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 and we investigate the precise conditions under which exact controllability problem admits a solution. The basic ingredients in the proof of these results are [14], Lax-Oleinik [12] explicit formula and finer properties of generalized characteristics introduced by Dafermos [11].

Introduction:

In this paper we consider the following scalar conservation law in one space dimension. Let f : IR → IR be a strictly convex C 1 function satisfying the super linear growth,

lim |u|→∞ f (u) |u| = ∞. (1.1)
Let T > 0, 0 ≤ δ < T, A < B, I = (A, B), Ω = I × (δ, T ), u 0 ∈ L ∞ (I), b 0 , b 1 ∈ L ∞ ((0, T )) and consider the problem

u t + f (u) x = 0 (x, t) ∈ Ω, (1.2) u(x, δ) = u 0 (x) x ∈ I, (1.3) u(A, t) = b 0 (t) t ∈ (δ, T ),
(1.4) u(B, t) = b 1 (t) t ∈ (δ, T ). (1.5) This problem was well studied from last several decades starting from the pioneering works of Lax-Oleinik [START_REF] Evans | Partial differential equations[END_REF], Kruzkov [START_REF] Kružkov | First order quasilinear equations with several independent variables. (Russian)[END_REF], Bardaux-Leraux-Nedeleck [START_REF] Bardos | First-order quasilinear equations with boundary conditions[END_REF]. They have studied the existence and uniqueness of weak solutions to (1.2)-(1.5) satisfying the entropy condition. In spite of being well studied, still there are problems which are open. Notably among them are 1. Profile of a solution, for example how many shocks can a solution exhibit and the nature of the shocks.

2. Optimal controllability for initial and initial-boundary value problem.

Exact controllability of initial and initial-boundary value problem.

Problem ( 1) and ( 2) has been dealt in [START_REF] Adimurthi | Shock profile of an entropy solution of a scalar conservation law with strict convex flux-preprint[END_REF] and [START_REF] Adimurthi | Optimal controllability for scalar conservation laws with convex flux-preprint[END_REF] respectively. In this paper we investigate problem [START_REF] Adimurthi | Shock profile of an entropy solution of a scalar conservation law with strict convex flux-preprint[END_REF] for the entropy solution of (1.2). Through out the paper solution of (1.2) always means a weak solution satisfying the entropy condition. The basic ingredient in studying all these problems comes from the analysis of characteristic curves R ± . Originally this was introduced by Hopf [START_REF] Hopf | The partial differential equation u t + uu x = µu xx[END_REF] and later by Dafermos [START_REF] Dafermos | Characteristics in hyperbolic conservations laws, A study of the structure and the asymptotic behavious of solutions[END_REF], who studied them quite extensively to obtain information on the nature of solutions. Independently this was used in [START_REF] Adimurthi | Conservation Law with discontinuous flux[END_REF] to obtain the explicit formula for solution of discontinuous flux.

The plan of the paper is as follows: In section (1) we state the main results. In section [START_REF] Adimurthi | Optimal controllability for scalar conservation laws with convex flux-preprint[END_REF] we prove these results assuming four Lemmas without proof. First two Lemma deal with backword construction which will be proved in section [START_REF] Adimurthi | Shock profile of an entropy solution of a scalar conservation law with strict convex flux-preprint[END_REF]. The remaining two Lemma deals with free regions. In order to prove these Lemmas, one has to study the finer properties of the generalized characterictics namely (i). Comparison properties with respect to the initial data.

(ii). Failure of the continuity with respect to the initial data.

(iii). Behavior of the characteristics when one side of the initial data is large.

This has been carried out in section [START_REF] Adimurthi | Finer analysis of characteristic curves, and its applications to shock profile, exact and optimal controllability of conservation law with discontinuous fluxes -preprint[END_REF]. Main tool to study all these properties are the Hopf [START_REF] Hopf | The partial differential equation u t + uu x = µu xx[END_REF], Lax-Oleinik [START_REF] Evans | Partial differential equations[END_REF] explicit formulas and we recall them without proof.

Main results, Exact Controllability: Normally for the non linear evolution equations, technique of linearization is adopted to study controllability problems. Unfortunately this method does not work (see Horsin [START_REF] Horsin | On the controllability of the Burger equation[END_REF]) and very few results are available on this subject. Here we consider the following three problems of controllability. Let u 0 ∈ L ∞ (IR) and (I) Controllability for pure initial value problem: Assume that I = IR, Ω = IR × (0, T ). Let

J 1 = (C 1 , C 2 ), J 2 = (B 1 , B 2 ), g ∈ L ∞ (J 1
), a target be given. The question is, does there exists a ū0 ∈ L ∞ (J 2 ) and u in L ∞ (Ω) such that u is a solution of (1.2) satisfying

u(x, T ) = g(x) x ∈ J 1 , (1.6) u(x, 0) = u 0 (x) if x ∈ J 2 , ū0 (x) if x ∈ J 2 .
(1.7)

(II) Controllability for one sided initial boundary value problem: Assume that I = (0, ∞), Ω = IR × (0, T ), J = (0, C) and a target function g ∈ L ∞ (J) be given. The question is, does there exists a u ∈ L ∞ (Ω) and b ∈ L ∞ ((0, T )) such that u is a solution of (1.2) satisfying u(x, T ) = g(x) if x ∈ J, (1.8) u(x, 0) = u 0 (x) if x ∈ (0, ∞),

(1.9) u(0, t) = b(t) if t ∈ (0, T ).

(1.10) (III) Controllability from two sided initial boundary value problem:

(a). Let Ω = IR × (0, T ),

I 1 = (B 1 , B 2 ) , B 1 ≤ C ≤ B 2 . Given the target functions g 1 ∈ L ∞ (B 1 , C), g 2 ∈ L ∞ (C, B 2 )
, does there exists a ū0 ∈ L ∞ (IR \ I 1 ) and u ∈ L ∞ (Ω) such that u is a solution of (1.2) satisfying

u(x, T ) = g 1 (x) if B 1 < x < C, g 2 (x) if C < x < B 2 .
(1.11) and

u(x, 0) = u 0 (x) if B 1 < x < B 2 , ū0 (x) if x < B 1 or x > B 2 .
(1.12)

(b).

Here we consider controllability in a strip. Let I = (B 1 , B 2 ), Ω = I × (0, T ),

B 1 < C < B 2 . Let g 1 ∈ L ∞ ((B 1 , C)), g 2 ∈ L ∞ ((C, B 2
)) be given. Then the question is, does there exist b 0 , b 1 ∈ L ∞ ((0, T )) and a u ∈ L ∞ (Ω) such that u is a solution of (1.2) and satisfying u(x, 0) = u 0 (x), (1.13)

u(x, T ) = g 1 (x) if B 1 < x < C, g 2 (x) if C < x < B 2 .
(1.14)

u(B 1 , t) = b 0 (t), (1.15) u(B 2 , t) = b 1 (t).
(1. [START_REF] Godleweski | Hyperbolic systems of conservation laws[END_REF] In view of the Lax-Oleinik (Chapter (3) of [START_REF] Evans | Partial differential equations[END_REF]) explicit formula for solutions of pure initial value problem and by Joseph-Gowda [START_REF] Veerappa Gowda | Explicit formula for the solution of Convex conservation laws with boundary condition[END_REF] for initial boundary value problem, the targets g or g 1 , g 2 cannot be arbitrary. They must satisfy the compatibility condition, for example in the case of problem (I), there exists a non-decreasing function ρ in (C 1 , C 2 ) such that for a.e x ∈ (C 1 , C 2 )

f (g(x)) = x -ρ(x) T .
(1.17)

In the case of problem (II), there exists a non-decreasing function ρ in (0, C)

such that f (g(x)) = x T -ρ(x)
. (1.18) Assuming that the target functions satisfies the compatibility conditions, then the question is whether the problems (I),(II) and (III) admit a solution? In fact, it is true and we have the following results. First we describe the class of functions satisfying compatibility conditions. Definition (Admissible functions): Let J = (M, N ) and T > 0, S(J) = {ρ : J → IR : ρ is monotone and left or right condinuous function}.

Then define admissible class of target functions by (i) Target space for initial value problem (IA):

IA(J) = {g ∈ L ∞ (J) : f (g(x)) = x -ρ(x) T , ρ ∈ S(J),
ρ is a non-decreasing funtion }. (1.19) (ii) Target space for left boundary problem (LA):

LA(J) = {g ∈ L ∞ (J) : f (g(x)) = x -M T -ρ(x) , ρ ∈ S(J),
ρ is a non-increasing right continuous function}. (1.20) (iii) Target space for right boundary problem (RA):

RA(J) = {g ∈ L ∞ (J) : f (g(x)) = x -N T -ρ(x) , ρ ∈ S(J),
ρ is a non-decreasing left continuous function}. (1.21) Then we have the following Main Theorems :

THEOREM 1.1 Let J 1 = (C 1 , C 2 ), J 2 = (B 1 , B 2 ). Let g(x) = (f ) -1 x -ρ(x) T be in IA(J 1 ) and B 1 < A 1 < A 2 < B 2 , satisfying A 1 ≤ ρ(x) ≤ A 2 if x ∈ J 1 , (1.22)
then there exists a ū0 ∈ L ∞ (J 2 ), u ∈ L ∞ (Ω) such that (u, ū0 ) is a solution to problem (I) (see Figure 1).

(A 1 ,0) (C 1 ,T) (C 2 ,T) x u(x,t)=? u 0 (x)=? u(x,t)=? u(x,t)=?

