t)+, t) = a2, (2.53)

and

u1(x, 0) =


m1 if x < D1,
u1
0(x) if D1 < x < A1,

a1 if x > A1.
(2.54)

u2(x, 0) =


m2 if x > D2,
u2
0(x) if A2 < x < D2,

a2 if x < A2.
(2.55)

From (2.46) , (2.47) ,(2.51), (2.53) and from RH conditions, we can glue u1, u2, uλ,µ

to a solution u of (1.2) with initial data u(x, 0) given by

u(x, t) =


u1(x, t) if x < l1(t),
uλ,µ(x, t) if l1(t) < x < l2(t),
u2(x, t) if x > l2(t),

(2.56)

u(x, 0) =



m1 if x < D1,
u1
0(x) if D1 < x < A1,

λ if A1 < x < B1,
u0(x) if B1 < x < B2,
µ if B2 < x < A2,
u2
0(x) if A2 < x < D2,

m2 if x > D2.

Define ū0 by

ū0(x) =



m1 if x < D1,
u1
0(x) if D1 < x < A1,

λ if A1 < x < B1,
µ if B2 < x < A2,
u2
0(x) if A2 < x < D2,

m2 if x > D2.

(2.57)
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From (2.52) , (2.53) u satisfies

u(x, T ) =

{
g1(x) if B1 < x < C,
g2(x) if C < x < B2,

(2.58)

and (u, ū0) is the required solution. This proves (a).

(b). Given δ > 0 choose A1 < B1 < B2 < A2 such that max(l1(B1), l2(B2)) = δ and
uλ,µ be the solution of (1.2) as in (2.46). From (1.27),(1.28) and from Lemma 2.1,
there exist solutions u1 of (1.2) in (B1,∞)× (δ, T ) and boundary data b̃1, u2 of (1.2)
in (−∞, B2)× (δ, T ) and boundary data b̃2 such that

u1(x, T ) = g1(x) if x ∈ (B1, C),

u2(x, T ) = g2(x) if x ∈ (C,B2),

and for δ < t < T,

u1(B1, t) = b̃1(t), u1(l1(t)−, t) = a1,

u2(B2, t) = b̃2(t), u2(l2(t)+, t) = a2.

Then from RH condition glue u1, u2, uλ,µ in Ω = (B1, B2)× (0, T ) by

u(x, t) =


u1(x, t) if 0 < t < δ,B1 < l1(x) < t,
u2(x, t) if 0 < t < δ, t < l1(x) < B2,
uλ,µ(x, t) otherwise.

Then u is a solution of (1.2) satisfying the boundary conditions (b1, b2) given by

b1(t) =

{
b̃1(t) if δ < t < T,
uλ,µ(B1+, t) if 0 < t < δ,

b2(t) =

{
b̃2(t) if δ < t < T,
uλ,µ(B2−, t) if 0 < t < δ.

Then (u, b1, b2) is the solution for problem (1.3). This proves the Theorem.

3 Proof of Lemmas 2.1 and 2.2 :

Proof of Lemma 2.2 follows as that of Lemma 3.5 of [2]. Where as proof of Lemma
2.1 is quite involve and we give the proof here.

Boundary value partition: (See Figure 5) Let 0 ≤ δ < T, A < C, I = (A,C), J =
(δ, T ). Let P = {t0, t1 . . . tn, x0, x1 . . . xn} is called a boundary value partition if

T = t0 > t1 > t2 . . . > tn = δ, A = x0 ≤ x1 ≤ x2 < . . . ≤ xn = C.
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Figure 5:

Let P (I, J) = {P : P is a boundary value partition of I , J}. (3.1)

For a P ∈ P (I, J) denote ai(P ), si(P ), bi(P ), ai(t, P ), si(t, P ), bi(t, P ) by

f
′
(ai(P )) =

xi − A

T − ti
,

f
′
(bi(P )) =

xi − A

T − ti+1

,

si(P ) =
f(ai(P )− f(bi(P ))

ai(P )− bi(P )
,

ai(t, P ) = xi + f
′
(ai(P ))(t− T ),

bi(t, P ) = xi + f
′
(bi(P ))(t− T ),

si(t, P ) = xi + si(P )(t− T ),

Clearly ai(ti, P ) = ti, bi(ti+1, P ) = ti+1.

LEMMA 3.1 Define αi(P )such that si(αi(P ), P ) = A. Then for t ≤ T

ai(P ) > bi(P ), ai+1(P ) ≥ bi(p), (3.2)

ti > αi(P ) > ti+1, ai(t, P ) ≤ si(t, P ) ≤ bi(t, P ), (3.3)

Proof. Since ti > ti+1, xi ≤ xi+1, hence

xi − A

T − ti
>

xi − A

T − ti+1

,
xi − A

T − ti+1

≤ xi+1 − A

T − ti+1

.
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This implies (3.2). From strict convexity of f and (3.2), we have

f ′(ai(P )) >
f(ai(P ))− f(bi(P ))

ai(P )− bi(P )
> f

′
(bi(P )),

hence ti > αi(P ) > ti+1 and for all t < T, ai(t, P ) ≤ si(t, P ) ≤ bi(t, P ). This proves
the Lemma.

Let Ωi(P ) = {(x, t) : ai(t, P ) < x < ai+1(t, P ), ti+1 < t < T}. In view of Lemma
3.1, let ui(x, t, P ) be a solution of (1.2) in Ωi(P ) defined by

ui(x, t, P ) =


ai(P ) if ai(t, P ) < x < si(t, P ),
bi(P ) if si(t, P ) < x < bi(t, P ),

(f
′
)−1

(
x−A

T−ti+1

)
if bi(t, P ) < x < ai+1(t, P ).

(3.4)

Then
ui+1(ai+1(t, P )+, t, P ) = ai+1(P ) = ui(ai+1(t, P )−, t, P ). (3.5)

Also an(P ) and an(t, P ) are independent of P and denote by an, an(t). Then from
(3.5) it follows that un−1(an(t)−, t, P ) = an. Therefore define the solution u(x, t, P )
of (1.2) in Ω = (A,∞)× (δ, T ) by

u(x, t, P ) =

{
ui(x, t, P ) if (x, t) ∈ Ωi(P ), 0 < i ≤ n− 1,
an if x > an(t), δ < t < T,

(3.6)

and u(x, t, P ) takes the boundary value b(t, P ) and initial value an given by

u(A, t, P ) = b(t, P ) =


θf if t1 < t < T,
ai(P ) if αi(P ) < t < ti,
bi(P ) if ti+1 < t < αi(P ).

(3.7)

u(x, δ, P ) = u0(x, P ) = an = (f )−1

(
C − A

T − δ

)
if x ∈ (A,∞). (3.8)

Further more at t = T, and x ∈ (A,C), u satisfies

f
′
(u(x, T, P )) =

n∑
i=1

χ[xi,xi+1)(x)

(
x− A

T − ti

)
. (3.9)

Next we calculate the L∞ and TV bounds of the boundary value b(·, P ).

|f ′
(b(t, P ))| = max

1≤i≤n
(|f ′

(ai(p))|, |f
′
(bi(P ))|)

= max
1≤i≤n

(∣∣∣xi−A
T−ti

∣∣∣ , ∣∣∣ xi−A
T−ti+1

∣∣∣)
= max

1≤i≤n

(∣∣∣xi−A
T−ti

∣∣∣) .

(3.10)
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TV (f
′
(b(·, P )) =

n−1∑
i=1

∣∣f ′
(ai(P ))− f

′
(bi(P ))

∣∣+ n−1∑
i=0

∣∣f ′
(bi(P ))− f

′
(ai+1(P ))

∣∣
=

n−1∑
i=1

∣∣∣xi−A
T−ti

− xi−A
T−ti+1

∣∣∣+ n−1∑
i=1

∣∣∣ xi−A
T−ti+1

− xi+1−A
T−ti+1

∣∣∣+ ∣∣∣x1−A
T−t1

∣∣∣
=

n−1∑
i=1

(xi−A)(ti−ti+1)
(T−ti)(T−ti+1)

+
n−1∑
i=1

(xi+1−xi)
(T−ti+1)

+
∣∣∣x1−A
T−t1

∣∣∣
≤

(
T−δ
T−t1

)
max
1≤i≤n

∣∣∣xi−A
T−ti

∣∣∣+ (
C−A
T−t1

)
.

(3.11)
Analysis of Discretization and Convergence: Let ρ : [A,C] → [δ, T ] be a non
increasing right continuous function. Then it follows that {x : ρ(x) ≤ t} is a closed
interval for any t. Let 0 < ε < C − A, define

ρε(x) = min{ρ(x), ρ(A+ ε)}.

Then ρε is a non-increasing right continuous function. Let m,n be non negative
integers and let T = t0 > t1 = ρ(A+ε) > t2 > . . . > tn = δ be such that |ti−ti+1| ≤ 1

m

for all i ≥ 1. Let k ≤ n− 1 such that {x : ρε(x) ≤ tk+1} = φ, {x : ρ(x) ≤ tk} 6= φ and
define {xi} by xi = C if i ≥ k + 1 and for 1 ≤ i ≤ k,

{x : ρε(x) > ti} = (xi, C).

Denote Pn,m,ε by Pm,n,ε = {t0, t1, . . . tn, x0, x1 . . . , xn} the partition depending on n,m
and ε. Associate to Pm,n,ε define

ρ(x, Pm,n,ε) =
n−1∑
i=1

tiχ[xi−1,xi)(x) + tnχ[xn−1,xn](x). (3.12)

Then it follows from definition,

sup
n

|ρε(x)− ρ(x)| ≤ sup
A<x<ε

|ρ(x)− ρ(A+ ε)| (3.13)

sup
n

|ρε(x)− ρ(x, Pm,n,ε)| ≤
1

m
. (3.14)

Definition: Let ε2 < ε1, n2 ≥ n1. For i = 1, 2, let Pm,ni,εi = {t0, t1,i, . . . tni,i, x0, x1,i,
. . . xni,i} be the partitions. Then we say Pm,n2,ε2 dominates Pm,n1,ε1 and is denoted by
Pm,n2,ε2 ≥ Pm,n1,ε1 if for 1 ≤ j ≤ n1

tj,1 = tn2−n1+j,2,
xj,1 = xn2−n1+j,2.

(3.15)

For a partition Pm,n,ε, define Ω(Pm,n,ε) by

Ω(Pm,n,ε) = {(x, t) : a1(t, Pm,n,ε) < x, δ < t < T}. (3.16)
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Properties of the domination: Let ε2 < ε1, n2 ≥ n1 and let for i = 1, 2, ui(x, t) =
u(x, t, Pm,ni,εi), bi(t) = b(t, Pm,ni,εi) as in (3.6) and (3.7) respectively. Let Pm,n2,ε2 ≥
Pm,n1,ε1 , then from the construction it follows

ρε1(x) = ρε2(x) if x ≥ ε1 + A, (3.17)

u1(x, t) = u2(x, t) if (x, t) ∈ Ω(Pm,n,ε1), (3.18)

b1(t) = b2(t) if δ < t ≤ ρ(A+ ε1), (3.19)

f
′
(ui(x, T )) =

x− A

T − ρ(x, pm,ni,εi)
, i = 1, 2. (3.20)

T∫
δ

|f ′
(b1(t))− f

′
(b2(t))|dt =

ρ(ε2+A)∫
ρ(ε1+A)

|f ′
(b2(t))− f

′
(b1(t)))|dt

≤ |ρ(A+ ε1)− ρ(A+ ε2)|max
j

{∣∣∣xj,2−A

T−tj,2

∣∣∣}
= |ρ(A+ ε1)− ρ(A+ ε2)|max

j

{∣∣∣ xj,2−A

T−ρε2(xj,2)

∣∣∣} .

(3.21)

Construction of dominations: Let ε2 < ε1 and Pm,n1,ε1 = {t0, t1,1, . . . tn1,1, x0, x1,1,
. . . xn1,1}. Now choose ρ(ε2 + A) = t1,2 > t2,2 > . . . tr2,2 = t11 = ρ(ε1 + A) such that
|ti,2 − ti+1,2| ≤ 1

m
for 1 ≤ i ≤ r2 − 1. Let n2 = n1 + n2 and define ti,2 for i ≥ r2 by

ti,2 = ti−r2+1,1,

and {xi,2} be associated to {ti,2}. Let n2 = r2+n1− 1 and Pm,n2,ε2 = {t0, t1,2 . . . tn2,2,
x0, x1,2, . . . xn2,2}, then Pm,n2,ε2 ≥ Pm,n1,ε1 .