(A 2 ,0) f (g(x))= (x) ρ x- T (x) ρ (B 1 ,0) u 0 (x) u 0 (x) (B 2 ,0) Figure 1: THEOREM 1.2 Let ∧ > 0, C > 0, δ > 0, J = (0, C). Let g ∈ LA(J) given by f (g(x)) = x T -ρ(x)
for x ∈ J and satisfying

δ ≤ ρ(x) ≤ T, (1.23) x T -ρ(x) ≤ ∧. (1.24) Then there exist a b ∈ L ∞ (0, T ), u ∈ L ∞ (Ω) such that (u, b) is a solution to Problem II (see Figure 2). b(t)=? (0,T) x u(x,t)=? (0,0) (0, δ) (x) ρ = (g(x)) f (C,T) u 0 (x) u(x,t)=? T-ρ ( x)
x Figure 2:

THEOREM 1.3 Let I 1 = (B 1 , B 2 ), B 1 < C < B 2 , J 1 = (B 1 , C), J 2 = (C, B 2 ), then (a). Let A 1 < B 1 < B 2 < A 2 and g 1 ∈ IA(J 1 ), g 2 ∈ IA(J 2 ) given by f (g 1 (x)) = x-ρ 1 (x) T , f (g 2 (x)) = x-ρ 2 (x) T , satisfying ρ 1 (x) ≤ A 1 if x ∈ J 1 , (1.25) ρ 2 (x) ≥ A 2 if x ∈ J 2 .
(1.26)

Then there exists ū0 ∈ L ∞ ((IR \ I 1 )), u ∈ L ∞ (Ω) such that (u, ū0
) is a solution to problem (a) of III (see Figure 3). 4).

(b). Let ∧ > 0, 0 < δ < T, g 1 ∈ LA(J 1 ), g 2 ∈ RA(J 2 ), given by f (g 1 (x)) = x-B 1 T -ρ 1 (x) ,f (g 2 (x)) = x-B 2 T -ρ 2 (x) satisfying for i = 1, 2, x ∈ J i δ ≤ ρ i (x) ≤ T, (1.27) x -B i T -ρ i (x) ≤ ∧. (1.28) Then there exists b 0 , b 1 ∈ L ∞ ((0, T )) and u ∈ L ∞ (Ω) such that (u, b 0 , b 1 ) is a solution to problem (b) of III (see Figure
Before going for further results, let us recall some of the earlier works in this direction and compare them with these results. Problem (a) in III was considered by Horsin [START_REF] Horsin | On the controllability of the Burger equation[END_REF] for the Burger's equation under similar assumptions on g 1 and g 2 as in (a) of Theorem 1.3. He proves that given any
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Figure 4:

T > 2 there exists a T c ≥ T, such that (a) of problem III has an approximate controllability solution. That is given > 0, there exist (u, ū0 ) such that

B 2 B 1 |u(x, T c ) -g(x)|dx = O( ), and u(x, T c ) = g(x) = χ (B 1 ,C) (x)g 1 (x) + χ (C,B 2 ) (x)g 2 (x)
, outside an interval of length .

In the viscous case the same problem was considered by Glass-Guerrero [START_REF] Glass | On the uniform controllability of the Burgers equation[END_REF] for the control u(x, T ) = M is constant. Using the Cole-Hopf transformation, they show that there exist T 0 > 0 such that for all time T > T 0 and small viscosity, they prove the exact controllability. Also Guerrero-Imanuvilov [START_REF] Guerrero | Remarks on global controllability for the Burgers equation with two control forces[END_REF] proves a negative result by showing that M = 0 cannot be controllable. Theorem 1.3 is stronger and much more precise result in the non viscous case because (i). It removes the condition on time T c and obtains exact controllability.

(ii). It deals with general convex flux instead of Burger's equation.

(iii). In section [START_REF] Adimurthi | Conservation Law with discontinuous flux[END_REF] we give a criterion when the constants are controllable.

In the case of problem (II), Fabio-Ancona and Andrea-Marson [START_REF] Ancona | On the attainability set for scalar non linear conservation laws with boundary control[END_REF], [START_REF] Ancona | Scalar non linear conservation laws with integrable boundary data[END_REF] studied the problem from the point of view of Hamilton-Jacobi equations and studies the compactness properties of {u(•, T )} when u(x, 0) = 0 and u(•, 0) ∈ U, here U is a set of controls satisfying some properties.

In our results on controllability, superlinearity of f plays an important role in removing the condition on T c and by creating free regions (see Lemmas 2.3 and 2.4 ). Next using convexity and backword construction, we explicitly construct solutions in these free regions for particular data which allow to obtain solutions for control problems (see Lemmas 2.1 and 2.2).

REMARK 1.1 The conditions in Theorems 1.1-1.3 are optimal. That is, in general, we cannot take A 1 = B 1 , A 2 = B 2 in Theorem 1.1 and δ = 0 in Theorems 1.2 and 1.3. This can be illustrated by a simple counter example (see counter example 4.2).

Exact controllability and main results

In this section we give the proof of Theorems 1.1 to 1.3. Basically following two main ideas are used to prove these results (a) Free regions : By suitable variations of parameters in the initial data, one can obtain sub region in Ω where the solution are prescribed as constants. These sub regions are called free regions. This is achieved in Lemmas 4.7 and 4.8. For example from (4.95), the region

{(x, t) : x < L 1 (t)} (2.1)
is a free region since u λ is constant.

(b) Backword construction : This is a method where for a given target function satisfying the compatibility conditions, one can construct a solution which achieves the given target at t = T.

Then the Theorems will follow from backword construction in free regions and gluing the different solutions using Rankine-Hugoniot conditions across the boundaries of free regions.

We state the following Lemmas which deal with this construction. ,δ,A,C) be the line joining between (C, T ) and (A, δ) with slope 1/f (a(δ, A, C)), intersecting t = 0 axis at D(δ, A, C) and is given by

Let u 0 ∈ L ∞ (IR), 0 ≤ δ < T, A, C ∈ IR. Let l(.
f (a(δ, A, C)) = C -A T -δ , ( 2.2) 
l(t, δ, A, C) = A + f (a(δ, A, C))(t -δ), (2.3) D(δ, A, C) = A -δf (a(δ, A, C)), (2.4) = A - δ(C -A) T -δ . (2.5) LEMMA 2.1 1. Let ∧ > 0, A < C and ρ ∈ LA((A, C)) satisfying 0 ≤ δ ≤ ρ(x) ≤ T, (2.6) x -A T -ρ(x) ≤ ∧. (2.7) Let Ω = (A, ∞) × (δ, T ). Then there exists a b1 (t, δ, A, C) ∈ L ∞ ((δ, T )) and a solution ũ1 (x, t, δ, A, C) of (1.2) satisfying f (ũ 1 (x, T, δ, A, c)) = x -A T -ρ(x) , x ∈ (A, C), (2.8)
with initial and boundary conditions

ũ1 (A, t, δ, a, C) = b1 (t, δ, A, C), t ∈ (δ, T ), (2.9) ũ1 (x, t, δ, a, C) = a(δ, A, C), x > l(t, δ, A, C), (2.10) ũ1 (l(t, δ, A, C)-, t, δ, a, C) = a(δ, A, C).
(2.11)

2. Let C < A and ρ ∈ RA((C, A)) satisfying (2.6) and (2.7) for x ∈ (C, A). Let Ω = (-∞, A) × (δ, T ). Then there exist b2 (t, δ, A, C) ∈ L ∞ ((δ, T )) and a solution ũ2 (x, t, δ, a, C) of (1.2) satisfying f (ũ 2 (x, T, δ, A, C)) = x -A T -ρ(x) , x ∈ (C, A), (2.12)
with initial and boundary conditions

ũ2 (A, t, δ, A, C) = b2 (t, δ, A, C), t ∈ (δ, T ), (2.13) ũ2 (x, t, δ, A, C) = a(δ, a, C), x < l(t, δ, A, C), (2.14) ũ2 (l(t, δ, A, C)+, t, δ, A, C) = a(δ, A, C), t ∈ (δ, T ). (2.15) LEMMA 2.2 Let A 1 < A 2 , C 1 < C 2 , ρ ∈ IA((C 1 , C 2 )) such that for all x ∈ (C 1 , C 2 ), A 1 ≤ ρ(x) ≤ A 2 .
(2.16)

Let Ω = IR × IR + , for i = 1, 2, l i (t) = l(t, 0, A i , C i ), a i = a i (0, A i , C i ), then there exist ũ0 ∈ L ∞ ((A 1 , A 2 )
) and a solution ũ of (1.2) such that for 0 < t < T,

f (ũ(x, T )) = x -ρ(x) T , for x ∈ (C 1 , C 2 ), (2.17) 
ũ(l

1 (t)+, t) = a 1 , (2.18) ũ(l 2 (t)-, t) = a 2 , ( 2.19 
)

with initial conditions ũ(x, 0) =    a 1 if x < A 1 , ũ0 (x) if A 1 < x < A 2 , a 2 if x > A 2 .
(2.20)

Let T > 0, µ, λ ∈ IR, A < B, l 1 (t) = l(t, 0, A, C), l 2 (t) = l(t, 0, B, C), a 1 = a 1 (0, A , C), a 2 = a 2 (0, B, C). Define u λ 0 and u µ 0 by u λ 0 (x) =    a 1 if x < A, λ if A < x < B, u 0 (x) if x > B (2.21) and u µ 0 (x) =    a 2 if x > B, µ if A < x < B, u 0 (x) if x < A.
(2.22) Let u λ (x, t) and u µ (x, t) be the solutions of (1.2) with initial data u λ 0 and u µ 0 respectively. Then we have the following LEMMA 2.3 There exist µ 0 < λ 0 such that for all µ ≤ µ 0 , λ ≥ λ 0 , 0 < t < T, x ∈ IR, u λ and u µ satisfies

u λ (x, t) = a 1 , if x < l 1 (t), u λ (l 1 (t)+, t) = a 1 (2.23) u µ (x, t) = a 2 , if x > l 2 (t), u µ (l 2 (t)-, t) = a 2 .
(2.24)

Let δ > 0, T > 0, B 1 ≤ B 2 , l 1 (t) = l(t, δ, B 1 , C), l 2 (t) = l(t, δ, B 2 , C), A 1 = l 1 (0) < B 1 , A 2 = l 2 (0) > B 2 , a 1 = a(δ, B 1 , C), a 2 = a(δ, B 2 , C). For λ, µ ∈ IR, define u λ,µ 0 by u λ,µ 0 (x) =            a 1 if x < A 1 , λ if A 1 < x < B 1 , u 0 (x) if B 1 < x < B 2 , µ if B 2 < x < A 2 , a 2 if x > A 2 (2.25)
and u λ,µ be the solution of (1.2) with initial data u λ,µ 0 .

Then we have the following

LEMMA 2.4 Given any λ 0 , µ 0 , there exist λ 2 ≥ λ 0 , µ 2 ≤ µ 0 such that for 0 ≤ t ≤ T, u λ 2 ,µ 2 satisfies u λ 2 ,µ 2 (x, t) = a 1 if x < l 1 (t), a 2 if x > l 2 (t), (2.26) u λ 2 ,µ 2 (l 1 (t)+, t) = a 1 , u λ 2 ,µ 2 (l 2 (t)-, t) = a 2 .
(2.27)

Proof of Theorem 1.1 Let Ω = IR × (0, T ), A i , B i , C i , g and ρ be as in Theorem 1.1 Let

f (a 1 ) = C 1 -A 1 T , f (a 2 ) = C 2 -A 2 T , l 1 (t) = A 1 + tf (a 1 ), l 2 (t) = A 2 + tf (a 2 ).
Then from Lemma 2.3 choose λ, µ and solutions u λ and u µ of (1.2) such that

u λ (x, t) = a 2 if x < l 2 (t), u λ (l 2 (t)+, t) = a 2 (2.28) u µ (x, t) = a 1 if x > l 1 (t), u µ (l 1 (t)-, t) = a 1 (2.29) with u λ (x, 0) =    a 2 if x < A 2 , λ if A 2 < x < B 2 , u 0 (x) if x > B 2 (2.30) and u µ (x, 0) =    a 1 if x > A 1 , µ if B 1 < x < A 1 , u 0 (x) if x < B 1 (2.31)
From (1.22) and Lemma 2.1 there exist a solution u 1 of (1.2) and ũ0

∈ L ∞ (A 1 , A 2 ) satisfying u 1 (x, T ) = g(x), if x ∈ (C 1 , C 2 ) (2.32) u 1 (x, 0) =    a 1 if x < A 1 , ū0 (x) if A 1 < x < A 2 , a 2 if x > A 2 ,
(2.33) and

u 1 (x, t) = a 1 if x < l 1 (t), a 2 if x > l 2 (t).
(2.34)

u 1 (l 1 (t)+, t) = a 1 , u 1 (l 2 (t)-, t) = a 2 . (2.35) Let ū0 (x) =        u 0 (x) if x / ∈ (B 1 , B 2 ) λ if A 2 < x < B 2 ũ0 (x) if A 1 < x < A 2 µ if B 1 < x < A 1 .
From (2.28), (2.29) , (2.34) and RH condition, glue u λ , u µ , u 1 to form a single solution u of (1.2) for 0 < t < T by

u(x, t) =    u µ (x, t) if x < l 1 (t), u 1 (x, t) if l 1 (t) < x < l 2 (t), u λ (x, t) if l 2 (t) < x.
(2.36) Then from (2.30), (2.31) and (2.33), (u, ū0 ) is the required solution. This proves the Theorem.

Proof of Theorem 1.2 Let f (a) = C

T -δ and l(t) be the line joining (C, T ) and (0, δ) given by l(t) = (t -δ)f (a). Let A = l(0) = -δf (a) < 0. From Lemma 2.3 by choosing λ large, we can find a solution u λ of (1.2) in Ω = IR × (0, T ) satisfying

u λ (x, 0) =    a if x < A, λ if A < x < 0, u 0 (x) if x > 0.
(2.37)

u λ (x, t) = a if x < l(t),
(2.38)

u λ (l(t)+, t) = a.
(2.39)

From (1.23) , (1.24) and (1) of Lemma 2.1, choose a solution u 1 of (1.2) and b 1 ∈ L ∞ (δ, T ) such that

u 1 (x, T ) = g(x) (2.40) u 1 (0, t) = b 1 (t) if δ < t < T, (2.41) u 1 (x, t) = a if x > l(t), t > δ, (2.42) u 1 (l(t)-, t) = a if t > δ.
(2.43) From (2.39), (2.43) and RH conditions we glue the solutions u λ and u 1 to obtain a solution u of (1.2) by

u(x, t) = u λ (x, t) if x > l(t), 0 < t < T, u 1 (x, t) if 0 < x < l(t), δ < t < T. (2.44) Define b ∈ L ∞ (0, T ) by b(t) = u λ (0+, t) if 0 < t < δ, b 1 (t) if δ < t < T. (2.45)
Then from (2.37) , (2.40), (u, b) is the required solution. This proves the theorem.

Proof of Theorem 1.3 Let f (a 1 ) = C-A 1 T , f (a 2 ) = C-A 2 T , l 1 (t) = A 1 + tf (a 1 ) = A 2 + tf (a 2
) be the respective lines joining (C, T ), (A 1 , 0) and (C, T ), (A 2 , 0). From Lemma 2.4 choose (λ, µ) and a solution u λ,µ of (1.2) in IR × (0, T ) satisfying

u λ,µ (x, t) = a 1 if x < l 1 (t), a 2 if x > l 2 (t), (2.46) 
with initial condition

u λ,µ (x, 0) =            a 1 if x < A 1 , λ if A 1 < x < B 1 , u 0 (x) if B 1 < x < B 2 , µ if B 2 < x < A 2 , a 2 if x > A 2 .
(2.47) (a). Since g i is a non decreasing function for i = 1, 2 satisfying (1.23) , (1.26) and hence

D 1 = ρ 1 (B 1 ) ≤ A 1 , A 2 ≤ ρ 2 (B 2 ) = D 2 .
Let η i be the line joining (B i , T ) and (D i , 0) with f (m i ) = B i -D i T for i = 1, 2. Then from Lemma 2.2, there exist solutions u i of (1.2) in IR × (0, T ) with initial

condition u i 0 ∈ L ∞ (D i , A i ) for i = 1, 2 such that u 1 (x, T ) = g 1 (x, T ) if x ∈ (B 1 , C), (2.48) u 2 (x, T ) = g 2 (x, T ) if x ∈ (C, B 2 ), (2.49) u 1 (x, t) = m 1 if x < η 1 (t), (2.50) u 1 (l 1 (t)-, t) = u 1 (l 1 (t)+, t) = a 1 , (2.51) u 2 (x, t) = m 2 if x > η 2 (t), (2.52) u 2 (l 2 (t)-, t) = u 2 (l 2 (t)+, t) = a 2 ,
(2.53) and

u 1 (x, 0) =    m 1 if x < D 1 , u 1 0 (x) if D 1 < x < A 1 , a 1 if x > A 1 .
(2.54)

u 2 (x, 0) =    m 2 if x > D 2 , u 2 0 (x) if A 2 < x < D 2 , a 2 if x < A 2 .
(2.55) From (2.46) , (2.47) ,(2.51), (2.53) and from RH conditions, we can glue u 1 , u 2 , u λ,µ to a solution u of (1.2) with initial data u(x, 0) given by

u(x, t) =    u 1 (x, t) if x < l 1 (t), u λ,µ (x, t) if l 1 (t) < x < l 2 (t), u 2 (x, t) if x > l 2 (t),
(2.56)

u(x, 0) =                    m 1 if x < D 1 , u 1 0 (x) if D 1 < x < A 1 , λ if A 1 < x < B 1 , u 0 (x) if B 1 < x < B 2 , µ if B 2 < x < A 2 , u 2 0 (x) if A 2 < x < D 2 , m 2 if x > D 2 . Define ū0 by ū0 (x) =                m 1 if x < D 1 , u 1 0 (x) if D 1 < x < A 1 , λ if A 1 < x < B 1 , µ if B 2 < x < A 2 , u 2 0 (x) if A 2 < x < D 2 , m 2 if x > D 2 .
(2.57)

From (2.52) , (2.53) u satisfies u(x, T ) = g 1 (x) if B 1 < x < C, g 2 (x) if C < x < B 2 , (2.58)
and (u, ū0 ) is the required solution. This proves (a).

(b). Given δ > 0 choose A 1 < B 1 < B 2 < A 2 such that max(l 1 (B 1 ), l 2 (B 2 
)) = δ and u λ,µ be the solution of (1.2) as in (2.46). From (1.27),(1.28) and from Lemma 2.1, there exist solutions u 1 of (1.2) in (B 1 , ∞) × (δ, T ) and boundary data b1 , u 2 of (1.2) in (-∞, B 2 ) × (δ, T ) and boundary data b2 such that

u 1 (x, T ) = g 1 (x) if x ∈ (B 1 , C), u 2 (x, T ) = g 2 (x) if x ∈ (C, B 2 ),
and for δ < t < T,

u 1 (B 1 , t) = b1 (t), u 1 (l 1 (t)-, t) = a 1 , u 2 (B 2 , t) = b2 (t), u 2 (l 2 (t)+, t) = a 2 .
Then from RH condition glue

u 1 , u 2 , u λ,µ in Ω = (B 1 , B 2 ) × (0, T ) by u(x, t) =    u 1 (x, t) if 0 < t < δ, B 1 < l 1 (x) < t, u 2 (x, t) if 0 < t < δ, t < l 1 (x) < B 2 , u λ,µ (x, t) otherwise.
Then u is a solution of (1.2) satisfying the boundary conditions (b 1 , b 2 ) given by

b 1 (t) = b1 (t) if δ < t < T, u λ,µ (B 1 +, t) if 0 < t < δ, b 2 (t) = b2 (t) if δ < t < T, u λ,µ (B 2 -, t) if 0 < t < δ. Then (u, b 1 , b 2 )
is the solution for problem (1.3). This proves the Theorem.

Proof of Lemmas 2.1 and 2.2 :

Proof of Lemma 2.2 follows as that of Lemma 3.5 of [START_REF] Adimurthi | Optimal controllability for scalar conservation laws with convex flux-preprint[END_REF]. Where as proof of Lemma 2.1 is quite involve and we give the proof here. 