Let 0 < εi+1 < εi < C − A, lim
i→∞

εi = 0. Let m ≥ 1 and {Pm,n1,ε1}m be a

partition corresponding to ρε1 . From the above construction, extend this partition to
{Pm,n2,ε2}m to ρε2 such that Pm,n2,ε2 ≥ Pm,n1,ε1 . By induction there exist partitions
{Pm,nj ,εj}m of ρεj such that

Pm,nj ,εj ≥ Pm,nj−1,εj−1
. (3.22)

Denote Pm,nj ,εj = {t0, t1,m,j, . . . tnj ,m,j, x0, x1,m,j, . . . xnj ,m,j}. Since ρεj ≤ ρ and hence∣∣∣∣ x− A

T − ρεj(x)

∣∣∣∣ ≤ ∣∣∣∣ x− A

T − ρ(x)

∣∣∣∣ ,
and ∣∣∣∣xk,m,j − A

T − tk,m,j

∣∣∣∣ = ∣∣∣∣ xk,m,j − A

T − ρεj(xk,m,j)

∣∣∣∣ ≤ max
x

∣∣∣∣ x− A

T − ρ(x)

∣∣∣∣ . (3.23)

Assume that ρ satisfies (2.7). Then from (3.23)

max
k≤nj

{∣∣∣∣xk,m,j − A

T − tj,m,j

∣∣∣∣} ≤ ∧. (3.24)
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For each m, j, let
um,j(x, t) = u(x, t, Pm,nj ,εj),

bm,j(t) = b(t, Pm,nj ,εj),

where u and b are given in (3.6) and (3.7) respectively. From (3.10), (3.11) and (3.24)
we have for all m, j ∣∣∣f ′

(bm,j(t))
∣∣∣ ≤ ∧. (3.25)

TV (f
′
(bm,j)) ≤

(
T − δ

T − ρ(εj)

)
∧+

C − A

T − ρ(εj + A)
. (3.26)

Let j > k, then from (3.21)

T∫
δ

∣∣∣f ′
(bm,j(t)− f

′
(bm,k(t)

∣∣∣ dt ≤ ∧ |ρ(εj + A)− ρ(εk + A)| . (3.27)

Under the above notations we have

Proof of Lemma 2.1 Let ρ satisfies (2.7), then for ρ(εj + A) < T and from (3.25),
(3.26), for each j, {f ′(bm,j)}m∈N is bounded in total variation norm. Therefore from
super linearity of f, {bm,j}m∈N is uniformly bounded in L∞ for all j,m. Hence from
Helly’s theorem and Cantors diagonalization, we can extract a subsequence still de-
noted by {bm,j} such that for every j, f ′(bm,j) → f ′(bj) as m → ∞ in L1 and for a.e. t.
Since (f ′)−1 exist and hence bm,j → bj a.e. t and by dominated convergence Theo-
rem, bm,j → bj in L1. Let ρm,j(x) = ρ(x, Pm,nj ,εj), then from (3.14) ρm,j(x) → ρεj(x)

uniformly. Since f
′
(um,j(x, δ)) = C−A

T−δ
, hence by L1

loc contraction, um,j converges in
L1
loc and for a.e. (x, t) to a solution uj of (1.2) with initial boundary condition

uj(A, t) = bj(t) (3.28)

f
′
(uj(x, δ)) =

C − A

T − δ
. (3.29)

From (3.9) , (3.12) and (3.14), for a.e. x ∈ (A,C)

f
′
(uj(x, T )) =

x− A

T − ρεj(x)
. (3.30)

Letting m → ∞ in (3.27) to obtain

T∫
δ

∣∣∣f ′
(bj(t))− f

′
(bk(t))

∣∣∣ ≤ ∧ |ρ(A+ εj)− ρ(A+ εk)| . (3.31)

Since ρ is right continuous and hence |ρ(A + εj) − ρ(A + εk)| → 0 as j, k → ∞.
Therefore from L1

loc contractivity, there exist a subsequence still denoted by j such
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that uj → ũ1, a solution of (1.2), bj → b̃1 in L1
loc and a.e. Letting j → ∞ in (3.28)

to (3.30), then (ũ1, b̃1) satisfies (2.7) to (2.10). From Rankine-Hugoniot condition
across an(t, δ), ũ1 satisfies (2.10). This proves (1). Similarly (2) follows and hence the
Lemma.

REMARK 3.1 Given ρ, we have exhibited a method to construct an initial data ū0 and
the solution u such that at t = T

f ′(u(x, T )) =
x− ρ(x)

T
. (3.32)

This method is not unique. In fact we can construct infinitely many initial datas and
all the solutions to these initial datas satisfy (3.32). Here we illustrate this method
with an example.

EXAMPLE 3.1 Let T > 0 and x1 < x2, y1 < y2. Define

ρ(x) =


x− x1 + Ty1 if x < x1,
y2 if x1 < x < x2,
x− x2 + Ty2 if x > x2.

Let f ′(a1) = x1−y1
T

, f ′(b1) = x1−y2
T

, f ′(a2) = x2−y2
T

. By strict covexity, it follows
that b1 < min{a1, a2}. Let y1 = ξ1 < ξ2 < · · · < ξn = y2 be a sequence and define
a1 = c1 < c2 < · · · < cn = b1 and {di} by

f ′(ci) =
x1 − ξi

T
, f ′(di) =

f(ci+1)− f(ci)

ci+1 − ci
.

By strict convexity ci < di < ci+1. For 0 ≤ t ≤ T, let

αi(t) = x1 + f ′(ci)(t− T )

si(t) = x1 + f ′(di)(t− T )

β(t) = x2 + f ′(a2)(t− T ),

then αi(t) < si(t) < αi+1(t) < β(t) for 1 ≤ i ≤ n − 1, t ∈ (0, T ). Let si = si(0) =
xi − Tf ′(di), then ξi < si < ξi+1. Now define u and ū0 by (see figure 6)

ū0 =


c1 = a1 if x < s1,
ci if ξ < x < si,
ci+1 if si < x < ξi+1,
cn = a2 if x > sn−1,
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Figure 6:

then the solution u with initial data ū0 in (0, T ) is given by

u(x, t) =



c1 if x < s1,
ci if αi(t) < x < si(t)
ci+1 if si(t) < x < si+1(t)
cn if sn−1(t) < x < αn

(f ′)−1
(
x−y2

t

)
if αn(t) < x < β(t)

a2 if x > β(t).

Clearly u satisfies (3.32).

Since {ξi} are arbitrary and hence there exist infinitely many solutions satisfying
(3.32). In the above example, si(t) are shock curves. In fact one can also introduce
the backword rarefaction in the region αi(t) < x < αi+1(t) by

u(x, t) = (f ′)−1

(
x− x1

t− T

)
for αi(t) < x < αi+1(t).

4 Finer Analysis of Characteristics

In a beautiful paper, Dafermos [11] had extensively studied the properties of charac-
teristic curves. Here we make a finer analysis of these characteristics curves and then
use them to obtain our results. In order to do this, first we recollect the results of
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Lax-Olenik explicit formula and a good reference for this, is third chapter in [12].

Let f∗(p) = sup
q
{pq − f(q)} denote the Legendre transform of f.

Then f∗ is in C1, strictly convex, super linear growth and satisfies

f = f ∗∗,
f ∗′(p) = (f

′
)−1(p),

f ∗(f ′(p)) = pf
′
(p)− f(p),

f(f ∗′(p)) = pf ∗′(p)− f ∗(p).

(4.1)

Controlled Curves: Let x ∈ IR, 0 ≤ s < t and define the controlled curves Γ (x, s, t)
by

Γ (x, s, t) = {r : [s, t] → IR; r is linear and r(t) = x}, (4.2)

and denote Γ (x, t) = Γ (x, 0, t).

Value function: Let u0 ∈ L∞(IR), x0 ∈ IR, define

v0(x) =
x∫

x0

u0(θ)dθ, (4.3)

be its primitive. Define the value function v(x, t) by

v(x, t) = min
r∈Γ (x,t)

{
v0(r(0)) + tf∗

(
x−r(0)

t

)}
= min

β∈IR

{
v0(β) + tf∗ (x−β

t

)}
.

(4.4)

Then v satisfies the

Dynamic Programming principle: For 0 ≤ s < t,

v(x, t) = min
r∈Γ (x,s,t)

{
v(r(s), s) + (t− s)f ∗

(
x− r(s)

t− s

)}
. (4.5)

Define the characteristic set ch(x, s, t, u0) and extreme characteristics y±(x, s, t,
u0) by

ch(x, s, t, u0) = {r ∈ Γ (x, s, t); r is a minimizer in (4.5)}, (4.6)

y−(x, s, t, u0) = min{r(s) : r ∈ ch(x, s, t, u0)}, (4.7)

y+(x, s, t, u0) = max{r(s); r ∈ ch(x, s, t, u0)}, (4.8)

Denote ch(x, t, u0) = ch(x, 0, t, u0), y±(x, t, u0) = y±(x, 0, t, u0). Then we have the
following result due to Hopf, Lax -Oleinik:
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THEOREM 4.1 Let 0 ≤ s < t, u0, v0, v be as above, then

1. v is a uniformly Lipschitz continuous function and is a unique viscosity solution
of the Hamilton-Jacobi equation

vt + f(vx) = 0 (x, t) ∈ IR× (0,∞),
v(x, 0) = v0(x) x ∈ IR.

(4.9)

2. There exist M > 0, depending only on ‖u0‖∞ and Lipschitz constant of f re-
stricted to the interval [−‖u0‖∞, ‖u0‖∞] such that for (x, t) ∈ IR× IR+,
ch(x, s, t, u0) 6= φ and for r ∈ ch(x, s, t, u0)∣∣∣∣x− r(s)

t− s

∣∣∣∣ ≤ M. (4.10)

3. NIP (Non intersecting property of characteristics): Let x1 6= x2, t1 > 0, t2 > 0
and for i = 1, 2, ri ∈ ch(xi, s, ti, u0). Then r1(θ) 6= r2(θ) for all θ ∈ (s,min{t1,
t2}).
From NIP, it follows that for 0 ≤ s < t,

(a). x 7→ y±(x, s, t, u0) are non decreasing functions,

(b). At the points of continuity of y+,

y+(x, s, t, u0) = y−(x, s, t, u0),

and hence ch(x, s, t, u0) = {r}, where r is given by

r(θ) =
x− y+(x, s, t, u0)

t− s
(θ − t) + x.

(c). Let r ∈ ch(x, t, u0), z = r(s). Let r1(θ) = r(θ) for 0 ≤ θ ≤ s, r2(θ) = r(θ)
for s ≤ θ ≤ t. Then r1 ∈ ch(z, s, u0), r2 ∈ ch(x, s, t, u0).

4. Let u(x, t) = ∂v
∂x
(x, t). Then u is the unique solution of (1.2) in Ω = IR × IR+

with initial data u0 and satisfying

|u(x, t)| ≤ ‖u0‖∞. (4.11)

For a.e x, y−(x, t) = y+(x, t) and u is given by

f
′
(u(x, t)) =

x− y+(x, t, u0)

t
=

x− y−(x, t, u0)

t
. (4.12)

Let x be a point of differentiability of y±(x, t, u0) and y±(x, t, u0) is a point of
differentiability of v0, then

u(x, t) = u0(y±(x, t, u0)). (4.13)
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5. Let u0, w0 ∈ L∞(IR) and u,w be the solutions given in (4) with initial data
u0, w0 respectively. Then

(a). Monotonicity: Let u0(x) ≤ w0(x) for x ∈ IR, there exists a set N ⊂ IR of
measure zero such that for each t /∈ N, for a.e x ∈ IR,

u(x, t) ≤ w(x, t). (4.14)

(b). L1
loc contractivity: Let c = max(‖u0‖∞, ‖w0‖∞) and I = [−c, c]. Then there

exist a M > 0, depending on Lipschitz constant f restricted to I such that
for all t > 0, a < b,

b∫
a

|u(x, t)− w(x, t)|dx ≤
b+Mt∫

a−Mt

|u0(x)− w0(x)|dx. (4.15)

For the proofs of (1) to (4) see chapter (3) of [12] and for (5), see chapter (3) of [16].

In this sequal we follow the notations of characterictic curves as in [5]. From
now onwards, we assume that Ω = IR× (0,∞), u0 ∈ L∞(IR).

Left and right characteristic curves: Let 0 ≤ s < t, u be a solution of (1.2) with
initial data u0 and α ∈ IR. Define the left characteristic curve R−(t, s, α, u0) and right
characteristic curve R+(t, s, α, u0) and denote R±(t, α, u0) = R±(t, 0, α, u0) by

R−(t, s, α, u0) = inf{x;α ≤ y−(x, s, t, u0)}, (4.16)

R+(t, s, α, u0) = sup{x : y+(x, s, t, u0) ≤ α}. (4.17)

In view of (4.10), y−(x, s, t, u0) → −∞ as x → −∞, y+(x, s, t, u0) → +∞ as x →
+∞. Hence (4.16) and (4.17) are well defined. Our aim is to study the continuous
dependence of R± on their arguments (t, α, u0).

For x, y,∈ IR, t > 0, let r(θ, t, x, y) ∈ Γ (x, t) be the line joining (x, t), (y, 0)
given by

r(θ, t, x, y) =

(
x− y

t

)
(θ − t) + x. (4.18)

Observe that r(0, t, x, y) = y and hence r ∈ ch(x, t, u0) if and only if y is a minimizer
in (4.4). Hence define the extreme characteristic lines by

r±(θ, t, x) = r(θ, t, y±(x, t, u0)). (4.19)

Since r±(0, t, x) = y±(x, t.u0) and y−(x, t, u0) ≤ y+(x, t, u0), hence for all θ ∈ [0, t],

r−(θ, t, x) ≤ r+(θ, t, x). (4.20)

Then we have the following
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LEMMA 4.1 Let u0, w0, {uk
0} are in L∞(IR) and α, {αk} are in IR. Let v,W, {vk} be

the value functions defined in (4.4) with respect to the data u0, w0, {uk
0} respectively.

Let u = ∂v
∂x
, w = ∂W

∂x
, uk =

∂vk
∂x

be the solutions of (1.2). Then

1. Let x1 < x2, 0 ≤ s < t and β ∈ IR be a minimizer for v(x1, t) and v(x2, t) in
(4.5). Then for x1 < x < x2, β is the unique minimizer for v(x, t) and satisfies

f
′
(u(x, t)) =

x− β

t− s
. (4.21)

2. Let xk ∈ IR, rk ∈ ch(xk, t, u0) such that lim
k→∞

(xk, rk(0)) = (x, β). Then r(·, t, x, β)
∈ ch(x, t, u0). Furthermore

lim
xk↑x

y+(xk, t, u0) = y−(x, t, u0), (4.22)

lim
xk↓x

y−(xk, t, u0) = y+(x, t, u0). (4.23)

In particular, y− is left continuous and y+ is right continuous.

3. (i). For all t > 0,
R−(t, α, u0) ≤ R+(t, α, u0), (4.24){

y−(R−(t, α, u0), t, u0) ≤ α ≤ y+(R−(t, α, u0), t, u0),
y−(R+(t, α, u0), t, u0) ≤ α ≤ y+(R+(t, α, u0), t, u0).

(4.25)

Further more if R−(t, α, u0) < R+(t, α, u0), then for all x ∈ (R−(t, α, u0),
R+(t, α, u0)) (see Figure 7)

y±(x, t, α) = α, f
′
(u(x, t)) =

x− α

t
. (4.26)

(ii). Let 0 < s < t, then

R−(t, s, α, u0) = R+(t, s, α, u0). (4.27)

4. Let 0 ≤ s < t. Then t 7→ R±(t, α, u0) are Lipschitz continuous function with
Lipschitz norm depends only on α and ‖u0‖∞ and satisfying

lim
t→0

R±(t, α, u0) = α, (4.28)

R±(t, α, u0) = R±(t, s, R±(s, α, u0), u0). (4.29)

5. Monotonicity: Let u0 ≤ w0, α ≤ β, then

R±(t, α, u0) ≤ R±(t, α, w0), (4.30)

R±(t, α, u0) ≤ R±(t, β, u0). (4.31)
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u(x,t)= x−
t

t
α

(   ,0)α

(R−(t,   ,u0α (R+(t,   ,u0α

(y+(x,t,u0),0) (y−(x,t,u0),0)

),t) ),t)

(x,t) (x,t)

Figure 7:

6. Continuity with respect to data: Let {u0
k} be bounded in L∞(IR). Let αk →

α, uk
0 → u0 in L1

loc(IR). Then for t > 0.

(a). Suppose for all k,R−(t, αk, u
k
0) ≤ R−(t, α, u0), then

lim
k→∞

R−(t, αk, u
k
0) = R−(t, α, u0). (4.32)

(b). Suppose for all k,R+(t, αk, u
k
0) ≥ R+(t, α, u0), then

lim
k→∞

R+(t, αk, u
k
0) = R+(t, α, u0). (4.33)

(c). Suppose R−(t, α, u0) < R̄ = ¯lim
k→∞

R−(t, αk, u
k
0), then for

all x ∈ (R−(t, α, u0), R̄), y±(x, t, u0) = α and

f
′
(u(x, t)) =

x− α

t
. (4.34)

(d). Suppose lim
k→∞

R+(t, αk, u
k
0) = R̄ < R+(t, α, u0), then for all x ∈ (R̄,

R+(t, α, u0)), y±(x, t, u0) = α and

f
′
(u(x, t)) =

x− α

t
. (4.35)

As an immediate consequence of this, if R−(t, α, u0) = R+(t, α, u0) for t > 0,
then R±(t, α, u0) is continuous at (α, u0).

Proof. (1). Let x ∈ (x1, x2) and r ∈ ch(x, s, t, u0). Suppose r(s) 6= β. then r inter-
sets one of the characteristics

(
xi−β
t−s

)
(θ − t) + xi, i = 1, 2, which contradicts NIP of

Theorem 2.1 Hence β = r(s) = y±(x, s, t, u0). Furthermore

v(x, t) = v(β, s) + (t− s)f ∗
(
x− β

t− s

)
,
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and for a.e x,

u(x, t) =
∂v

∂x
= f∗′

(
x− β

t− s

)
= (f

′
)−1

(
x− β

t− s

)
.

This proves (1).

(2). From the continuity of v and f ∗, we have

v(x, t) = lim
k→∞

v(xk, t)

= lim
k→∞

{
v0(rk(0)) + tf∗

(
xk−rk(0)

t

)}
= v0(β) + tf ∗ (x−β

t

)
,

and hence r(·, t, x, β) ∈ ch(x, t, u0). Let x1 < x2, then from NIP, y+(x1, t, u0) ≤
y−(x2, t,
u0). From monotonicity of y±, we have

y−(x1, t, u0) ≤ y+(x1, t, u0) ≤ y−(x2, t, u0) ≤ y+(x2, t, u0).

Let xk ↑ x, then from above inequality,

β = lim
k→∞

y+(xk, t, u0) ≤ y−(x, t, u0).

Since a subsequence of y+(xk, t, u0) converges to β, hence r(·, t, x, β) ∈ ch(x, t, u0).
Therefore β ≤ y−(x, t, u0) ≤ r(0, t, x, β) = β. This proves (4.22). Similarly (4.23)
follows. This proves (2).

(3). (i). Suppose y−(R−(t, α, u0), t, u0) > α. Then from (4.22) there exist x0 <
R−(t, α, u0). such that for all x ∈ (x0, R−(t, α, u0)), y+(x, t, u0) > α. Let x be a
point of continuity of y+, then from (3) of theorem 2.1, y−(x, t, u0) = y+(x, t, u0) >
α and hence R−(t, α, u0) ≤ x < R−(t, α, u0) which is a contradiction. Suppose
y+(R−(t, α, u0), t, u0) < α, again from (4.23) there exist x0 > R−(t, α, u0) such that
for all x ∈ (R−(t, α, u0), x0),
y−(x, t, u0) < α. Therefore at points x of continuity, α ≤ y+(x, t, u0) = y−(x, t, u0) <
α, which is a contradiction. This proves (4.25) and (4.26) follows similarly.

Suppose R+(t, α, u0) < R−(t, α, u0), then from (4.25), y−(R−(t, α, u0), α,
u0) ≤ α ≤ y+(R+(t, α, u0), t, u0), therefore from NIP, y−(R−(t, α, u0), t, u0) = α =
y+(R+(t, α, u0), t, u0). Hence from (4.21), for all x ∈ (R+(t, α, u0), R−(t, α, u0)), α is
a minimizer for v(x, t) which implies that R−(t, α, u0) ≤ x < R−(t, α, u0) which is a
contradiction. This proves (4.24).

Suppose R−(t, α, u0) < R+(t, α, u0). then from (4.24), (4.25), we have

α ≤ y+(R−(t, α, u0), t, u0) ≤ y−(R+(t, α, u0), t,u0) ≤ α.

Therefore from (1), for all x ∈ (R−(t, α, u0), R+(t, α, u0)), y±(x, t, u0) = α and
f

′
(u(x, t)) = x−α

t
. This proves (4.26).

28



(3). (ii). Let 0 < s < t, then as in (4.24) we have R−(t, s, α, u0) ≤ R+(t, s, α, u0).
Suppose R−(t, s, α, u0) < R+(t, s, α, u0), then as in (4.26), we have for all x ∈
(R−(t, s, α, u0), R+(t, s, α, u0)), f ′(u(x, t)) = x−α

t−s
. Let R−(t, s, α, u0) < x1 < x2 <

R+(t, s, α, u0) and r±(., t, x1), r±(., t, x2) be the extreme characteristics at x1, x2. Since
r±(s, t, x1) = r±(s, t, x2) = α, which contradicts NIP. This proves (ii) and hence (3).

(4). Let 0 ≤ s < t,R− = R−(t, α, u0), y± = y±(R−, t, u0) and r±(θ) = r(θ, t, R−, y±) ∈
ch(R−, t, u0). Then from (3) of theorem 2.1, r±|(0,s) ∈ ch(r±(s), s, u0).
Claim : r−(s) ≤ R−(s, α, u0) ≤ r+(s).

Suppose R−(s, α, u0) < r−(s). For x ∈ (R−(s, α, u0), r−(s)), y−(x, s, α) ≥ α.
Hence if y− < α or y−(x, s, α) > α, then the characteristics r−(θ), r−(θ, s, x) intersect
for some θ ∈ (0, s) which contradicts NIP. Therefore α = y− = y−(x, s, α) and
from (2) r̃(θ) = r̃(θ, s, R−(s, α, u0), α) ∈ ch(R−(s, α, u0), s, u0). From (4.22) choose a
ξ < R−, y−(ξ, t, u0) < α such that the characteristic r̃(θ) and r(θ, t, ξ, y+(ξ, t, u0))
intersect for some θ ∈ (0, s) which contradicts NIP.

Suppose r+(s) < R−(s, α, u0), then for x ∈ (r+(s), R−(s, α, u0)), y−(x, s, u0) <
α ≤ r+(0) = y+ and therefore the characteristic at (x, s) with end point (y−(x, s, u0),
0) intersects r+(θ) for some θ ∈ (0, s) contradicting NIP. This proves the claim.

From (4.10) and the claim, we have

R− +

(
R− − y−

t

)
(s− t) ≤ R−(s, α, u0) ≤ R− +

(
R− − y+

t

)
(s− t)

that is

|R− −R−(s, α, u0)| ≤
(∣∣∣∣R− − y−

t

∣∣∣∣+ ∣∣∣∣R− − y+
t

∣∣∣∣) |s− t|

≤ 2M |s− t|.

Also from (4.10), we have |R− − y±| = |R− − r±(0)| ≤ Mt, hence
lim
t→0

R−(t, α, u0) = α. Similarly for R+(t, α, u0).

From (c) of (3) in Theorem 2.1, we have r±|[s,t] ∈ ch(R−(t, α, u0), s, t, u0),
hence from NIP and from the above claim we have for any x < R−(t, α, u0) <
z, y+(x, s, t, u0) < r−(s) ≤ R−(s, α, u0) ≤ r+(s) < y−(z, s, t, u0). Therefore from
the definitions it follows that R−(t, α, u0)) = R−(t, s, R−(t, s, u0), u0). Similarly for
R+ and this proves (4).

(5). From (5) of Theorem 2.1, for t ∈ N, a.e. x, u(x, t) ≤ w(x, t). Let y1,±(x) =
y±(x, t, u0), y2,±(x) = y±(x, t, w0). Choose a dense set D ⊂ IR such that for i =
1, 2, x ∈ D, u(x, t) ≤ w(x, t), yi,+(x) = yi,−(x). Hence from (4.12) we have for x ∈ D,

x− y1,±(x)

t
= f

′
(u(x, t)) ≤ f

′
(w(x, t)) =

x− y2,±(x)

t
.
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This implies y2,±(x) ≤ y1,±(x). Therefore from (4.22) and (4.23),

R−(t, α, u0) = inf{x ∈ D : y1,−(x) ≥ α}
≤ inf{x ∈ D : y2,−(x) ≥ α}
= R−(t, α, w0).

R+(t, α, u0) = sup{x ∈ D, y1,+(x) ≤ α}
≤ sup{x ∈ D : y2,+(x) ≤ α}
= R+(t, α, w0).

From (4), t 7→ (R±(t, α, u0), R±(t, α, w0)) are continuous and hence (4.30) holds for
all t > 0.

R−(t, α, u0) = inf{x : y−(x, t, u0) ≥ α}
≤ inf{x : y−(x, t, u0) ≥ β}
= R−(t, β, u0),

and similarly for R+. This proves (5).

(6). From L1
loc contractivity, uk → u in L1

loc and hence for a.e. s, uk(·, s) → u(·, s) in
L1
loc. Let t > 0 be such that for a subsequence still denoted by k such that for a.e. x

lim
k→∞

uk(x, t) = u(x, t). (4.36)

Let yk±(x) = y±(x, t, u
k
0), R

k
± = R±(t, αk, u

k
0). Since {yk±} are monotone functions

and {Rk
±} are bounded. Hence from Helly’s theorem, there exist a subsequence still

denoted by k such that for a.e. x,

lim
k→∞

yk±(x) = y±(x) (4.37)(
lim
k→∞

Rk
±,

¯lim
k+∞

Rk
±

)
=

(
R̄±, R̃±

)
, (4.38)

where u is the solution of (1.2) with u(x, 0) = u0(x). Let D ⊂ IR be a dense set such
that for all x ∈ D, (4.36) to (4.38) holds and further for all k,

yk+(x) = yk−(x) (4.39)

y+(x, t, u0) = y−(x, t, u0) (4.40)

f
′
(uk(x, t)) =

x− yk±(x)

t
(4.41)

f
′
(u(x, t)) =

x− y±(x, t, u0)

t
. (4.42)

Hence from (4.37) , (4.41) and (4.42), for x ∈ D,

y±(x) = lim
k→∞

yk±(x) = y±(x, t, u0). (4.43)
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Case (i): Let for all k,Rk
− ≤ R−(t, α, u0), then R̄− ≤ R−(t, α, u0). Suppose R̄− <

R−(t, α, u0). Let I = (R̄−, R−(t, α, u0)), x ∈ D ∩ I and choose k0 = k0(x) > 0 such
that for all k ≥ k0, R

k
− < x, then

α = lim
k→∞

αk ≤ lim
k→∞

yk−(x) = y−(x, t, u0) < α,

which is a contradiction. Hence R̄− = R−(t, α, u0).

Case (ii) : Let for all k, R−(t, α, u0) ≤ Rk
−, then R−(t, α, u0) ≤ R̃−. Suppose

R−(t, α, u0) < R̃−, then for x ∈ D∩(R−(t, α, u0), R̃−) choose k0 = k0(x) such that for
a subsequence k > k0, x < Rk

−. Hence α ≤ y−(x, t, u0) = lim
k→∞

yk−(x) ≤ α and therefore

y−(x, t, u0) = α. Therefore from (4.12), f
′
(u(x, t)) = x−α

t
.

Since {uk
0} are bounded in L∞ and hence from (4), ther exists a C > 0 inde-

pendent of k such that for all s1, s2 we have

|R±(s1, αk, u
k
0)−R±(s2, αk, u

k
0)| ≤ |s1 − s2|

|R±(s1, α, u0)−R±(s2, α, u0)| ≤ |s1 − s2|

Now suppose for t > 0 and for a subsequence still denoted by k such that

R− = lim
k→∞

R−(t, αk, u
k
0) < R−(t, α, u0).

Therefore choose ε > 0, k0 > 0 such that for all k ≥ k0

R−(t, αk, u
k
0) < R−(t, α, u0)− 2ε.