Boundary value partition:

(See Figure 5) Let 0 ≤ δ < T, A < C, I = (A, C), J = (δ, T ). Let P = {t 0 , t 1 . . . t n , x 0 , x 1 . . . x n } is called a boundary value partition if T = t 0 > t 1 > t 2 . . . > t n = δ, A = x 0 ≤ x 1 ≤ x 2 < . . . ≤ x n = C.
For a P ∈ P (I, J) denote a i (P ),

s i (P ), b i (P ), a i (t, P ), s i (t, P ), b i (t, P ) by f (a i (P )) = x i -A T -t i , f (b i (P )) = x i -A T -t i+1 , s i (P ) = f (a i (P ) -f (b i (P )) a i (P ) -b i (P ) , a i (t, P ) = x i + f (a i (P ))(t -T ), b i (t, P ) = x i + f (b i (P ))(t -T ), s i (t, P ) = x i + s i (P )(t -T ), Clearly a i (t i , P ) = t i , b i (t i+1 , P ) = t i+1 . LEMMA 3.1 Define α i (P )such that s i (α i (P ), P ) = A. Then for t ≤ T a i (P ) > b i (P ), a i+1 (P ) ≥ b i (p), (3.2) 
t i > α i (P ) > t i+1 , a i (t, P ) ≤ s i (t, P ) ≤ b i (t, P ), (3.3) Proof. Since t i > t i+1 , x i ≤ x i+1 , hence x i -A T -t i > x i -A T -t i+1 , x i -A T -t i+1 ≤ x i+1 -A T -t i+1 .
This implies (3.2). From strict convexity of f and (3.2), we have

f (a i (P )) > f (a i (P )) -f (b i (P )) a i (P ) -b i (P ) > f (b i (P )), hence t i > α i (P ) > t i+1
and for all t < T, a i (t, P ) ≤ s i (t, P ) ≤ b i (t, P ). This proves the Lemma.

Let Ω i (P ) = {(x, t) : a i (t, P ) < x < a i+1 (t, P ), t i+1 < t < T }. In view of Lemma 3.1, let u i (x, t, P ) be a solution of (1.2) in Ω i (P ) defined by

u i (x, t, P ) =      a i (P ) if a i (t, P ) < x < s i (t, P ), b i (P ) if s i (t, P ) < x < b i (t, P ), (f ) -1 x-A T -t i+1 if b i (t, P ) < x < a i+1 (t, P ). (3.4) Then u i+1 (a i+1 (t, P )+, t, P ) = a i+1 (P ) = u i (a i+1 (t, P )-, t, P ). (3.5)
Also a n (P ) and a n (t, P ) are independent of P and denote by a n , a n (t). Then from

(3.5) it follows that u n-1 (a n (t)-, t, P ) = a n . Therefore define the solution u(x, t, P ) of (1.2) in Ω = (A, ∞) × (δ, T ) by u(x, t, P ) = u i (x, t, P ) if (x, t) ∈ Ω i (P ), 0 < i ≤ n -1, a n if x > a n (t), δ < t < T, (3.6) 
and u(x, t, P ) takes the boundary value b(t, P ) and initial value a n given by

u(A, t, P ) = b(t, P ) =    θ f if t 1 < t < T, a i (P ) if α i (P ) < t < t i , b i (P ) if t i+1 < t < α i (P ). (3.7) u(x, δ, P ) = u 0 (x, P ) = a n = (f ) -1 C -A T -δ if x ∈ (A, ∞). (3.8)
Further more at t = T, and x ∈ (A, C), u satisfies

f (u(x, T, P )) = n i=1 χ [x i ,x i+1 ) (x) x -A T -t i . (3.9)
Next we calculate the L ∞ and TV bounds of the boundary value b(•, P ). 

|f (b(t, P ))| = max 1≤i≤n (|f (a i (p))|, |f (b i (P ))|) = max 1≤i≤n x i -A T -t i , x i -A T -t i+1 = max 1≤i≤n x i -A T -t i . (3.10) T V (f (b(•, P )) = n-1 i=1 f (a i (P )) -f (b i (P )) + n-1 i=0 f (b i (P )) -f (a i+1 (P )) = n-1 i=1 x i -A T -t i -x i -A T -t i+1 + n-1 i=1 x i -A T -t i+1 -x i+1 -A T -t i+1 + x 1 -A T -t 1 = n-1 i=1 (x i -A)(t i -t i+1 ) (T -t i )(T -t i+1 ) + n-1 i=1 (x i+1 -x i ) (T -t i+1 ) + x 1 -A T -t 1 ≤ T -δ T -t 1 max 1≤i≤n x i -A T -t i + C-A T -t 1 . ( 3 
(x) ≤ t} is a closed interval for any t. Let 0 < < C -A, define ρ (x) = min{ρ(x), ρ(A + )}.
Then ρ is a non-increasing right continuous function. Let m, n be non negative integers and let

T = t 0 > t 1 = ρ(A+ ) > t 2 > . . . > t n = δ be such that |t i -t i+1 | ≤ 1 m for all i ≥ 1. Let k ≤ n -1 such that {x : ρ (x) ≤ t k+1 } = φ, {x : ρ(x) ≤ t k } = φ and define {x i } by x i = C if i ≥ k + 1 and for 1 ≤ i ≤ k, {x : ρ ε (x) > t i } = (x i , C). Denote P n,m, by P m,n, = {t 0 , t 1 , . . . t n , x 0 , x 1 . . . , x n } the partition depending on n, m and . Associate to P m,n, define ρ(x, P m,n, ) = n-1 i=1 t i χ [x i-1 ,x i ) (x) + t n χ [x n-1 ,xn] (x).
(3.12)

Then it follows from definition,

sup n |ρ (x) -ρ(x)| ≤ sup A<x<ε |ρ(x) -ρ(A + ε)| (3.13) sup n |ρ (x) -ρ(x, P m,n, )| ≤ 1 m . (3.14) Definition: Let 2 < 1 , n 2 ≥ n 1 . For i = 1, 2, let P m,n i , i = {t 0 , t 1,i , . . . t n i ,i , x 0 , x 1,i , . . . x n i ,i
} be the partitions. Then we say P m,n 2 , 2 dominates P m,n 1 , 1 and is denoted by

P m,n 2 , 2 ≥ P m,n 1 , 1 if for 1 ≤ j ≤ n 1 t j,1 = t n 2 -n 1 +j,2 , x j,1 = x n 2 -n 1 +j,2 . (3.15)
For a partition P m,n, , define Ω(P m,n, ) by

Ω(P m,n, ) = {(x, t) : a 1 (t, P m,n, ) < x, δ < t < T }. (3.16)
Properties of the domination:

Let 2 < 1 , n 2 ≥ n 1 and let for i = 1, 2, u i (x, t) = u(x, t, P m,n i , i ), b i (t) = b(t, P m,n i , i ) as in (3.6) and (3.7) respectively. Let P m,n 2 , 2 ≥ P m,n 1 , 1 , then from the construction it follows ρ 1 (x) = ρ 2 (x) if x ≥ ε 1 + A, (3.17) u 1 (x, t) = u 2 (x, t) if (x, t) ∈ Ω(P m,n, 1 ), (3.18) b 1 (t) = b 2 (t) if δ < t ≤ ρ(A + 1 ), (3.19 
)

f (u i (x, T )) = x -A T -ρ(x, p m,n i , i ) , i = 1, 2. (3.20) T δ |f (b 1 (t)) -f (b 2 (t))|dt = ρ( 2 +A) ρ( 1 +A) |f (b 2 (t)) -f (b 1 (t)))|dt ≤ |ρ(A + 1 ) -ρ(A + 2 )| max j x j,2 -A T -t j,2 = |ρ(A + 1 ) -ρ(A + 2 )| max j x j,2 -A T -ρ 2 (x j,2 ) . (3.21) Construction of dominations: Let 2 < 1 and P m,n 1 , 1 = {t 0 , t 1,1 , . . . t n 1 ,1 , x 0 , x 1,1 , . . . x n 1 ,1 }. Now choose ρ( 2 + A) = t 1,2 > t 2,2 > . . . t r 2 ,2 = t 11 = ρ( 1 + A) such that |t i,2 -t i+1,2 | ≤ 1 m for 1 ≤ i ≤ r 2 -1. Let n 2 = n 1 + n 2 and define t i,2 for i ≥ r 2 by t i,2 = t i-r 2 +1,1 ,
and {x i,2 } be associated to {t i,2 }. Let n 2 = r 2 + n 1 -1 and P m,n 2 , 2 = {t 0 , t 1,2 . . . t n 2 ,2 , x 0 , x 1,2 , . . . x n 2 ,2 }, then P m,n 2 , 2 ≥ P m,n 1 , 1 . Let 0 < i+1 < i < C -A, lim i→∞ i = 0. Let m ≥ 1 and {P m,n 1 , 1
} m be a partition corresponding to ρ 1 . From the above construction, extend this partition to {P m,n 2 , 2 } m to ρ 2 such that P m,n 2 , 2 ≥ P m,n 1 , 1 . By induction there exist partitions {P m,n j , j } m of ρ j such that P m,n j , j ≥ P m,n j-1 , j-1 .

(3.22)

Denote P m,n j , j = {t 0 , t 1,m,j , . . . t n j ,m,j , x 0 , x 1,m,j, . . . x n j ,m,j }. Since ρ j ≤ ρ and hence

x -A T -ρ j (x) ≤ x -A T -ρ(x)
, 

and x k,m,j -A T -t k,m,j = x k,m,j -A T -ρ j (x k,m,j ) ≤ max x x -A T -ρ(x) . ( 3 
T V (f (b m,j )) ≤ T -δ T -ρ( j ) ∧ + C -A T -ρ( j + A) . (3.26) Let j > k, then from (3.21) T δ f (b m,j (t) -f (b m,k (t) dt ≤ ∧ |ρ( j + A) -ρ( k + A)| . ( 3 
→ b j in L 1 . Let ρ m,j (x) = ρ(x, P m,n j , j ), then from (3.14) ρ m,j (x) → ρ ε j (x) uniformly. Since f (u m,j (x, δ)) = C-A T -δ , hence by L 1 loc contraction, u m,j converges in L 1
loc and for a.e. (x, t) to a solution u j of (1.2) with initial boundary condition

u j (A, t) = b j (t) (3.28) f (u j (x, δ)) = C -A T -δ . (3.29)
From (3.9) , (3.12) and (3.14), for a.e. x ∈ (A, C)

f (u j (x, T )) = x -A T -ρ j (x) . (3.30) Letting m → ∞ in (3.27) to obtain T δ f (b j (t)) -f (b k (t)) ≤ ∧ |ρ(A + j ) -ρ(A + k )| . (3.31)
Since ρ is right continuous and hence |ρ(A

+ j ) -ρ(A + k )| → 0 as j, k → ∞.
Therefore from L 1 loc contractivity, there exist a subsequence still denoted by j such that u j → ũ1 , a solution of (1.2), b j → b1 in L 1 loc and a.e. Letting j → ∞ in (3.28) to (3.30), then (ũ 1 , b1 ) satisfies (2.7) to (2.10). From Rankine-Hugoniot condition across a n (t, δ), ũ1 satisfies (2.10). This proves [START_REF] Adimurthi | Finer analysis of characteristic curves, and its applications to shock profile, exact and optimal controllability of conservation law with strict convex fluxes[END_REF]. Similarly (2) follows and hence the Lemma.