Let |s− t| ≤ ε
2C

, then from the above uniform estimates we have for k ≥ k0

R−(s, αk, u
k
0) ≤ ε

2
+R−(t, αk, u

k
0)

≤ ε

2
+R−(t, α, u0)− 2ε

≤ ε

2
+R−(s, αk, u

k
0) +

ε

2
− 2ε

≤ R−(s, α, u0)− ε < R−(s, α, u0).

Now choose an |s0− t| < ε
2
such that the previous analysis holds. Then at s0, we have

R−(s, α, u0)− ε ≥ lim
k→∞

R−(s, αk, u
k
0) = R−(s, α, u0) < R−

which is a contradiction. This proves (2.32) and similarly (2.33) holds.

Let R−(t, α, u0) < R̄ = lim
k→∞

R−(t, αk, u
k
0) and R−(t, α, u0) < x < R̄. Then as

earlier choose an ε > 0, a subsequence still denoted by k such that for |s − t| < ε
2C

and k ≥ k0(ε), following holds :

R−(s, α, u0) + ε < x < R̄− ε ≤ R−(s, αk, u
k
0).
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Now choose an s > t such that uk(ξ, s) → u(ξ, s) a.e. ξ. Hence from the previous
analysis we have for all ξ ∈ (R−(s, α, u0), R̄ − ε), f ′(u(ξ, s)) = ξ−α

s
. Since s > t and

hence we have f ′(u(x, t)) = x−α
t
. This proves (2.34) and similarly (2.35) follows. This

proves (6) and hence the Lemma.

Next we study the characterization of R± and some comparison properties. For
this we need some well known results which will be proved in the following Lemma.

Let Ω ⊂ IRn be an open set and B(1) denote the unit ball in IRn. Let 0 ≤ χ ∈
C∞

c (B(1)) with
∫
IRn

χ(x)dx = 1. Let ε > 0 and denote χε(x) =
1
εn
χ(x

ε
) be the usual

mollifiers. Let u0 ∈ L1
loc(IR

n) and define

uε
0(x) = (χε ∗ u0)(x) =

∫
B(1)

χ(y)u0(x− εy)dy ,

then

LEMMA 4.2 Denote ess inf and ess sup by inf and sup. Then

1. With the above notation, for x ∈ Ω, there exists a ε0 = ε0(x) > 0 such that for
all 0 < ε < ε0,

inf
y∈Ω

u0(y) ≤ uε
0(x) ≤ sup

y∈Ω
u0(y). (4.44)

2. Let t0, ε0, α ∈ IR and ω ∈ L∞((0, t0)). Let R : (0, t0] → IR be a locally Lipschitz
continuous function such that for a.e t ∈ (0, t0),

ω(t) ≥ (f ′)−1

(
R(t)− α

t

)
+ ε0 (4.45)

dR

dt
=

f(ω(t))− f((f ′)−1(R(t)−α
t

))

ω(t)− (f ′)−1(R(t)−α
t

)
, (4.46)

then

lim
t→0

∣∣∣∣R(t)− α

t

∣∣∣∣ = ∞. (4.47)

Proof. (1). Let Ωε = {x; d(x,Ωc) > ε}. Then for x ∈ Ω, there exists an ε0 > 0, such
that x ∈ Ωε, for all ε < ε0. Hence x− εy ∈ Ω, for a.e y ∈ B(1) a.e

inf
ξ∈Ω

u0(ξ) ≤ u0(x− εy) ≤ sup
ξ∈Ω

u0(ξ).

Multiply this identity by χ and integrate over B(1) gives (4.44).
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(2). Suppose (4.47) is not true. That is

sup
t>0

∣∣∣∣R(t)− α

t

∣∣∣∣ < ∞. (4.48)

Let m be defined by

m = inf
t∈(0,t0)

1∫
0

f ′
(
(f ′)−1

(
R(t)−α

t

)
+ θ

(
w(t)− (f ′)−1

(
R(t)−α

t

)))
−

(
R(t)−α

t

)
dθ.

(4.49)

Claim : m > 0.
From (4.45), w(t)− (f ′)−1

(
R(t)−α

t

)
> 0 and hence by convexity we have

f ′
(
(f ′)−1

(
R(t)−α

t

)
+ θ

(
w(t)− (f ′)−1

(
R(t)−α

t

)))
≥ f ′

(
(f ′)−1

(
R(t)−α

t

))
= R(t)−α

t
.

Hence m ≥ 0. Suppose m = 0, then there exists a sequence tk → t̃ in [0, 1] such that

0 = lim
k→∞

1∫
0

f ′
(
(f ′)−1

(
R(tk)−α

tk

)
+ θ

(
w(t)− (f ′)−1

(
R(tk)−α

tk

)))
−

(
R(tk)−α

tk

)
dθ.

Then from (4.48), we can choose a subsequence such that

R(tk)− α

tk
→ a, w(tk) → b as k → ∞.

Then from (4.45) we have b ≥ (f ′)−1(a) + ε0 and

0 =

1∫
0

[
f ′ ((f ′)−1(a) + θ(b− (f ′)−1(a))

)
− a

]
dθ

and hence by strict convexity

0 < f ′((f ′)−1(a) + θ(b− (f ′)−1(a)))− a = 0

which is a contradiction. This proves the claim. From Taylor series and the claim we
have

dR
dt

= R(t)−α
t

+
1∫
0

f ′
(
(f ′)−1

(
R(t)−α

t

)
+ θ

(
w(t)− (f ′)−1

(
R(t)−α

t

)))
−

(
R(t)−α

t

)
dθ.

≥ R(t)−α
t

+mε0
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or

t
d

dt

(
R(t)− α

t

)
≥ mε0.

For 0 < t1 < t0, integrating t to t1 to obtain

R(t)− α

t
≤ R(t1)− α

t
−mε0log

t1
t
→ −∞ as t → 0.

LEMMA 4.3 Let T > 0, α, β ∈ IR, u0, v0 and v be as in (4.3) and (4.4). Then

(1). Let x0 ∈ IR, t > 0 such that

y−(x0, t, u0) ≤ α ≤ y+(x0, t, u0), (4.50)

then

(i). if x0 ≤ R−(t, α, u0), then x0 = R−(t, α, u0). If R−(t, α, u0) < x0, then for all
x ∈ (R−(t, α, u0), x0), f

′
(u(x, t)) = x−α

t
.

(ii). if x0 ≥ R+(t, α, u0), then x0 = R+(t, α, u0). If x0 < R+(t, α, u0), then for all
x ∈ (x0, R+(t, α, u0)), f

′(u(x, t)) = x−α
t
.

(2). (i). Let x ≥ R−(t, α, u0), then

v(x, t) = inf
y≥α

{
v0(y) + tf ∗

(
x− y

t

)}
. (4.51)

(ii). Let x ≤ R+(t, α, u0), then

v(x, t) = inf
y≤α

{
v0(y) + tf ∗

(
x− y

t

)}
. (4.52)

(iii). Let α < β and for 0 < t < T assume that

R+(t, α, u0) < R−(t, β, u0),

then for R+(t, α, u0) < x < R−(t, β, u0),

v(x, t) = inf
α≤y≤β

{
v0(y) + tf∗

(
x− y

t

)}
, (4.53)

m = inf
y∈[α,β]

u0(y) ≤ u(x, t) ≤ sup
y∈[α,β]

u0(y) = M. (4.54)

f ′(m) ≤ x− y+(x, t, u0)

t
≤ f ′(M). (4.55)
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(3). Let L(t, α, u0) ∈ {R±(t, α, u0)}, R(t, β, u0) ∈ {R±(t, β, u0)}. Suppose at t = T,

L(T, α, u0) = R(T, β, u0), (4.56)

then for all t ≥ T, (see Figure 9).

L(t, α, u0) = R(t, β, u0). (4.57)

Furthermore, let {uk
0} and u0 are in L∞(IR) with sup

k
‖uk

0‖∞ < ∞. Let (αk, βk,

uk
0) → (α, β, u0) as k → ∞ in IR2 × L1

loc(IR) and Tk → T in IR such that

R−(T, α, u0) = R+(T, β, u0)
R−(Tk, αk, u

k
0) = R+(Tk, βk, u

k
0).

(4.58)

Then for t > T,

lim
k→∞

R+(t, αk, u
k
0) = lim

k→∞
R−(t, βk, u

k
0)

= R+(t, α, u0)
= R−(t, α, u0).

(4.59)

R− 0)(t,  ,uα

u0 u0

T

u0(   ,0) (   ,0)βα

R−(t,   ,u0)=R+ 0)α (t,   ,uβ

R+(t,   ,u0)β

Figure 8:

Proof. (1). It is enough to prove (i) and (ii) follows similarly. Let C = R−(t, α, u0),
then from (4.22) y−(C, t, u0) ≤ α. Suppose x0 < C, then from (4.50), the char-
acteristic line joining (C, t), (y−(C, t, u0), 0) and (x0, t), (y+(x0, t, u0), 0) intersect if
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y+(x0, t, u0) > α or y−(C, t, u0) < α, which contradicts NIP. Hence y+(x0, t, u0) =
y−(C, t, u0) = α. Therefore from (4.21), for x0 < x < C, f ′(u(x, t)) = x−α

t
. This

implies that C = R−(t, α, u0) < x < C, which is a contradiction. Hence x0 =
R−(t, α, u0). Suppose C < x0, then from the definition and (4.50), we have y−(x0, t, u0)
≤ α ≤ y−(x0, t, u0) and hence y−(x0, t, u0) = α and from (4.21), f ′(u(x, t)) = x−α

t
for

all C < x < x0. This proves (1).

(2). It is enough to prove (i) and (ii) follows similarly. Let x ≥ R−(t, α, u0), then
from (4.25), y+(x, t, u0) ≥ α. Therefore

inf

{
inf
y≥α

{v0(y) + tf∗
(
x− y

t

)
}, inf

y<α
{v0(y) + tf∗

(
x− y

t

)
}
}

= v(x, t)

= v0(y+(x, t, u0)) + tf ∗
(
x− y+(x, t, u0)

t

)
.

Hence

v(x, t) = inf
y≥α

{v0(y) + tf ∗
(
x− y

t

)
}.

(iii). (4.53) follows from (4.51) and (4.52). Let ε > 0, uε
0 = χε ∗ u0 and vε0, vε be as in

(4.3) , (4.4) respectively. Let uε = ∂vε

∂x
be the solution of (1.2) in Ω = IR× IR+. Since

vε0 is differentiable and hence for a.e x and from (4.13), uε(x, t) = uε
0(y+(x, t, u0)).

Since uε
0 → u0 in L1

loc and hence uε → u in L1
loc. Therefore from (4.32) to (4.35), we

have for 0 < t < T,

lim
ε→0

R+(t, α, u
ε
0) ≤ R+(t, α, u0) < R−(t, β, u0) ≤ lim

ε→0
R−(t, β, u

ε
0).

Let εk → 0 and choose a dense set D ⊂ (R+(t, α, u0), R−(t, β, u0)) such that for all
x ∈ D,

lim
k→∞

uεk(x, t) = u(x, t)

y(x) = y+(x, t, u0) = y−(x, t, u0)

yk(x) = y+(x, t, u
εk
0 ) = y−(x, t, u

εk
0 ).

For x ∈ D, choose k0(x) such that for all k ≥ k0(x), x ∈ (R+(t, α, u
εk
0 ), R−(t, β, u

εk
0 )).

Then from ((4.53)), yk ∈ [α, β]. Since uεk(x, t) = uεk
0 (yk(x)), hence from (4.44),

m ≤ uεk
0 (yk(x)) = uεk(x, t) ≤ M.

Letting k → ∞ to obtain (4.54). From (4.12),

f ′(uεk(x, t)) =
x− yk(x)

t
,
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letting k → ∞ to obtain

x− y(x)

t
= f ′(u(x, t)) = lim

k→∞
f ′(uεk(x, t))

= lim
k→∞

x− yk(x)

t
.

Hence lim
k→∞

yk(x) = y(x),

f ′(m) ≤ f ′(uεk
0 (yk(x))) =

x− yk(x)

t
≤ f ′(M),

Now letting k → ∞ to obtain

f ′(m) ≤ x− y(x)

t
≤ f ′(M),

For x 6∈ D, choose xk ↑ x, y+(xk, t, u0) = y−(xk, t, u0). Then from (4.22), y+(xk, t, u0)
→ y−(x, t, u0). Now apply the inequalities for xk and let k → ∞ to obtain (4.54),
(4.55). This proves (2).

(3). Without loss of generality we can take L(t, α, u0) = R−(t, α, u0) and R(t, β, u0) =
R+(t, β, u0). Similar proof follows in all other cases. Let C = R−(T, α, u0) = R+(T, β,
u0) and t > T. Then from (4.27) and (4.29) we have

R−(t, α, u0) = R−(t, T, C, u0)
= R+(t, T, C, u0)
= R+(t, β, u0).

(4.60)

This proves (4.57).

Let t > T, then choose k0 = k0(t) such that t > Tk, for all k > k0. Then from
(4.57) we have

Rk(t) = R−(t, αk, u
k
0) = R+(t, αk, u

k
0),

R(t) = R−(t, α, u0) = R+(t, α, u0).

Hence from (6) of Lemma 4.2,

lim
k→∞

Rk(t) ≤ R+(t, α, u0) = R−(t, α, u0) ≤ lim
k→∞

Rk(t). (4.61)

This proves (4.59) and hence the Lemma.

Next we give a criteria under which R+ = R−. Let β < γ and I1 = [β, γ], Define

m = inf
y∈I1

u0(y), M = sup
y∈I1

u0(y), I2 = [f ′(m), f ′(M)].

Let
a0 = max{f∗(q)−Mq; q ∈ I2}, f ′(q0) = max{q; f∗(q)−Mq ≤ a0}.

Then we have the following.
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LEMMA 4.4 Let α < β < γ, ε0 > 0. Let u0 ∈ L∞(IR), a0 and q0 as above. Suppose

inf
[α,β]

u0(y) ≥ q0 + ε0, (4.62)

then for all t > 0,
R+(t, β, u0) = R−(t, β, u0).

Proof. Suppose for some T > 0, R+(T, β, u0) > R−(T, β, u0), then from (4.57), for
0 < t < T,

R−(t, β, u0) < R+(t, β, u0)

and from (4.26) for R−(t, β, u0) < x < R+(t, β, u0).

f ′(u(x, t)) =
x− β

t
. (4.63)

From (4.28) we can choose T sufficiently small such that for all 0 < t ≤ T,

R+(t, α, u0) < R−(t, β, u0) < R+(t, β, u0) < R−(t, γ, u0). (4.64)

Claim: Let L(t) = R−(t, β, u0), then for 0 < t ≤ T

f ′(u(L(t)+, t)) ≤ R+(t, β, u0)− β

t
≤ f ′(q0). (4.65)

Let xk > R+(t, β, u0) be such that y+(xk, t, u0) = y−(xk, t,
u0) and lim

k→∞
xk = R+(t, β, u0). Then from (4.55)

f ′(m) ≤ x− y−(xk, t, u0)

t
≤ f ′(M).

Letting k → ∞ and from (4.23) we have

f ′(m) ≤ R+(t, β, u0)− y+(R+(t, β, u0), t, u0)

t
≤ f ′(M). (4.66)

Let v0(y) =
y∫
β

u0(θ)dθ, hence v0(β) = 0. Denote R(t) = R+(t, β, u0), y±(t)

= y±(R+(t, β, u0), t, u0), then from (4.63), y−(t) = β and from (4.4) we have

tf∗
(
R(t)− β

t

)
= v0(y−(t)) + tf∗

(
R(t)− y−(t)

t

)
= v0(y+(t)) + tf∗

(
R(t)− y+(t)

t

)
≤ M(y+(t)− β) + tf∗

(
R(t)− y+(t)

t

)
≤ M(y+(t)−R(t)) +M(R(t)− β) + tf∗

(
R(t)− y+(t)

t

)
,
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and hence

f∗
(
R(t)− β

t

)
−M

(
R(t)− β

t

)
≤ f∗

(
R(t)− y+(t)

t

)
−M

(
R(t)− y+(t)

t

)
.

From (4.66) it follows that

f∗
(
R(t)− β

t

)
−M

(
R(t)− β

t

)
≤ a0,

Letting x tends to L(t) in (4.63) to obtain

f ′(u(L(t)+, t)) =
L(t)− β

t
≤ R+(t, β, u0)− β

t
≤ f ′(q0). (4.67)

This proves (4.65) and hence the claim.

From (4.54), for R+(t, α, u0) < x < R−(t, β, u0) = L(t), u(x, t) ≥ inf
y∈[α,β]

u0(y),

hence from (4.62) and (4.67), we have

u(L(t)−, t) ≥ inf
y∈[α,β]

u0(y) ≥ q0 + ε0

≥ u(L(t)+, t) + ε0

= f ∗′
(

L(t)−β
t

)
+ ε0.

(4.68)

From RH condition across L(t) gives

dL

dt
=

f(u(L(t)−, t))− f
(
f ∗′

(
L(t)−β

t

))
u(L(t)−, t)− f∗′

(
L(t)−β

t

) . (4.69)

Therefore L(t) satisfies the hypothesis (2) of Lemma 2.3 and hence from (4.47)

¯lim
t→0

∣∣∣∣L(t)− β

t

∣∣∣∣ = ∞,

which contradicts the uniform Lipschitz continuity of L from (4) of Lemma 2.2. Hence
R−(t, β, u0) = R+(t, β, u0), for all t, and this proves the Lemma.

REMARK 4.1 Observe that q0 entirely depends on the bounds of u0 in [β, γ].

LEMMA 4.5 Let u be the solution of (1.2) with

ū0(x) = u(x, 0) =

{
a if x < α,
u0(x) if x > α.
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Then for x < R−(t, α, ū0),

u(x, t) = a, (4.70)

f ′(a) =
R−(t, α, ū0)− y−(R−(t, α, ū0), t, ū0)

t
. (4.71)

Proof. Since v̄0(x) =
x∫
α

ū0(θ)dθ is differentiable for x < α and hence from (4.13), for

a.e, x < α, u(x, t) = ū0(y+(x, t, ū0)) = a and

f ′(a) =
x− y+(x, t, ū0)

t
.

From (4.22) and letting x ↑ R−(t, α, ū0) to obtain (4.71). This proves the Lemma.

Analysis of initial value problem with data taking three values : Consider
the following initial value problem taking three values. Let a, λ,m ∈ IR, α < β and
consider

uλ
0(x) =


a if x < α,
λ if α < x < β,
m if x > β.

(4.72)

and denote

vλ0 (x) =

x∫
β

uλ
0(θ)dθ, (4.73)

and vλ be as in (4.4). Let uλ = ∂vλ

∂x
be the entropy solution of (1.2) in Ω = IR × IR+

with initial data uλ
0 . Assume that

λ > max(a,m), (4.74)

then α is a point of rarefaction and β is the shock point.

Let
L1(t) = α+ f ′(a)t,
Lλ
2(t) = α+ f ′(λ)t,

Sλ(t) = β +
(

f(λ)−f(m)
λ−m

)
t.

Let (x0(λ), T0(λ)) be the point of intersection of Lλ
2 and Sλ given by

T0(λ) =
β − α

f ′(λ)−
(

f(λ)−f(m)
λ−m

) ,
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x0(λ) = α+
(β − α)f ′(λ)

f ′(λ)−
(

f(λ)−f(m)
λ−m

) .
Since β is the point of shock and hence from (4.26) we have

R+(t, β, u
λ
0) = R−(t, β, u

λ
0) = Rλ(t)(def). (4.75)

Then the solution uλ for t ≤ T0(λ) is given by

Rλ(t) = Sλ(t). (4.76)

uλ(x, t) =


m if x > Sλ(t),
λ if Lλ

2(t) < x < Sλ(t),
(f ′)−1

(
x−α
t

)
if L1(t) < x < Lλ

2(t),
a if x < L1(t).

(4.77)

Define T1(λ) > T0(λ) be the first point of intersection of Lλ
2 and Rλ. If they

do not meet, then define T1(λ) = ∞. Next Lemma describes the behavior of uλ for
t > T0(λ).

LEMMA 4.6 Let λ satisfies (4.74). Then uλ is given by (see Figure 9).

(i). For T0(λ) < t < T1(λ), y±(L1(t), t, u
λ
0) = a and

uλ(x, t) =


m if x > Rλ(t),

f ′−1 (x−α
t

)
if L1(t) < x < Rλ(t),

a if x < L1(t).
(4.78)

(ii). t > T1(λ), then uλ is the solution of (1.2) with initial data

uλ(x, T1(λ)) =

{
a if x < Rλ(T1(λ)),
m if x > Rλ(T1(λ)).

(4.79)

Furthermore for any compact sets K1 and K2 of IR with K = K1 × K2, η >
0, T ≤ T1(λ) be bounded, then

lim
λ→∞

inf
(a,m)∈K

T1(λ) = ∞, (4.80)

f ′(uλ(Rλ(t)−, t) =

{
f ′(λ) if 0 < t < T0(λ),
Rλ(t)−α

t
if T0(λ) < t < T1(λ).

(4.81)

lim
λ→∞

inf
(a,m)∈K

T0(λ)≤t≤T

uλ(Rλ(t)−, t) = ∞. (4.82)

lim
λ→∞

inf
η≤t≤T

Rλ(t) = ∞, (4.83)

41



u(x,t)=
x−

t

L 2

L 1

u=

T1(   )

T0

u=a

λ

(t)
= 
   
+t
f (
a 
)

α

(t)=
     +

tf (  
)

α

α

λ

λ

(   )

λ

R  (t)

(   ,0) (   ,0)λ u0(x)α βa

λ

λ

Figure 9:

Proof. Let T0(λ) < t ≤ T1(λ). Since v
λ
0 (x) is differentiable for x > β and hence from

(4.13) and (4.51), uλ(x, t) = u0(y+(x, t, u
λ
0)) = m if x > R+(t, β, u

λ
0) = Rλ(t). Next

we show that for L1(t) < x < Rλ(t), y±(x, t, u
λ
0) = α.

L1(t) < x < Rλ(t). Then y+(x, t, u
λ
0) < β. Suppose for some x0 ∈ (L1(t), R

λ

(t)), y−(x, t, u
λ
0) < α, then for all x ∈ (L1(t), x0), y−(x, t, u

λ
0)) < α, uλ(x, t) =

u0(y−(x, t,
uλ
0)) = a and

L1(t)− α

t
= f ′(a) = f ′(uλ(x, t)) =

x− y−(x, t, u
λ
0)

t
>

L1(t)− α

t
,

which is a contradiction. Suppose y+(x0, t, u
λ
0) > α, then for all x0 < x < Rλ(t), α <

y+(x, t, u
λ
0) < β. Since uλ

0 is differentiable in (α, β) and hence from (4.13), for a.e
x ∈ (x0, R

λ(t)),

uλ(x, t) = uλ
0(y+(x, t, u

λ
0)) = λ, f ′(λ) = f ′(uλ(x, t)) =

x− y+(x, t, u
λ
0)

t
.

Suppose x0 < Lλ
2(t), then for x0 < x < min(Lλ

2(t), R
λ(t)),

f ′(λ) =
x− y+(x, t, u

λ
0)

t
<

Lλ
2(t)− α

t
= f ′(λ),

which is a contradiction. Suppose Lλ
2(t) < x0 < Rλ(t), then for x ∈ (x0, R

λ(t)),
characteristic γ at (x, t) given by γ(θ) = y+(x, t, u

λ
0) + f ′(λ)θ intersects Sλ at t0,

where

t0 =
β − y+(x, t, u

λ
0)

f ′(λ)− f(λ)−f(m)
λ−m

<
β − α

f ′(λ)− f(λ)−f(m)
λ−m

= T0(λ),
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which contradicts NIP, since Sλ(t) is a characteristic for 0 < t < T0(λ). Hence for
L1(t) < x < Rλ(t), y+(x, t, u

λ
0) = y−(x, t, u

λ
0) = α and from (4.21), we have

f ′(uλ(x, t)) =
x− α

t
. (4.84)

Now letting x ↓ L1(t) and from (4.22) to obtain y+(L1(t), t, u
λ
0) = α and f ′(uλ(L1(t)

+, t)) = L1(t)−α
t

= f ′(a). This implies uλ(L1(t)+, t) = a. From RH condition across
L1(t) implies that uλ(L1(t)−, t) = a. Therefore from (4.12),(4.22),(4.23) y±(L1(t), t,
uλ
0) = a. This implies for x < L1(t), y+(x, t, u

λ
0) < α and hence from (4.13), uλ(x, t) =

u0(y+(x, t, u
λ
0)) = a. This proves (4.78) and hence (4.79).

Let
y±(t, λ) = y±(R

λ(t), t, uλ
0),

y±(λ) = y±(R
λ(T1(λ)), T1(λ), u

λ
0),

Rλ = Rλ(T1(λ)).

Let T0(λ) < t ≤ T1(λ) and letting x ↑ Rλ(t) in (4.84) to obtain

Rλ(t)− y−(t, λ)

t
= f ′(uλ(Rλ(t)−, t)) =

Rλ(t)− α

t
. (4.85)

Hence y−(t, λ) = α. Also at t = T1(λ),

f ′(a) =
Rλ − α

T1(λ)
=

Rλ − y−
T1(λ)

. (4.86)

Rλ(t)− y+(t, λ)

t
= lim

x↓Rλ(t)

x− y−(x, t, u
λ
0)

t
(4.87)

= lim
x↓Rλ(t)

f ′(uλ(x, t)) = f ′(m). (4.88)

From (4.85) to (4.88) we can evaluate vλ(Rλ(t), t) by

−(β − α)λ+ tf∗
(
Rλ(t)− α

t

)
= (y+(t, λ)− β)m+ tf∗

(
Rλ(t)− y+(t, λ)

t

)
= m

(
y+(t, λ)−Rλ(t)

t
t+Rλ(t)− β

)
+ tf∗(f ′(m))

= −tmf ′(m) +m(Rλ(t)− α) +m(α− β)

+ tf∗(f ′(m)).

(β − α)(λ−m)

t
= f∗

(
Rλ(t)− α

t

)
− Rλ(t)− α

t
− f∗(f ′(m) +mf ′(m). (4.89)
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Let t = T1(λ) then
Rλ−α
T1(λ)

= f ′(a) and hence the right hand side of (4.89) is bounded

uniformly for (a,m) ∈ K and hence as λ → ∞, T1(λ) → ∞. This proves (4.80).

Observe that R+(t, α, u
λ
0) = Lλ

2(t) and Lλ
2(t) < Rλ(t) for 0 < t < T0(λ). Hence

for a.e x ∈ (Lλ
2(t), R

λ(t)), y+(x, t, u
λ
0) = y−(x, t, u

λ
0) ∈ (α, β) and from (4.13),

uλ(x, t) = uλ
0(y+(x, t, u

λ
0)) = λ.

From this and (4.85) , (4.81) follows. Let T0(λ) < t ≤ T, then from superlinearity of
f ∗, (4.82) follows from (4.85), (4.89). Suppose lim

λ→∞
T0(λ) = 0, and then (4.83) follows

from (4.81) , (4.82). Hence assume that lim
¯λ→∞

T0(λ) > 0, then if η < T0(λ), then (4.83)

follows from (4.89). This proves the Lemma.