REMARK 3.1 Given ρ, we have exhibited a method to construct an initial data ū0 and the solution u such that at

t = T f (u(x, T )) = x -ρ(x) T . (3.32)
This method is not unique. In fact we can construct infinitely many initial datas and all the solutions to these initial datas satisfy (3.32). Here we illustrate this method with an example.

EXAMPLE 3.1 Let T > 0 and x 1 < x 2 , y 1 < y 2 . Define ρ(x) =    x -x 1 + T y 1 if x < x 1 , y 2 if x 1 < x < x 2 , x -x 2 + T y 2 if x > x 2 . Let f (a 1 ) = x 1 -y 1 T , f (b 1 ) = x 1 -y 2 T , f (a 2 ) = x 2 -y 2 T . By strict covexity, it follows that b 1 < min{a 1 , a 2 }. Let y 1 = ξ 1 < ξ 2 < • • • < ξ n = y 2 be a sequence and define a 1 = c 1 < c 2 < • • • < c n = b 1 and {d i } by f (c i ) = x 1 -ξ i T , f (d i ) = f (c i+1 ) -f (c i ) c i+1 -c i . By strict convexity c i < d i < c i+1 . For 0 ≤ t ≤ T, let α i (t) = x 1 + f (c i )(t -T ) s i (t) = x 1 + f (d i )(t -T ) β(t) = x 2 + f (a 2 )(t -T ), then α i (t) < s i (t) < α i+1 (t) < β(t) for 1 ≤ i ≤ n -1, t ∈ (0, T ). Let s i = s i (0) = x i -T f (d i ), then ξ i < s i < ξ i+1
. Now define u and ū0 by (see figure 6)

ū0 =        c 1 = a 1 if x < s 1 , c i if ξ < x < s i , c i+1 if s i < x < ξ i+1 , c n = a 2 if x > s n-1 , x x y y α α a ξ ξ s s (t) (t) 1 1 2 1 2 i+1 i+1 i i i i i (t) i-1 c c
Figure 6:

then the solution u with initial data ū0 in (0, T ) is given by

u(x, t) =                c 1 if x < s 1 , c i if α i (t) < x < s i (t) c i+1 if s i (t) < x < s i+1 (t) c n if s n-1 (t) < x < α n (f ) -1 x-y 2 t if α n (t) < x < β(t) a 2 if x > β(t).
Clearly u satisfies (3.32).

Since {ξ i } are arbitrary and hence there exist infinitely many solutions satisfying (3.32). In the above example, s i (t) are shock curves. In fact one can also introduce the backword rarefaction in the region

α i (t) < x < α i+1 (t) by u(x, t) = (f ) -1 x -x 1 t -T for α i (t) < x < α i+1 (t).

Finer Analysis of Characteristics

In a beautiful paper, Dafermos [START_REF] Dafermos | Characteristics in hyperbolic conservations laws, A study of the structure and the asymptotic behavious of solutions[END_REF] had extensively studied the properties of characteristic curves. Here we make a finer analysis of these characteristics curves and then use them to obtain our results. In order to do this, first we recollect the results of Lax-Olenik explicit formula and a good reference for this, is third chapter in [START_REF] Evans | Partial differential equations[END_REF].

Let f * (p) = sup q {pq -f (q)} denote the Legendre transform of f.

Then f * is in C 1 , strictly convex, super linear growth and satisfies and denote Γ (x, t) = Γ (x, 0, t).

f = f * * , f * (p) = (f ) -1 (p), f * (f (p)) = pf (p) -f (p), f (f * (p)) = pf * (p) -f * (p).

Value function:

Let u 0 ∈ L ∞ (IR), x 0 ∈ IR, define v 0 (x) = x x 0 u 0 (θ)dθ, (4.3) 
be its primitive. Define the value function v(x, t) by

v(x, t) = min r∈Γ (x,t) v 0 (r(0)) + tf * x-r(0) t = min β∈IR v 0 (β) + tf * x-β t . (4.4)
Then v satisfies the Dynamic Programming principle:

For 0 ≤ s < t, v(x, t) = min r∈Γ (x,s,t) v(r(s), s) + (t -s)f * x -r(s) t -s . ( 4.5) 
Define the characteristic set ch(x, s, t, u 0 ) and extreme characteristics y ± (x, s, t, u 0 ) by ch(x, s, t, u 0 ) = {r ∈ Γ (x, s, t); r is a minimizer in (4.5)}, (4.6) y -(x, s, t, u 0 ) = min{r(s) : r ∈ ch(x, s, t, u 0 )}, (4.7) y + (x, s, t, u 0 ) = max{r(s); r ∈ ch(x, s, t, u 0 )}, (4.8)

Denote ch(x, t, u 0 ) = ch(x, 0, t, u 0 ), y ± (x, t, u 0 ) = y ± (x, 0, t, u 0 ). Then we have the following result due to Hopf, Lax -Oleinik: THEOREM 4.1 Let 0 ≤ s < t, u 0 , v 0 , v be as above, then 1. v is a uniformly Lipschitz continuous function and is a unique viscosity solution of the Hamilton-Jacobi equation

v t + f (v x ) = 0 (x, t) ∈ IR × (0, ∞), v(x, 0) = v 0 (x) x ∈ IR. ( 4 

.9)

2. There exist M > 0, depending only on u 0 ∞ and Lipschitz constant of f restricted to the interval [-u 0 ∞ , u 0 ∞ ] such that for (x, t) ∈ IR × IR + , ch(x, s, t, u 0 ) = φ and for r ∈ ch(x, s, t, u 0 )

x -r(s) t -s ≤ M. (4.10)

NIP (Non intersecting property of characteristics): Let

x 1 = x 2 , t 1 > 0, t 2 > 0 and for i = 1, 2, r i ∈ ch(x i , s, t i , u 0 ). Then r 1 (θ) = r 2 (θ) for all θ ∈ (s, min{t 1 , t 2 }).
From NIP, it follows that for 0 ≤ s < t, (a). x → y ± (x, s, t, u 0 ) are non decreasing functions, (b). At the points of continuity of y + ,

y + (x, s, t, u 0 ) = y -(x, s, t, u 0 ),
and hence ch(x, s, t, u 0 ) = {r}, where r is given by

r(θ) = x -y + (x, s, t, u 0 ) t -s (θ -t) + x. (c). Let r ∈ ch(x, t, u 0 ), z = r(s). Let r 1 (θ) = r(θ) for 0 ≤ θ ≤ s, r 2 (θ) = r(θ) for s ≤ θ ≤ t. Then r 1 ∈ ch(z, s, u 0 ), r 2 ∈ ch(x, s, t, u 0 ). 4. Let u(x, t) = ∂v ∂x (x, t).
Then u is the unique solution of (1.2) in Ω = IR × IR + with initial data u 0 and satisfying

|u(x, t)| ≤ u 0 ∞ . (4.11)
For a.e x, y -(x, t) = y + (x, t) and u is given by

f (u(x, t)) = x -y + (x, t, u 0 ) t = x -y -(x, t, u 0 ) t . (4.12)
Let x be a point of differentiability of y ± (x, t, u 0 ) and y ± (x, t, u 0 ) is a point of differentiability of v 0 , then u(x, t) = u 0 (y ± (x, t, u 0 )). (4.13)

5. Let u 0 , w 0 ∈ L ∞ (IR) and u, w be the solutions given in [START_REF] Adimurthi | Finer analysis of characteristic curves, and its applications to shock profile, exact and optimal controllability of conservation law with discontinuous fluxes -preprint[END_REF] with initial data u 0 , w 0 respectively. Then (a). Monotonicity: Let u 0 (x) ≤ w 0 (x) for x ∈ IR, there exists a set N ⊂ IR of measure zero such that for each t / ∈ N, for a.e x ∈ IR, u(x, t) ≤ w(x, t). For the proofs of ( 1) to (4) see chapter (3) of [START_REF] Evans | Partial differential equations[END_REF] and for [START_REF] Adimurthi | Conservation Law with discontinuous flux[END_REF], see chapter (3) of [START_REF] Godleweski | Hyperbolic systems of conservation laws[END_REF].

In this sequal we follow the notations of characterictic curves as in [START_REF] Adimurthi | Conservation Law with discontinuous flux[END_REF]. From now onwards, we assume that Ω = IR × (0, ∞), u 0 ∈ L ∞ (IR).

Left and right characteristic curves: Let 0 ≤ s < t, u be a solution of (1.2) with initial data u 0 and α ∈ IR. Define the left characteristic curve R -(t, s, α, u 0 ) and right characteristic curve R + (t, s, α, u 0 ) and denote

R ± (t, α, u 0 ) = R ± (t, 0, α, u 0 ) by R -(t, s, α, u 0 ) = inf{x; α ≤ y -(x, s, t, u 0 )}, (4.16) 
R + (t, s, α, u 0 ) = sup{x : y + (x, s, t, u 0 ) ≤ α}. (4.17)

In view of (4.10), y -(x, s, t, u 0 ) → -∞ as x → -∞, y + (x, s, t, u 0 ) → +∞ as x → +∞. Hence (4.16) and (4.17) are well defined. Our aim is to study the continuous dependence of R ± on their arguments (t, α, u 0 ).