Next we generalize the above Lemma by replacing m by u0. More precisely let

uλ
0(x) =


a if x < α,
λ if α < x < β,
u0(x) if x > β,

(4.90)

and uλ be the solution of (1.2) with initial data uλ
0 . Let

m1 = inf
x≥α

u0(x),m2 = sup
x≥α

u0(x). (4.91)

For i = 1, 2, define ui,λ
0 by

ui,λ
0 (x) =


a if x < α,
λ if α < x < β,
mi if β < x,

(4.92)

and let uλ
i be the solution of (1.2) with intial data ui,λ

0 . Let L1(t), L
λ
2(t) be as defined

earlier, then

LEMMA 4.7 Let T > 0 be fixed, then there exist λ0 = λ0(m1,m2, a, t) such that for
λ ≥ λ0, 0 < t ≤ T,

R−(t, β, u
λ
0) = R+(t, β, u

λ
0). (4.93)

and denote R(λ, t) = R−(t, β, u
λ
0), then

(i). t → R(λ, t) is a strictly increasing function.
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(ii). λ → R(λ, t) is a strictly increasing function. Let T1(λ) be the first point of
intersection of L1(t) and R(t, λ). Then for any fixed T > 0

lim
t→∞

T1(λ) = ∞, lim
λ→∞

R(λ, T ) = ∞. (4.94)

Let T0(λ) be the first point of intersection of Lλ
2(t) and R(λ, t). Then

uλ(x, t) =

{
a if x < L1(t)
λ if Lλ

2(t) < x < R(λ, t), 0 < t < T0(λ).
(4.95)

Proof. Let q0 be as in (4.62), then for λ > q0, from Lemma 4.4 we have for i = 1, 2,

R−(t, β, u
λ
0) = R+(t, β, u

λ
0), (4.96)

R−(t, β, u
i,λ
0 ) = R+(t, β, u

i,λ
0 ) (4.97)

and denote Ri(λ, t) = R−(t, β, u
i,λ
0 ), T11(λ), T1(λ), T21(λ) the first points of intersec-

tion of L1(t) with R1(λ, t), R(λ, t), R2(λ, t) respectively. Since u
1,λ
0 ≤ uλ

0 ≤ u2,λ
0 , hence

from (4.30)

R1(λ, t) ≤ R(λ, t) ≤ R2(λ, t), T11(λ) ≤ T1(λ) ≤ T2,1(λ). (4.98)

Then from (4.80), it follows that

lim
λ→∞

T1(λ) = ∞.

Next we obtain a bound on uλ(R(λ, t)+, t). For this let ū(x, t) be the solution
of (1.2) with initial data ū0(x) defined by

ū0(x) =

{
min(a,m1) if x < β,
u0(x) if x > β,

then for λ > m, ū0(x) ≤ u1,λ
0 (x) ≤ uλ

0(x) and hence ū(x, t) ≤ uλ(x, t) and R+(t, β, ū0)
≤ R(λ, t). Since for y > β,

∫ y

β
ū0(θ)dθ =

∫ y

β
uλ
0(θ)dθ and hence from (4.51) we have

for x > R(λ, t),

V λ(x, t) = inf
y≥β

{
y∫

β

uλ
0(θ)dθ + tf ∗

(
x− y

t

)
}

= inf
y≥β

{
y∫

β

ū0(θ)dθ + tf∗
(
x− y

t

)
}

= V (x, t),
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where uλ = ∂V λ

∂x
and ū = ∂V

∂x
. Hence for x > R(λ, t),

uλ(x, t) = ū(x, t). (4.99)

Therefore

|uλ(R(λ, t)+, t)| ≤ ‖ū‖∞
≤ max(m2, a).

(4.100)

For i = 1, 2, let Ti,0(λ) be the first intersection point of Lλ
2(t) and Ri(λ, t) and Ti,1(λ) >

Ti,0(λ) be the points of intersections of L1(t) and Ri(λ, t). Then from Lemma 4.8, we
can choose λ0 ≥ q0 + ‖ū‖∞ such that for all λ ≥ λ0, f ′(λ) > 0, f(λ) > f(‖ū‖∞) and

T1,1(λ) > T, R1(λ, T ) > L1(t). (4.101)

inf
T1,0(λ)≤t≤T

f∗′
(
R1(λ, t)− α

t

)
= inf

T1,0(λ)≤t≤T
u1,λ(R1(λ, t)−, t) > λ0. (4.102)

From (4.83) and (4.98) we have

lim
λ→∞

R(λ, T ) ≥ lim
λ→∞

R1(λ, T ) = ∞.

This proves (4.94).

Next imitating the proof as in Lemma 4.6 and from (4.99) we have for 0 < t < T ,

uλ(x, t) =


ū(x, t) if x > R(λ, t),

(f ′)−1
(
x−α
t

)
if t > T0(λ), L1(t) < x < R(λ, t),

λ if 0 < t < T0(λ), L
λ
2(t) < x < R(λ),

a if x < L1(t).

(4.103)

Let 0 < t < T0(λ) then from (4.100) and the choice of λ0, we have for a.e. t,

d

dt
R(λ, t) =

f(uλ(R(λ, t)−, t))− f(uλ(R(λ, t)+, t))

uλ(R(λ, t)−, t)− uλ(R(λ, t)+, t)

=
f(λ)− f(uλ(R(λ, t)+, t)

λ− uλ(R(λ, t)+, t)
> 0.

Let T0(λ) < t ≤ T, then from (4.98), T1,0(λ) ≤ T0(λ). Hence from (4.103), (4.102)

uλ(R(λ, t)−, t) = f∗′
(
R(λ, t)− α

t

)
≥ f∗′

(
R1(λ, t)− α

t

)
= u1,λ(R1(λ, t)−, t)

> λ0.
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Since f ′(λ) > 0 for λ ≥ λ0, hence

f(uλ(R(λ, t)−, t)) ≥ f(λ0) > f(‖ū‖∞).

Therefore from (4.99), (4.100) we have for T0(λ) < t ≤ T.

d

dt
R(λ, t) =

f(uλ(R(λ, t)−, t)− f(uλ(R(λ, t)+, t))

uλ(R(λ, t)−, t)− uλ(R(λ, t)+, t)

=
f(uλ(R(λ, t)−, t)− f(ū(R(λ, t)+, t)

uλ(R(λ, t)−, t)− ū(R(λ, t)+, t)
> 0.

This proves that t → R(λ, t) is a strictly increasing function.

Claim: R(λ, t) ≤ Lλ
2(t) for t > T0(λ).

Suppose for some t0 > T0(λ), R(λ, t0) > Lλ
2(t0), then for a.e x ∈ (Lλ

2(t0), R(λ, t0)
), y+(x, t, u

λ
0) ∈ (α, β) and hence from (4.13) and differentiability of uλ

0 in (α, β) gives

u(x, t0) = λ and f ′(λ) =
x−y+(x,t0,uλ

0 )

t0
. Hence the characteristic line r(θ) at (x, t0) is

parallel to Lλ
2 and r(θ) ≥ Lλ

2(θ) for θ ∈ [0, t0]. Since t → R(λ, t) is an increasing
function for t ∈ (0, T1(λ)) and T0(λ) < t0, hence R(λ, T0(λ)) < x. Furthermore
y+(R(λ, T0(λ)), T0(λ), u

λ
0) ≥ β. Hence the characteristic line at (R(λ, T0(λ)), T0(λ))

intersect r which contradicts NIP. This proves the claim.

Hence for t ≥ T0(λ),

R(λ, t)− α

t
≤ Lλ

2(t)− α

t
= f ′(λ). (4.104)

Let λ0 ≤ λ1 < λ2, then uλ1
0 ≤ uλ2

0 and hence R(λ1, t) ≤ R(λ2, t) and for a.e.
x, y±(x, t, u

λ1
0 ) ≥ y±(x, t, u

λ2
0 ). Suppose for some 0 < t0 < T,R = R(λ1, t0) =

R(λ2, t0). From (4.99) at x = R, we have α ≤ y−(R, t0, u
λ2
0 ) ≤ y−(R, t0, u

λ1
0 ) < β, and

uλ1(R+, t0)
= ū(R+, t0) = uλ2(R+, t0). Hence from (4.23) y+(R, t0, u

λ1
0 ) = y+(R, t0, u

λ2
0 ).

Let for i = 1, 2, y = y+(R, t0, u
λi
0 ), yi = y−(R, t0, u

λi
0 ) and V λi

0 (y) =
y∫
β

uλi
0 (θ)dθ,
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then V λ1
0 (y) = V λ2

0 (y) for y ≥ β. Hence from (4.4) we have

λ2(y2 − β) + t0f
∗
(
R− y2

t0

)
= V λ2

0 (y2) + tf∗
(
R− y2

t0

)
= V λ2

0 (y) + tf∗
(
R− y

t0

)
= V λ1

0 (y) + tf∗
(
R− y

t0

)
= V λ1

0 (y1) + tf∗
(
R− y1

t0

)
= λ1(y1 − β) + t0f

∗
(
R− y1

t0

)
.

Let f ′(θi) =
R−yi
t0

, then R = f ′(θi)t0+ yi and since y2 ≤ y1 implies that f ′(θ2) ≥
f ′(θ1), hence θ2 ≥ θ1. Substituting this in the above expression and using f ∗(f ′(p)) =
pf ′(p)− f(p) to obtain

(R− t0f
′(θ2))λ2 + t0f

∗(f ′(θ2)) = (R− t0f
′(θ1))λ1 + t0f

∗(f ′(θ1)) + β(λ2 − λ1)

R = β +
t0

(λ2 − λ1)
[(λ2 − θ2)f

′(θ2)− (λ1 − θ1)f
′(θ1)] +

(
f(θ2)− f(θ1)

λ2 − λ1

)
t0.

That is for i = 1, 2,

yi = β +
t0

(λ2 − λ1)
[(λ2 − θ2)f

′(θ2)− (λ1 − θ1)f
′(θ1)] + t0

[
f(θ2)− f(θ1)

λ2 − λ1

− f ′(θi)

]
.

(4.105)

Case (i) : Let y2 = y1. Then θ2 = θ1 and hence from (4.105), β = y1 < β which is a
contradiction.
Case (ii): Let α < y2 < y1.

Since V λi
0 is differentiable for y ∈ (α, β) and hence from (4.13) , (4.23), we have

f ′(λi) =
R−yi
t0

. Therefore from (4.105) and from strict convexity of f we have

y1 = β + t0

[
f(λ2)− f(λ1)

λ2 − λ1

− f ′(λ1)

]
> β.

which is a contradiction.
Case(iii): Let α = y2 < y1.

Since y1 > α, hence f ′(θ1) =
R−y1
t0

= f ′(λ1) and R−α
t0

= f ′(θ2). From (4.104),
f ′(θ2) ≤ f ′(λ2) and hence λ2 ≥ θ2. Since λ1 ≥ λ0 and hence f ′(θ2) ≥ f ′(λ1) > 0.
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From (4.105), θ1 = λ1 and convexity of f we have

0 >
(λ2 − λ1)(y1 − β)

t0
= (λ2 − θ2)(f

′(θ2)− f ′(λ1)) + f(θ2)− f(λ1)

≥ (θ2 − λ1)f
′(λ1)

> 0,

which is a contradiction. This proves λ → R(λ, t) is a strictly increasing function for
λ ≥ λ0 and 0 < t ≤ T. This proves the Lemma.

Next we consider the variation from the right, Let uµ be the solution of (1.2)
with initial data uµ

0 given by

uµ
0 =


u0(x) if x < α,
µ if α < x < β,
a if x > β.

We state the following Lemma without proof since the proof follows exactly as that
of Lemma 4.7.

Define
L1(t) = β + f ′(a)t, Lµ

2(t) = β + f ′(µ)t.

LEMMA 4.8 There exist µ1 = µ1(m1,m2, a) such that for µ < µ1, t > 0,

R−(t, α, u
µ
0 ) = R+(t, α, u

µ
0), (4.106)

and denote R(µ, t) = R−(t, α, u
µ
0). Let T0(µ) > 0 be the first point of intersection of

R(µ, t) and Lµ
2 (t) and T1(µ) > T0(µ) be the first point of intersection of R(µ, t) and

L1(t). Then

lim
µ→−∞

T1(µ) = ∞. (4.107)

For 0 < t < T1(µ),

uµ(x, t) =


a if x > L1(t),

(f ′)−1
(
x−β
t

)
if T0(µ) < t < T1(µ),

R(µ, t) < x < L1(t),
µ if 0 < t < T0(µ),

R(µ, t) < x < Lµ
2(t).

(4.108)

Furthermore let T > 0 be fixed, then there exist µ0 = µ0(T, µ1) < µ1 such that

(i). µ → R(µ, t) is a strictly increasing function for 0 < t ≤ T and

lim
µ→−∞

R(µ, t) = −∞. (4.109)
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(ii). For 0 < t < T1(µ), t → R(µ, t) is a strictly decreasing function of t.

Interaction of R± with initial data: We study the interaction of R± with varying
parameters in the data. For this first we need the following elementary results.
Let B1, B2, µ0 < λ0, L ∈ C(IR+ × [λ0,∞)), R ∈ C(IR+ × (−∞, µ0]) be given and for
λ ≥ λ0, µ ≤ µ0, L and R satisfies the following hypothesis,
(H1). λ 7→ L(t, λ), µ 7→ R(t, µ) are strictly increasing functions such that for all
λ ≥ λ0, µ ≤ µ0,

L(0, λ) = B1, R(0, µ) = B2, (4.110)

and for any 0 < α < β,

lim
λ→∞

inf
t∈[α,β]

L(t, λ) = ∞, lim
µ→−∞

sup
t∈[α,β]

R(t, µ) = −∞. (4.111)

(H2). For λ ≥ λ0, µ ≤ µ0, t 7→ L(t, λ), is a strictly increasing function and t 7→ R(t, µ)
is a strictly decreasing function.