For x, y, ∈ IR, t > 0, let r(θ, t, x, y) ∈ Γ (x, t) be the line joining (x, t), (y, 0) given by

r(θ, t, x, y) = x -y t (θ -t) + x. (4.18)
Observe that r(0, t, x, y) = y and hence r ∈ ch(x, t, u 0 ) if and only if y is a minimizer in (4.4). Hence define the extreme characteristic lines by

r ± (θ, t, x) = r(θ, t, y ± (x, t, u 0 )). (4.19) Since r ± (0, t, x) = y ± (x, t.u 0 ) and y -(x, t, u 0 ) ≤ y + (x, t, u 0 ), hence for all θ ∈ [0, t], r -(θ, t, x) ≤ r + (θ, t, x). (4.20)
Then we have the following LEMMA 4.1 Let u 0 , w 0 , {u k 0 } are in L ∞ (IR) and α, {α k } are in IR. Let v, W, {v k } be the value functions defined in (4.4) with respect to the data u 0 , w 0 , {u k 0 } respectively. Let u = ∂v ∂x , w = ∂W ∂x , u k = ∂v k ∂x be the solutions of (1.2). Then 1. Let x 1 < x 2 , 0 ≤ s < t and β ∈ IR be a minimizer for v(x 1 , t) and v(x 2 , t) in (4.5). Then f or x 1 < x < x 2 , β is the unique minimizer for v(x, t) and satisfies

f (u(x, t)) = x -β t -s . (4.21) 2. Let x k ∈ IR, r k ∈ ch(x k , t, u 0 ) such that lim k→∞ (x k , r k (0)) = (x, β). Then r(•, t, x, β) ∈ ch(x, t, u 0 ). Furthermore lim x k ↑x y + (x k , t, u 0 ) = y -(x, t, u 0 ), (4.22) lim x k ↓x y -(x k , t, u 0 ) = y + (x, t, u 0 ). ( 4 

.23)

In particular, y -is left continuous and y + is right continuous.

(i). For all

t > 0, R -(t, α, u 0 ) ≤ R + (t, α, u 0 ), (4.24 
)

y -(R -(t, α, u 0 ), t, u 0 ) ≤ α ≤ y + (R -(t, α, u 0 ), t, u 0 ), y -(R + (t, α, u 0 ), t, u 0 ) ≤ α ≤ y + (R + (t, α, u 0 ), t, u 0 ). ( 4 

.25)

Further more if R -(t, α, u 0 ) < R + (t, α, u 0 ), then for all x ∈ (R -(t, α, u 0 ), R + (t, α, u 0 )) (see Figure 7) 

y ± (x, t, α) = α, f (u(x, t)) = x -α t . (4.26) (ii). Let 0 < s < t, then R -(t, s, α, u 0 ) = R + (t, s, α, u 0 ). ( 4 
lim t→0 R ± (t, α, u 0 ) = α, (4.28) R ± (t, α, u 0 ) = R ± (t, s, R ± (s, α, u 0 ), u 0 ). (4.29) 5. Monotonicity: Let u 0 ≤ w 0 , α ≤ β, then R ± (t, α, u 0 ) ≤ R ± (t, α, w 0 ), (4.30) R ± (t, α, u 0 ) ≤ R ± (t, β, u 0 ). (4.31) u(x,t)= x- t t α ( ,0) α (R -(t, ,u 0 α (R + (t, ,u 0 α (y + (x,t,u 0 ),0) (y -(x,t,u 0 ),0) ),t) ),t) (x,t) (x,t)
Figure 7:

6. Continuity with respect to data: Let {u 0 k } be bounded in L ∞ (IR). Let α k → α, u k 0 → u 0 in L 1 loc (IR). Then for t > 0. (a). Suppose for all k, R -(t, α k , u k 0 ) ≤ R -(t, α, u 0 ), then lim k→∞ R -(t, α k , u k 0 ) = R -(t, α, u 0 ). (4.32) (b). Suppose for all k, R + (t, α k , u k 0 ) ≥ R + (t, α, u 0 ), then lim k→∞ R + (t, α k , u k 0 ) = R + (t, α, u 0 ). (4.33) (c). Suppose R -(t, α, u 0 ) < R = lim k→∞ R -(t, α k , u k 0 ), then for all x ∈ (R -(t, α, u 0 ), R), y ± (x, t, u 0 ) = α and f (u(x, t)) = x -α t . (4.34) (d). Suppose lim k→∞ R + (t, α k , u k 0 ) = R < R + (t, α, u 0 ), then for all x ∈ ( R, R + (t, α, u 0 )), y ± (x, t, u 0 ) = α and f (u(x, t)) = x -α t . ( 4 

.35)

As an immediate consequence of this, if

R -(t, α, u 0 ) = R + (t, α, u 0 ) for t > 0, then R ± (t, α, u 0 ) is continuous at (α, u 0 ).
Proof. [START_REF] Adimurthi | Finer analysis of characteristic curves, and its applications to shock profile, exact and optimal controllability of conservation law with strict convex fluxes[END_REF]. Let x ∈ (x 1 , x 2 ) and r ∈ ch(x, s, t, u 0 ). Suppose r(s) = β. then r intersets one of the characteristics

x i -β t-s (θ -t) + x i , i = 1, 2, which contradicts NIP of Theorem 2.1 Hence β = r(s) = y ± (x, s, t, u 0 ). Furthermore v(x, t) = v(β, s) + (t -s)f * x -β t -s ,
and for a.e x, u(x, t)

= ∂v ∂x = f * x -β t -s = (f ) -1 x -β t -s .
This proves (1).

(2). From the continuity of v and f * , we have

v(x, t) = lim k→∞ v(x k , t) = lim k→∞ v 0 (r k (0)) + tf * x k -r k (0) t = v 0 (β) + tf * x-β t ,
and hence r(•, t, x, β) ∈ ch(x, t, u 0 ). Let x 1 < x 2 , then from NIP, y + (x 1 , t, u 0 ) ≤ y -(x 2 , t, u 0 ). From monotonicity of y ± , we have

y -(x 1 , t, u 0 ) ≤ y + (x 1 , t, u 0 ) ≤ y -(x 2 , t, u 0 ) ≤ y + (x 2 , t, u 0 ).
Let x k ↑ x, then from above inequality,

β = lim k→∞ y + (x k , t, u 0 ) ≤ y -(x, t, u 0 ).
Since a subsequence of y + (x k , t, u 0 ) converges to β, hence r(•, t, x, β) ∈ ch(x, t, u 0 ). Therefore β ≤ y -(x, t, u 0 ) ≤ r(0, t, x, β) = β. This proves (4.22). Similarly (4.23) follows. This proves (2).

(3). (i). Suppose y -(R -(t, α, u 0 ), t, u 0 ) > α. Then from (4.22) there exist x 0 < R -(t, α, u 0 ). such that for all x ∈ (x 0 , R -(t, α, u 0 )), y + (x, t, u 0 ) > α. Let x be a point of continuity of y + , then from (3) of theorem 2.1, y -(x, t, u 0 ) = y + (x, t, u 0 ) > α and hence R -(t, α, u 0 ) ≤ x < R -(t, α, u 0 ) which is a contradiction. Suppose y + (R -(t, α, u 0 ), t, u 0 ) < α, again from (4.23) there exist x 0 > R -(t, α, u 0 ) such that for all x ∈ (R -(t, α, u 0 ), x 0 ), y -(x, t, u 0 ) < α. Therefore at points x of continuity, α ≤ y + (x, t, u 0 ) = y -(x, t, u 0 ) < α, which is a contradiction. This proves (4.25) and (4.26) follows similarly.

Suppose

R + (t, α, u 0 ) < R -(t, α, u 0 ), then from (4.25), y -(R -(t, α, u 0 ), α, u 0 ) ≤ α ≤ y + (R + (t, α, u 0 ), t, u 0 ), therefore from NIP, y -(R -(t, α, u 0 ), t, u 0 ) = α = y + (R + (t, α, u 0 ), t, u 0 ). Hence from (4.21), for all x ∈ (R + (t, α, u 0 ), R -(t, α, u 0 )), α is a minimizer for v(x, t) which implies that R -(t, α, u 0 ) ≤ x < R -(t, α, u 0 ) which is a contradiction. This proves (4.24).
Suppose R -(t, α, u 0 ) < R + (t, α, u 0 ). then from (4.24), (4.25), we have

α ≤ y + (R -(t, α, u 0 ), t, u 0 ) ≤ y -(R + (t, α, u 0 ), t , u 0 ) ≤ α.
Therefore from (1), for all x ∈ (R -(t, α, u 0 ), R + (t, α, u 0 )), y ± (x, t, u 0 ) = α and f (u(x, t)) = x-α t . This proves (4.26).

(3). (ii). Let 0 < s < t, then as in (4.24) we have R -(t, s, α, u 0 ) ≤ R + (t, s, α, u 0 ). Suppose R -(t, s, α, u 0 ) < R + (t, s, α, u 0 ), then as in (4.26), we have for all

x ∈ (R -(t, s, α, u 0 ), R + (t, s, α, u 0 )), f (u(x, t)) = x-α t-s . Let R -(t, s, α, u 0 ) < x 1 < x 2 < R + (t,
s, α, u 0 ) and r ± (., t, x 1 ), r ± (., t, x 2 ) be the extreme characteristics at x 1 , x 2 . Since r ± (s, t, x 1 ) = r ± (s, t, x 2 ) = α, which contradicts NIP. This proves (ii) and hence (3).

(4). Let 0 ≤ s < t, R -= R -(t, α, u 0 ), y ± = y ± (R -, t, u 0 ) and r ± (θ) = r(θ, t, R -, y ± ) ∈ ch(R -, t, u 0 ). Then from (3) of theorem 2.1, r ± | (0,s) ∈ ch(r ± (s), s, u 0 ). Claim : r -(s) ≤ R -(s, α, u 0 ) ≤ r + (s). Suppose R -(s, α, u 0 ) < r -(s). For x ∈ (R -(s, α, u 0 ), r -(s)), y -(x, s, α) ≥ α.
Hence if y -< α or y -(x, s, α) > α, then the characteristics r -(θ), r -(θ, s, x) intersect for some θ ∈ (0, s) which contradicts NIP. Therefore α = y -= y -(x, s, α) and from (2) r(θ) = r(θ, s, R -(s, α, u 0 ), α) ∈ ch(R -(s, α, u 0 ), s, u 0 ). From (4.22) choose a ξ < R -, y -(ξ, t, u 0 ) < α such that the characteristic r(θ) and r(θ, t, ξ, y + (ξ, t, u 0 )) intersect for some θ ∈ (0, s) which contradicts NIP.

Suppose r + (s) < R -(s, α, u 0 ), then for x ∈ (r + (s), R -(s, α, u 0 )), y -(x, s, u 0 ) < α ≤ r + (0) = y + and therefore the characteristic at (x, s) with end point (y -(x, s, u 0 ), 0) intersects r + (θ) for some θ ∈ (0, s) contradicting NIP. This proves the claim.

From (4.10) and the claim, we have

R -+ R --y - t (s -t) ≤ R -(s, α, u 0 ) ≤ R -+ R --y + t (s -t) that is |R --R -(s, α, u 0 )| ≤ R --y - t + R --y + t |s -t| ≤ 2M |s -t|.
Also from (4.10), we have

|R --y ± | = |R --r ± (0)| ≤ M t, hence lim t→0 R -(t, α, u 0 ) = α. Similarly for R + (t, α, u 0 ).
From (c) of (3) in Theorem 2.1, we have r ± | [s,t] ∈ ch(R -(t, α, u 0 ), s, t, u 0 ), hence from NIP and from the above claim we have for any

x < R -(t, α, u 0 ) < z, y + (x, s, t, u 0 ) < r -(s) ≤ R -(s, α, u 0 ) ≤ r + (s) < y -(z, s, t, u 0 ). Therefore from the definitions it follows that R -(t, α, u 0 )) = R -(t, s, R -(t,
s, u 0 ), u 0 ). Similarly for R + and this proves (4).

(5). From (5) of Theorem 2.1, for t ∈ N, a.e. x, u(x, t) ≤ w(x, t). Let y 1,± (x) = y ± (x, t, u 0 ), y 2,± (x) = y ± (x, t, w 0 ). Choose a dense set D ⊂ IR such that for i = 1, 2, x ∈ D, u(x, t) ≤ w(x, t), y i,+ (x) = y i,-(x). Hence from (4.12) we have for x ∈ D,

x -y 1,± (x) t = f (u(x, t)) ≤ f (w(x, t)) = x -y 2,± (x) t .
This implies y 2,± (x) ≤ y 1,± (x). Therefore from (4.22) and (4.23),

R -(t, α, u 0 ) = inf{x ∈ D : y 1,-(x) ≥ α} ≤ inf{x ∈ D : y 2,-(x) ≥ α} = R -(t, α, w 0 ). R + (t, α, u 0 ) = sup{x ∈ D, y 1,+ (x) ≤ α} ≤ sup{x ∈ D : y 2,+ (x) ≤ α} = R + (t, α, w 0 ).
From (4), t → (R ± (t, α, u 0 ), R ± (t, α, w 0 )) are continuous and hence (4.30) holds for all t > 0. 

R -(t, α, u 0 ) = inf{x : y -(x, t, u 0 ) ≥ α} ≤ inf{x : y -(x, t, u 0 ) ≥ β} = R -(t,
(x) = y ± (x, t, u k 0 ), R k ± = R ± (t, α k , u k 0 )
. Since {y k ± } are monotone functions and {R k ± } are bounded. Hence from Helly's theorem, there exist a subsequence still denoted by k such that for a.e. x,

lim k→∞ y k ± (x) = y ± (x) (4.37) lim k→∞ R k ± , lim k+∞ R k ± = R± , R± , (4.38)
where u is the solution of (1.2) with u(x, 0) = u 0 (x). Let D ⊂ IR be a dense set such that for all x ∈ D, (4.36) to (4.38) holds and further for all k, 

y k + (x) = y k -(x) (4.39) y + (x, t, u 0 ) = y -(x, t, u 0 ) (4.40) f (u k (x, t)) = x -y k ± (x) t (4.41) f (u(x, t)) = x -y ± (x, t, u 0 ) t . ( 4 
Case (i): Let for all k, R k -≤ R -(t, α, u 0 ), then R-≤ R -(t, α, u 0 ). Suppose R-< R -(t, α, u 0 ). Let I = ( R-, R -(t, α, u 0 )), x ∈ D ∩ I and choose k 0 = k 0 (x) > 0 such that for all k ≥ k 0 , R k -< x, then α = lim k→∞ α k ≤ lim k→∞ y k -(x) = y -(x, t, u 0 ) < α, which is a contradiction. Hence R-= R -(t, α, u 0 ). Case (ii) : Let for all k, R -(t, α, u 0 ) ≤ R k -, then R -(t, α, u 0 ) ≤ R-. Suppose R -(t, α, u 0 ) < R-, then for x ∈ D ∩ (R -(t, α, u 0 ), R-) choose k 0 = k 0 (x) such that for a subsequence k > k 0 , x < R k -. Hence α ≤ y -(x, t, u 0 ) = lim k→∞ y k -(x) ≤ α and therefore y -(x, t, u 0 ) = α. Therefore from (4.12), f (u(x, t)) = x-α t .
Since {u k 0 } are bounded in L ∞ and hence from ( 4), ther exists a C > 0 independent of k such that for all s 1 , s 2 we have

|R ± (s 1 , α k , u k 0 ) -R ± (s 2 , α k , u k 0 )| ≤ |s 1 -s 2 | |R ± (s 1 , α, u 0 ) -R ± (s 2 , α, u 0 )| ≤ |s 1 -s 2 |
Now suppose for t > 0 and for a subsequence still denoted by k such that

R -= lim k→∞ R -(t, α k , u k 0 ) < R -(t, α, u 0 ). Therefore choose > 0, k 0 > 0 such that for all k ≥ k 0 R -(t, α k , u k 0 ) < R -(t, α, u 0 ) -2 .
Let |s -t| ≤ 2C , then from the above uniform estimates we have for k

≥ k 0 R -(s, α k , u k 0 ) ≤ 2 + R -(t, α k , u k 0 ) ≤ 2 + R -(t, α, u 0 ) -2 ≤ 2 + R -(s, α k , u k 0 ) + 2 -2 ≤ R -(s, α, u 0 ) -< R -(s, α, u 0 ).
Now choose an |s 0 -t| < 2 such that the previous analysis holds. Then at s 0 , we have

R -(s, α, u 0 ) -≥ lim k→∞ R -(s, α k , u k 0 ) = R -(s, α, u 0 ) < R -
which is a contradiction. This proves (2.32) and similarly (2.33) holds.

Let

R -(t, α, u 0 ) < R = lim k→∞ R -(t, α k , u k 0 ) and R -(t, α, u 0 ) < x < R.
Then as earlier choose an > 0, a subsequence still denoted by k such that for |s -t| < 2C and k ≥ k 0 ( ), following holds :

R -(s, α, u 0 ) + < x < R -≤ R -(s, α k , u k 0 ).
Now choose an s > t such that u k (ξ, s) → u(ξ, s) a.e. ξ. Hence from the previous analysis we have for all ξ ∈ (R -(s, α, u 0 ), R -), f (u(ξ, s)) = ξ-α s . Since s > t and hence we have f (u(x, t)) = x-α t . This proves (2.34) and similarly (2.35) follows. This proves [START_REF] Ancona | On the attainability set for scalar non linear conservation laws with boundary control[END_REF] and hence the Lemma.

Next we study the characterization of R ± and some comparison properties. For this we need some well known results which will be proved in the following Lemma.

Let Ω ⊂ IR n be an open set and B(1) denote the unit ball in

IR n . Let 0 ≤ χ ∈ C ∞ c (B(1)) with IR n χ(x)dx = 1. Let ε > 0 and denote χ ε (x) = 1 ε n χ( x ε ) be the usual mollifiers. Let u 0 ∈ L 1 loc (IR n ) and define u ε 0 (x) = (χ ε * u 0 )(x) = B(1)
χ(y)u 0 (x -εy)dy , then LEMMA 4.2 Denote ess inf and ess sup by inf and sup. Then 1. With the above notation, for x ∈ Ω, there exists a

ε 0 = ε 0 (x) > 0 such that for all 0 < ε < ε 0 , inf y∈Ω u 0 (y) ≤ u ε 0 (x) ≤ sup y∈Ω u 0 (y). (4.44)
2. Let t 0 , ε 0 , α ∈ IR and ω ∈ L ∞ ((0, t 0 )). Let R : (0, t 0 ] → IR be a locally Lipschitz continuous function such that for a.e t ∈ (0, t 0 ), Multiply this identity by χ and integrate over B( 1) gives (4.44).