Let I = [λ0,∞)× (−∞, µ0] and define x0(t), y0(t), λ(x, t), µ(y, t), δ(λ, µ), c(λ, µ)
as follows:

x0(t) = L(t, λ0), y0(t) = R(t, µ0) (4.112)

L(t, λ(x, t)) = x, R(t, µ(y, t)) = y (4.113)

L(δ(λ, µ), λ) = R(δ(λ, µ), µ) = c(λ, µ), (4.114)

then we have the following

LEMMA 4.9 1. x0 is a strictly increasing continuous and y0 is a strictly decreasing
function satisfying

(x0(0), y0(0)) = (B1, B2). (4.115)

2. For x ≥ x0(t), y ≤ y0(t), (λ(x, t), µ(y, t)) ∈ I, x 7→ λ(x, t), t → µ(y, t) are strictly
increasing functions and t 7→ λ(x, t), y 7→ µ(y, t) are strictly decreasing continuous
functions in (0,∞). Also for x > B1, y < B2

lim
t→0

(λ(x, t), µ(y, t)) = (∞,−∞). (4.116)

3. Let B1 < B2 and (λ, µ) ∈ I. Then δ(λ, µ) exist and is a continuous function.
Furthermore λ → δ(λ, µ) is a decreasing function and µ 7→ δ(λ, µ) is an increasing
function and

lim
λ→∞

δ(λ, µ) = lim
µ→−∞

δ(λ, µ) = 0 (4.117)

lim
µ→−∞

c(λ, µ) = B1, lim
λ→∞

c(λ, µ) = B2. (4.118)

Proof.
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1. Follows from (H1).

2. From (4.111) for t > 0, L(t, ·) : [λ0,∞) → [x0(t),∞) is a homeomorphism and
hence λ(x, t) exist and x 7→ λ(x, t) is a strictly increasing function. Let t1 < t2
and suppose λ(x, t1) ≤ λ(x, t2), then

x = L(t1, λ(x, t1)) ≤ L(t1, λ(x, t2)) < L(t2, λ(x, t2)) = x,

which is a contradiction. Hence t 7→ λ(x, t) is a strictly decreasing function.
Let (xn, tn) → (x, t), λ(xn, tn) → λ, then

x = lim
n→∞

L(tn, λ(xn, tn)) = L(t, λ),

and hence λ = λ(x, t). This proves the continuity of λ(x, t). Suppose as tn →
0, {λ(x, tn)} is bounded. Then for a subsequence still denote by n such that
λ(x, , tn) → λ as n 7→ ∞. Therefore by continuity of L and (4.110)

B1 < x = lim
n→∞

L(tn, λ(x, tn)) = L(0, λ) = B1,

which is a contradiction. Hence λ(x, t) → ∞ as t → 0. Similarly for µ(y, t) and
this proves (2).

3. For (λ, µ) ∈ I, t 7→ L(t, λ) ≥ B1 and is a strictly increasing function and
t 7→ R(t, µ) ≤ B2 is a strictly decreasing function. Hence there exist a unique
δ(λ, µ) satisfying (4.114) and B1 ≤ c(λ, µ) ≤ B2 and continuity follows from
the uniqueness of δ(λ, µ).

Let λ1 < λ2 and δ(λ1, µ) ≤ δ(λ2, µ). Then

R(δ(λ1, µ), µ) = L(δ(λ1, µ), λ1) ≤ L(δ(λ2, µ), λ1)
< L(δ(λ2, µ), λ2)
= R(δ(λ2, µ), µ)

and hence δ(λ2, µ) < δ(λ1, µ) which is a contradiction. Suppose lim
λ→∞

δ(λ, µ) = δ0 > 0,

then from (4.111),

∞ = lim
λ→∞

L(δ(λ, u), λ) = lim
δ(λ,µ)→δ0

R(δ(λ, µ), µ) = R(δ0, µ) < ∞,

which is a contradiction hence δ0 = 0 and

lim
λ→∞

c(λ, µ) = lim
λ→∞

L(δ(λ, µ), λ)

= lim
δ(λ,µ)→0

R(δ(λ, µ), µ)

= B2,

similarly for µ → δ(λ, µ). This proves (3) and hence the Lemma.
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COROLLARY 4.1 Let δ0 > 0, then there exist λ1 ≥ λ0, µ1 ≤ µ0 such that for all
λ ≥ λ1, µ ≤ µ1,

δ(λ, µ) ≤ δ0. (4.119)

Proof. Since δ(λ, µ0) → 0 as λ → ∞, hence choose λ1 ≥ λ0 such that δ(λ1, µ0) ≤ δ0.
Let µ1 = µ0, then for λ ≥ λ1, µ ≤ µ1, we have,

δ(λ, µ) ≤ δ(λ1, µ) ≤ δ(λ1, µ1) ≤ δ0.

This proves the Corollary.

Let T > 0 and A1 < B1 ≤ C ≤ B2 < A2 and for i = 1, 2, define ai, li, 0 < δ0 < T
by

f ′(ai) =
C − Ai

T
li(t) = Ai + tf ′(ai)

δ0 = min{l1(B1), l2(B2)}.

Let uλ
1 and uµ

2 be solutions of (1.2) with respective initial data uλ
0 , u

µ
0 given by

u1,λ
0 (x) =


a1 if x < A1,
λ if A1 < x < B1,
u0(x) if B1 < x < B2,
θf if x > B2.

(4.120)

u2,µ
0 (x) =


θf if x < B1,
u0(x) if B1 < x < B2,
µ if B2 < x < A2,
a2 if x > A2.

(4.121)

From Lemma 4.7 and 4.8 we can choose λ0 = λ0(‖u0‖∞), µ0 = µ0(‖u0‖∞) such that
for all λ ≥ λ0, µ ≤ µ0, t > 0,

L(t, λ) = R−(t, B1, u
1,λ
0 ) = R+(t, B1, u

1,λ
0 ) (4.122)

R(t, µ) = R−(t, B2, u
2,µ
0 ) = R+(t, B2, u

2,µ
0 ), (4.123)

and for 0 < t ≤ T, L and R satisfies the hypothesis (H1), (H2) of Lemma 4.9. Let
(c(λ, µ), δ(λ, µ)) be the point of intersection of L(t, λ) and R(t, µ) as defined in (4.114).
From Corollary 4.1, choose λ1 ≥ λ0, µ1 ≤ µ0 such that for all λ ≥ λ1, µ ≤ µ1

δ(λ, µ) < δ0. (4.124)
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LEMMA 4.10 With the above notation and let u(x, t, λ, µ) be the solution of (1.2) with
initial condition uλ,µ

0 given by

uλ,µ
0 (x) =


a1 if x < A1,
λ if A1 < x < B1,
u0 if B1 < x < B2,
µ if B2 < x < A2,
a2 if x > A2.

(4.125)

then for 0 < t < δ(λ, µ),

uλ
1(x, t) = uµ

2 (x, t) if L(t, λ) < x < R(t, µ), (4.126)

u(x, t, λ, µ) =


uλ
1(x, t) if x < L(t, λ),

uλ
1(x, t) if L(t, λ) < x < R(t, µ),

uµ
2(x, t) if x > R(t, µ).

(4.127)

Proof. Let γ = B1+B2

2
and define v1,λ0 (x) =

x∫
γ

u1,λ
0 (θ)dθ, v2,µ0 (x) =

x∫
γ

u2,µ
0 (θ)dθ,

vλ,µ0 (x) =
x∫
γ

uλ,µ
0 (θ)dθ. Then for x ∈ [B1, B2],

v1,λ0 (x) = v2,µ0 (x) =

x∫
B1+B2

2

u0(θ)dθ. (4.128)

vλ,µ0 (x) =

{
v1,λ0 (x) if x < B1,

v2,µ0 (x) if x > B2.
(4.129)

Claim: Let v1,λ, v2,µ be the corresponding value functions associated to v1,λ0 , v2,µ0

defined in (4.4). Then

v1,λ(x, t) = infy∈[B1,B2]

{
v1,λ0 (y) + tf∗

(
x− y

t

)}
, if L(t, λ) < x < B2 (4.130)

v2,µ(x, t) = infy∈[B1,B2]

{
v2,µ0 (y) + tf∗

(
x− y

t

)}
, if B1 < x < R(t, λ). (4.131)

Let L(t, λ) < x < B2, then from (4.122) y±(x, t, u
1,λ
0 ) > B1. Suppose for some

x0 ∈ (L(t, λ), B2), y+(x0, t, u
1,λ
0 ) > B2. Since v1,λ0 is differentiable in (B2,∞) and

hence from (4.13) for a.e. x ∈ (x0, B2), u
1,λ(x, t) = ∂v1,λ

∂x
(x, t) = θf and 0 = f ′(θf ) =

x−y+(x,t,u1,λ
0 )

t
. Hence B2 > x = y+(x, t, u

1,λ
0 ) > B2, which is a contradiction. Therefore

y±(x, t, u
1,λ
0 ) ∈ [B1, B2] and hence (4.130) follows. Similarly (4.131) holds .This proves

the claim.
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From (4.128), (4.130), (4.131), for L(t, λ) < x < R(t, µ), v1,λ(x, t) = v2,µ(x, t)

and hence for a.e. x, u1,λ(x, t) = ∂v1,λ

∂x
(x, t) = ∂v2,µ

∂x
(x, t) = u2,µ(x, t). This proves

(4.126). In view of (4.126), RHS of (4.127) is a solution of (1.2) with initial data uλ,µ
0 .

Hence from uniqueness of solutions (4.127) follows. This proves the Lemma.

As an immediate consequence of Lemma 4.10 and (4.27), (4.122), (4.123) we
have

COROLLARY 4.2 Let λ ≥ λ1, µ ≤ µ1, then

R±(t, B1, u
λ,µ
0 ) = L(t, λ) 0 < t < δ(λ, µ),

R±(t, B2, u
λ,µ
0 ) = R(t, µ) 0 < t < δ(λ, µ),

R±(t, B1, u
λ,µ
0 ) = R±(t, B2, u

λ,µ
0 ), t ≥ δ(λ, µ).

Furthermore, denote S(t, λ, µ) = R+(t, B1, u
λ,µ
0 ) for t > δ(λ, µ),then (t, λ, µ) 7→

S(t, λ, µ) is continuous and

u(x, t, λ, µ) =

{
u1,λ(x, t) if x < S(t, λ, µ),
u2,µ(x, t) if x > S(t, λ, µ),

(4.132)

Proof. Let (tk, λk, µk) → (t, λ, µ). From Lemma 4.9, δ(λk, µk) → δ(λ, µ) and hence
for t > δ(λ, µ)

|S(tk, λk, µk)− S(t, λ, µ)| ≤ |S(tk, λk, µk)− S(t, λk, µk)|
+ |S(t, λk, µk)− S(t, λ, µ)|.

From (4) of Lemma 4.1 and from (3) of Lemma 4.3, the right hand side tends
to zero as k → ∞. Let vλ,µ be the cost function associated to vλ,µ0 defined in (4.4).
For x < S(t, λ, µ), y±(x, t, u

λ,µ
0 ) < B1 and hence from (4.129), vλ,µ(x, t) = v1,λ(x, t).

Hence u(x, t, λ, µ) = ∂v1,λ

∂x
(x, t) = u1,λ(x, t). Similarly for x > S(t, λ, µ), u(x, t, λ, µ) =

u2,µ(x, t), this proves (4.127) and hence the Lemma.

LEMMA 4.11 Let λ ≥ λ1, µ ≤ µ1 and δ(λ, µ) < t0 ≤ T, then

(i). Suppose l1(t0) = S(t0, λ, µ). Then for all t0 < t < T,

S(t, λ, µ) < l1(t). (4.133)

u(x, t, λ, µ) =

{
a2 if 0 < t < T, x > l2(t)
a1 if x < min(l1(t), S(t, λ, µ)).

(4.134)
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(ii). Suppose l2(t0) = S(t0, λ, µ). Then for all t0 < t < T,

S(t, λ, µ) > l2(t). (4.135)

u(x, t, λ, µ) =

{
a1 if 0 < t < T, x < l1(t),
a2 if x > max(l2(t), S(t, λ, µ)).

(4.136)

Furthermore there exist λ2 and µ2 such that S(T, λ2, µ2) = C and for 0 < t < T,
u satisfies

u(x, t, λ2, µ2) =

{
a1 if x < l1(t),
a2 if x > l2(t).

(4.137)

Proof. (See Figure 10) Let g(t) = min(l1(t), S(t, λ, µ)). Then we claim that for all
x < g(t),

u(x, t, λ, µ) = a1. (4.138)

Suppose x < l1(t) ≤ S(t, λ, µ), then from (4.132), (4.95) we have u(x, t, λ, µ) =
u1,λ(x, t) = a1. Hence assume that S(t, λ, µ) < l1(t). Suppose there exist x0 <
S(t, λ, µ) such that y+(x0, t, u

λ,µ
0 ) > A1, then for all x ∈ (x0, S(t, λ, µ)), A1 < y+(x, t,

uλ,µ
0 ) < B1. Since uλ,µ

0 is differentiable in (A1, B1) and hence from (4.13), for a.e.
x ∈ (x0, S(t, λ, µ))

f ′(λ) = f ′(u(x, t, λ, µ)) =
x− y+(x, t, u

λ,µ
0 )

t

<
l1(t)− A1

t
= f ′(a1),

which is a contradiction since λ > a1. Hence y+(x, t, u
λ,µ
0 ) ≤ A1 for all x ∈ (x0, S(t, λ, µ

)). Suppose y+(x0, t, u
λ,µ
0 ) = A1. Then from (4.21) f ′(u(x, t)) = x−A1

t
for x ∈ (x0, S(t,

λ, µ)). Let γx(θ) = A1 + θ
(
x−A1

t

)
< l1(θ) be the characteristic at (x, t), then from

(c) of (3) in Theorem 2.1, γx is also a characteristic at (γx(s), s) for 0 < s < t and

f ′(u(γx(s), s, λ, µ) =
γx(s)−A1

s
< l1(s)−A1

s
= f ′(a1). Let s < δ(λ, µ), then l1(s) < L(s, λ)

and hence f ′(a1) > f ′(u(γx(s), s, λ, µ)) = f ′(a1) which is a contradiction. T his proves
the claim.

Let t0 > δ(λ, µ) such that l(t0) = S(t0, λ, µ). From (4.132) and Lemma 4.8 for
x > S(t0, λ, µ),

a2 = max(µ, a2) ≥ u(x, t0, λ, µ). (4.139)

Let t0 < t < T and w be the solution of (1.2) with initial data w0 at t0 is given
by

w0(x) =

{
a1 if x < S(t0, λ, µ) = l1(t0),
a2 if x > S(t0, λ, µ) = l1(t0).
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Then w admits a shock at l1(t0) and for t > t0 is given by

η(t) = l1(t0) +
f(a1)−f(a2)

a1−a2
(t− t0)

< l1(t0) + f ′(a1)(t− t0)
= A1 + f ′(a1)t
= l1(t),

(4.140)

since f is strictly convex and f ′(a1) > 0 > f ′(a2). From (4.138) and (4.139), w0(x) ≥

(B1,T) (C,T) (B2,T)

u=a1 u=a2

(B1,0)

u

u0(x) (B2,0) (A2,0) a2

l
l

R−

R+(t,   )

R−

=R+(t,   )

(t)
(t)

1

2

T

µ

µ

(t,   )λ

a1 (A1,0) λ µ

(t,   )λ

Figure 10:

u(x, t0, λ, µ) and therefore from (4.29) and (4.30) we have for t > t0, l1(t) > η(t) ≥
S(t, λ, µ). This proves (4.133).

From (3) of Lemma 2.4, (λ, µ) → S(T, λ, µ) is a continuous function for λ ≥
λ1 and µ ≤ µ1. From (4.94), choose a λ̃1 > λ1 such that S(T, λ̃1, µ1) > T and
from (4.109) choose µ̃1 < µ1 such that S(T, λ1, µ̃1) < T. From Corrollary 4.1, S is
continuous in [λ1, λ̃1]× [µ1, µ̃1] and therefore there exist a (λ2, µ2) ∈ [λ1, λ̃1]× [µ1, µ̃1]
such that S(T, λ2, µ2) = C . Hence (4.137) follows from (4.136). This proves the
Lemma.

Proof of Lemma 2.3. In Lemma 4.7, take A = α, B = β, l(t) = L1(t). Then from
(4.94), choose a λ0 large such that for all 0 < t ≤ T and for all λ ≥ λ0, l(t) < R(λ, t).
Then (2.23) follows from (4.95) and from Rankine-Hugoniot condition across l(t).
Similarly (2.24) follows from Lemma 4.8 and (4.107) and (4.108).

Proof of Lemma 2.4 This follows from Lemma 4.11 and (4.136) and Rankine-
Hugoniot conditions across l1(t) and l2(t).
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EXAMPLE 4.1 (Counter Example) : Let α = 0, xk < 0, lim
k→∞

xk = 0, λ > θf and

define u0, u
k
0 by

u0(x) =

{
θf if x < 0,
λ if x > 0.

uk
0(x) =

{
θf if x < xk,
λ if x > xk.

Then the solution u and uk with respective initial datas u0 and uk
0 are given by

u(x, t) =


θf if x < 0, t > 0,
(f ′)−1(x

t
) if 0 < x ≤ f ′(λ)t,

λ if x > f ′(λ)t,

then
R−(t, 0, u0) = 0.

uk(x, t) =


θf if x < xk, t > 0,
(f ′)−1(x−xk

t
) if xk < x < f ′(λ)t+ xk,

λ if x > f ′(λ)t+ xk,

then
R−(t, 0, u

k
0) = f ′(λ)t,∫

IR

|u0(x)− uk
0(x)|dx =

0∫
xk

(λ− θf ) = (λ− θf )|xk| → 0 as k → ∞.

But
lim
k→∞

R−(t, 0, u
k
0) = f ′(λ)t > 0 = R−(t, 0, u0).

EXAMPLE 4.2 (Counter Example) : Let A1 = B1 = C1, A2 = B2 = C2, ρ(x) = x
for x ∈ (C1, C2) and

u0(x) =

{
a2 if x > B2

a1 if x < B1,

where a2 < θf and θf is the point of minima of f.

Suppose there exists a solution (u, ū0) to problem (I), then by Lax-Oleinik for-
mula we have

ū0(x) = θf if x ∈ (B1, B2)

u(x, t) = θf if (x, t) ∈ (B1, B2)× (0, T ).

On the otherhand, since a2 < θf there is a shock wave entering the region (B1, B2)×
(0, T ) at (B2, 0) which is a contradiction because the solution u = θf in this region.
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5 Extensions:

PROPOSITION 5.1 (Controllability of constant states):

1. In theorem 1.1, g(x) = m a constant if and only if m satisfies

C2 − A2

T
≤ f ′(m) ≤ C1 − A1

T
. (5.1)

2. In theorem 1.2, g(x0) = m a constant if and only m satisfies

f ′(m) ≥ C

T − δ
. (5.2)

3. In theorem 1.3, g1(x) = m1, g2(x) = m2 are constants. then g1, g2 is controllable
if and only if m1,m2 satisfies

f ′(m1) ≥
C − A1

T − δ
, f ′(m2) ≤

A2 − C

T − δ
. (5.3)

Proof. (1). g(x) = m if and only if ρ(x) = x − Tf ′(m) for all x ∈ (C1, C2). Hence
from (1.22) we have A1 ≤ ρ(x) ≤ A2 implies that x−A2

T
≤ f ′(m) ≤ x−A1

T
and hence

(5.1) holds.

(2). From (1.23) , g(x) = m if and only if δ ≤ ρ(x) ≤ T and hence δ ≤ x−Tf ′(m) ≤ T.
This implies (5.2). Similarly (5.3) follows from (1.25) and (1.26). This proves the
theorem.

(3). Follows similarly.

5.1 Controllability on the boundary

As mentioned in the introduction problems (I) and (III) deal with the controllability
at time t = T. What about the controllability at x = A2. More precisely

Problem (IV): Let T > 0 and A1 < A2. Given u0 ∈ L∞(IR), g ∈ L∞(0, T ) find
ū0 ∈ L∞((A1, A2)) and u a solution of (1.2) in Ω = (−∞, A2)× (0, T ) such that

f ′(u(A2, t)) = g(t) if 0 < t ≤ T, (5.4)

and

u(x, 0) =

{
u0(x) if x < A1

ū0(x) if A1 < x < A2.
(5.5)

Then we have the following
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THEOREM 5.1 : Let A1 < B < A2,∧ > 0 and ρ : [0, T ] → [B,A2] be a non
increasing left continuous function such that for all t ∈ [0, T ],∣∣∣∣A2 − ρ(t)

t

∣∣∣∣ ≤ ∧, (5.6)

and f ′(g(t)) = A2−ρ(t)
t

. Then there exist (u, ū0) satisfying (5.4) and (5.5).

Proof. Proof follows on the same lines as in theorem (1.2) and hence only sketch the
main idea of the proof.

Step 1. This step is analogous to Lemma 2.1. Frist assume that ρ is discrete. That
is there exist a partition 0 = tn ≤ tn−1 ≤ . . . ≤ t0 = T and B = x0 < x1 < . . . < xn =
A2. Define ai and bi by

f ′(ai) =
A2 − xi

ti
, f ′(bi) =

A2 − xi−1

ti

si(t) = A2 + (t− ti)
f(ai)− f(bi)

ai − bi

f ′(ai) =
A2 − xi

ti
>

A2 − xi−1

ti
= f ′(bi).

Then

f ′(bi) =
A2 − xi−1

ti
<

A2 − xi−1

ti−1

= f ′(ai−1).

Hence ai > bi, ai+1 > bi and from convexity. f ′(ai) >
f(ai)−f(bi)

ai−bi
> f ′(bi). Therefore

xi = A2 − tf ′(ai) < A2 − tf(ai)−f(bi)
ai−bi

= si(0) < A2 − tf ′(bi)
= xi+1.

Hence for 0 ≤ t ≤ T,
li(t) ≤ si(t) ≤ mi(t),

where li(t) = xi + f ′(ai)t,mi(t) = xi−1 + f ′(bi)t. Define ρn and gn by

ρn(t) = x0χ[T,t1] +
n∑

i=1

xiχ(ti,ti+1](t)

f ′(gn(t)) = A2−ρn(t)
t

.

Define un in Ω = (−∞, A2)× (0, T ) by

f ′(un(x, t)) =


an if x ≤ ln(t),
ai if li(t) ≤ x < si(t),
bi if si(t) < x ≤ mi(t),
(f ′)−1(A2−xi

t
) if mi(t) ≤ x ≤ li−1(t),
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then un is a solution of (1.2) in Ω satisfying

f ′(un(x, t)) = an if x ≤ ln(t) = B + t(A2−B
T

)

f ′(un(A2, t)) = x−ρn(t)
t

.

Let ūn,0(x) = un(x, 0) for B ≤ x ≤ A2, then as in the proof of Lemma 2.1 and from
(5.6), for a subsequence un → ũ in L1

ioc(Ω), un(·, 0) → ũ0 in L1((B,A2)), ρn → ρ a. e.
such that u satisfies (1.2) and for a.e. t,

f ′(ũ(A2, t)) =
A2 − ρ(t)

t
if t ∈ (0, T ), (5.7)

ũ(x, 0) = ũ0(x) if x ∈ (B,A2), (5.8)

f ′(ũ(x, t)) =
A2 −B

T
if x ≤ l0(t). (5.9)

Step 2. From Lemma 4.8 there exists a µ and a solution u1 of (1.2) in Ω satisfying

f ′(u1(x, t)) = a0 if x > l0(t), 0 ≤ t < T (5.10)

u1(x, 0) =


a0 if x > B,
µ if A1 < x < B,
u0(x) if x < A1.

Now define (u, ū0) in Ω by

u(x, t) =

{
ũ(x, t) if x > l1(t),
u1(x, t) if x < l0(t),

ū0(x) =


u0(x) if x < A1,
µ if A1 < x < B,
ũ0(x) if x ∈ (B,A2).

Then (u, ū0) is the required solution to problem (IV).

5.2 Controllability of initial and boundary values:

All three problems deals with finding either initial data or purely boundary data. In
fact one can combine both and is as follows.

Problem V: Let u0 ∈ L∞, T > 0, 0 < C1 < C2, 0 < A, Let ρ1 : [0, C1] → [0, T ], ρ2 :
[C1, C2] → [0, A] be such that

(i) ρ1 is a non increasing right continuous function.

(ii) ρ2 is a non decreasing function.
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Define g1 and g2 by

f ′(g1(x)) =
x

T − ρ1(x)
if x ∈ [0, C1]

f ′(g2(x)) =
x− ρ2(x)

T
if x ∈ [C1, C2].

Then the problem is to find b ∈ L∞(0, T ) and ū0 ∈ L∞(0, A) such that a solution u
of (1.2) in IR× (0, T ) satisfying the following initial boundary data

u(0, t) = b(t) if 0 < t < T. (5.11)

u(x, 0) =

{
ū0(x) if x ∈ (0, A),
u0(x) if x ∈ (A, 0),

(5.12)

and

f ′(u(x, t)) =

{
g1(x) if x ∈ (0, C1),
g2(x) if x ∈ (C1, C2).

(5.13)

THEOREM 5.2 Let λ > 0, 0 < A1 < A be given. Let ρ1 and ρ2, g1 and g2 be as
above and satisfying

0 ≤ ρ2(x) ≤ A1,

∣∣∣∣ x

T − ρ1(x)

∣∣∣∣ ≤ ∧ (5.14)

then problem (V) admits a solution.

Idea of the proof. First get a free region by choosing λ large such that the solution
uλ of (1.2) in IR× (0,∞) satisfying for 0 < t < T,

uλ(x, t) = a1 =
C2 − A1

T
, if x < A1 + tf ′(a1) = l1(t),

uλ(x, 0) =


a1 if x < A1,
λ if A1 < x < A,
u0(x) if x > A.

Existence of uλ is guaranteed from Lemma 4.7. Let f ′(a0) =
C1

T
and for 0 < t < T

define the free region F1 and F2 by

F1 = {(x, t) : 0 < x < l0(t) = tf ′(a0)}, F2 = {(x, t) : l0(t) < x < l1(t) = A1 + tf ′(a1)}.

Since 0 ≤ ρ1(x) ≤ T for x ∈ (0, C1) and satisfying (5.14), therefore from Lemma
4.1, there exist a solution u1 of (1.2) in F1 and b ∈ L∞(0, T ) such that

u1(0, t) = b(t)
u1(x, T ) = g1(x) if x ∈ (0, C1)
u1(l0(t)−, t) = a0.
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From Lemma 4.2, there exist a solution u2 of (1.2) in F2 and ũ0 ∈ L∞(0, A1) such
that

u2(x, T ) = g2(x) if x ∈ (C1, C2)
u2(x, 0) = ũ0(x) if x ∈ (0, A1)
u2(l0(t)+, t) = a0, u2(l1(t)−, t) = a1.

From RH conditions, glue u1, u2, uλ to a single solution u of (1.2) in 0,∞)×(0, T )
by

u(x, t) =


u1(x, t) if (x, t) ∈ F1,
u2(x, t) if (x, t) ∈ F2,
uλ(x, t) if x > l1(t),

and

u(x, 0) =


ũ0(x) if x ∈ (0, A1),
λ if x ∈ (A1, A),
u0(x) if x ∈ (A,∞).

Then (u, u(x, 0), b) is the required solution to problem (V) The same method allows
to generalize problem III also.
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