ω(t) ≥ (f ) -1 R(t) -α t + ε 0 (4.45) dR dt = f (ω(t)) -f ((f ) -1 ( R(t)-α t )) ω(t) -(f ) -1 ( R(t)-α t ) , (4.46) then lim t→0 R(t) -α t = ∞. ( 4 
(2). Suppose (4.47) is not true. That is

sup t>0 R(t) -α t < ∞. (4.48)
Let m be defined by

m = inf t∈(0,t 0 ) 1 0 f (f ) -1 R(t)-α t + θ w(t) -(f ) -1 R(t)-α t - R(t)-α t dθ.
(4.49)

Claim : m > 0. From (4.45), w(t) -(f ) -1 R(t)-α t
> 0 and hence by convexity we have

f (f ) -1 R(t)-α t + θ w(t) -(f ) -1 R(t)-α t ≥ f (f ) -1 R(t)-α t = R(t)-α t .
Hence m ≥ 0. Suppose m = 0, then there exists a sequence

t k → t in [0, 1] such that 0 = lim k→∞ 1 0 f (f ) -1 R(t k )-α t k + θ w(t) -(f ) -1 R(t k )-α t k - R(t k )-α t k dθ.
Then from (4.48), we can choose a subsequence such that

R(t k ) -α t k → a, w(t k ) → b as k → ∞.
Then from (4.45) we have b ≥ (f ) -1 (a) + 0 and

0 = 1 0 f (f ) -1 (a) + θ(b -(f ) -1 (a)) -a dθ
and hence by strict convexity

0 < f ((f ) -1 (a) + θ(b -(f ) -1 (a))) -a = 0
which is a contradiction. This proves the claim. From Taylor series and the claim we have

dR dt = R(t)-α t + 1 0 f (f ) -1 R(t)-α t + θ w(t) -(f ) -1 R(t)-α t - R(t)-α t dθ. ≥ R(t)-α t + m 0 or t d dt R(t) -α t ≥ m 0 .
For 0 < t 1 < t 0 , integrating t to t 1 to obtain

R(t) -α t ≤ R(t 1 ) -α t -m 0 log t 1 t → -∞ as t → 0.
LEMMA 4.3 Let T > 0, α, β ∈ IR, u 0 , v 0 and v be as in (4.3) and (4.4). Then [START_REF] Adimurthi | Finer analysis of characteristic curves, and its applications to shock profile, exact and optimal controllability of conservation law with strict convex fluxes[END_REF]. Let x 0 ∈ IR, t > 0 such that

y -(x 0 , t, u 0 ) ≤ α ≤ y + (x 0 , t, u 0 ), (4.50) then (i). if x 0 ≤ R -(t, α, u 0 ), then x 0 = R -(t, α, u 0 ). If R -(t, α, u 0 ) < x 0 , then for all x ∈ (R -(t, α, u 0 ), x 0 ), f (u(x, t)) = x-α t . (ii). if x 0 ≥ R + (t, α, u 0 ), then x 0 = R + (t, α, u 0 ). If x 0 < R + (t, α, u 0 ), then for all x ∈ (x 0 , R + (t, α, u 0 )), f (u(x, t)) = x-α t . (2). (i). Let x ≥ R -(t, α, u 0 ), then v(x, t) = inf y≥α v 0 (y) + tf * x -y t . (4.51) (ii). Let x ≤ R + (t, α, u 0 ), then v(x, t) = inf y≤α v 0 (y) + tf * x -y t . ( 4 

.52)

(iii). Let α < β and for 0 < t < T assume that

R + (t, α, u 0 ) < R -(t, β, u 0 ), then for R + (t, α, u 0 ) < x < R -(t, β, u 0 ), v(x, t) = inf α≤y≤β v 0 (y) + tf * x -y t , (4.53) m = inf y∈[α,β] u 0 (y) ≤ u(x, t) ≤ sup y∈[α,β] u 0 (y) = M. (4.54) f (m) ≤ x -y + (x, t, u 0 ) t ≤ f (M ). (4.55) (3). Let L(t, α, u 0 ) ∈ {R ± (t, α, u 0 )}, R(t, β, u 0 ) ∈ {R ± (t, β, u 0 )}. Suppose at t = T, L(T, α, u 0 ) = R(T, β, u 0 ), (4.56)
then for all t ≥ T, (see Figure 9).

L(t, α, u 0 ) = R(t, β, u 0 ). (4.57) Furthermore, let {u k 0 } and u 0 are in L ∞ (IR) with sup k u k 0 ∞ < ∞. Let (α k , β k , u k 0 ) → (α, β, u 0 ) as k → ∞ in IR 2 × L 1 loc (IR) and T k → T in IR such that R -(T, α, u 0 ) = R + (T, β, u 0 ) R -(T k , α k , u k 0 ) = R + (T k , β k , u k 0 ). (4.58)
Then for t > T,

lim k→∞ R + (t, α k , u k 0 ) = lim k→∞ R -(t, β k , u k 0 ) = R + (t, α, u 0 ) = R -(t, α, u 0 ). (4.59) R - 0 ) (t, ,u α u 0 u 0 T u 0 ( ,0) ( ,0) β α R -(t, ,u 0 )=R + 0 ) α (t, ,u β R + (t, ,u 0 ) β Figure 8:
Proof. [START_REF] Adimurthi | Finer analysis of characteristic curves, and its applications to shock profile, exact and optimal controllability of conservation law with strict convex fluxes[END_REF]. It is enough to prove (i) and (ii) follows similarly. Let C = R -(t, α, u 0 ), then from (4.22) y -(C, t, u 0 ) ≤ α. Suppose x 0 < C, then from (4.50), the characteristic line joining (C, t), (y -(C, t, u 0 ), 0) and (x 0 , t), (y + (x 0 , t, u 0 ), 0) intersect if

y + (x 0 , t, u 0 ) > α or y -(C, t, u 0 ) < α, which contradicts NIP. Hence y + (x 0 , t, u 0 ) = y -(C, t, u 0 ) = α. Therefore from (4.21), for x 0 < x < C, f (u(x, t)) = x-α t . This implies that C = R -(t, α, u 0 ) < x < C,
which is a contradiction. Hence x 0 = R -(t, α, u 0 ). Suppose C < x 0 , then from the definition and (4.50), we have y -(x 0 , t, u 0 ) ≤ α ≤ y -(x 0 , t, u 0 ) and hence y -(x 0 , t, u 0 ) = α and from (4.21), f (u(x, t)) = x-α t for all C < x < x 0 . This proves (1).

(2). It is enough to prove (i) and (ii) follows similarly. Let x ≥ R -(t, α, u 0 ), then from (4.25), y + (x, t, u 0 ) ≥ α. Therefore inf inf

y≥α {v 0 (y) + tf * x -y t }, inf y<α {v 0 (y) + tf * x -y t } = v(x, t) = v 0 (y + (x, t, u 0 )) + tf * x -y + (x, t, u 0 ) t . Hence v(x, t) = inf y≥α {v 0 (y) + tf * x -y t }.
(iii). (4.53) follows from (4.51) and (4.52). Let ε > 0, u ε 0 = χ ε * u 0 and v ε 0 , v ε be as in (4.3) , (4.4) respectively. Let u = ∂v ∂x be the solution of (1.2) in Ω = IR × IR + . Since v 0 is differentiable and hence for a.e x and from (4.13),

u ε (x, t) = u ε 0 (y + (x, t, u 0 )). Since u ε 0 → u 0 in L 1 loc and hence u ε → u in L 1 loc .
Therefore from (4.32) to (4.35), we have for 0 < t < T,

lim ε→0 R + (t, α, u ε 0 ) ≤ R + (t, α, u 0 ) < R -(t, β, u 0 ) ≤ lim ε→0 R -(t, β, u 0 ). Let ε k → 0 and choose a dense set D ⊂ (R + (t, α, u 0 ), R -(t, β, u 0 )) such that for all x ∈ D, lim k→∞ u ε k (x, t) = u(x, t) y(x) = y + (x, t, u 0 ) = y -(x, t, u 0 ) y k (x) = y + (x, t, u ε k 0 ) = y -(x, t, u ε k 0 ). For x ∈ D, choose k 0 (x) such that for all k ≥ k 0 (x), x ∈ (R + (t, α, u ε k 0 ), R -(t, β, u k 0 )). Then from ((4.53)), y k ∈ [α, β]. Since u ε k (x, t) = u ε k 0 (y k (x)), hence from (4.44), m ≤ u ε k 0 (y k (x)) = u ε k (x, t) ≤ M.
Letting k → ∞ to obtain (4.54). From (4.12),

f (u ε k (x, t)) = x -y k (x) t , letting k → ∞ to obtain x -y(x) t = f (u(x, t)) = lim k→∞ f (u ε k (x, t)) = lim k→∞ x -y k (x) t .
Hence lim

k→∞ y k (x) = y(x), f (m) ≤ f (u ε k 0 (y k (x))) = x -y k (x) t ≤ f (M ), Now letting k → ∞ to obtain f (m) ≤ x -y(x) t ≤ f (M ), For x ∈ D, choose x k ↑ x, y + (x k , t, u 0 ) = y -(x k , t, u 0 ). Then from (4.22), y + (x k , t, u 0 ) → y -(x, t, u 0 )
. Now apply the inequalities for x k and let k → ∞ to obtain (4.54), (4.55). This proves (2).

(3). Without loss of generality we can take

L(t, α, u 0 ) = R -(t, α, u 0 ) and R(t, β, u 0 ) = R + (t, β, u 0 ). Similar proof follows in all other cases. Let C = R -(T, α, u 0 ) = R + (T, β, u 0 ) and t > T.
Then from (4.27) and (4.29) we have

R -(t, α, u 0 ) = R -(t, T, C, u 0 ) = R + (t, T, C, u 0 ) = R + (t, β, u 0 ). (4.60) 
This proves (4.57).

Let t > T, then choose k 0 = k 0 (t) such that t > T k , for all k > k 0 . Then from (4.57) we have

R k (t) = R -(t, α k , u k 0 ) = R + (t, α k , u k 0 ), R(t) = R -(t, α, u 0 ) = R + (t, α, u 0 ). Hence from (6) of Lemma 4.2, lim k→∞ R k (t) ≤ R + (t, α, u 0 ) = R -(t, α, u 0 ) ≤ lim k→∞ R k (t). (4.61) 
This proves (4.59) and hence the Lemma.

Next we give a criteria under which

R + = R -. Let β < γ and I 1 = [β, γ], Define m = inf y∈I 1 u 0 (y), M = sup y∈I 1 u 0 (y), I 2 = [f (m), f (M )]. Let a 0 = max{f * (q) -M q; q ∈ I 2 }, f (q 0 ) = max{q; f * (q) -M q ≤ a 0 }.
Then we have the following.

LEMMA 4.4 Let α < β < γ, ε 0 > 0. Let u 0 ∈ L ∞ (IR)
, a 0 and q 0 as above. Suppose

inf [α,β] u 0 (y) ≥ q 0 + ε 0 , (4.62) then for all t > 0, R + (t, β, u 0 ) = R -(t, β, u 0 ).
Proof. Suppose for some T > 0, R + (T, β, u 0 ) > R -(T, β, u 0 ), then from (4.57), for 0

< t < T, R -(t, β, u 0 ) < R + (t, β, u 0 ) and from (4.26) for R -(t, β, u 0 ) < x < R + (t, β, u 0 ). f (u(x, t)) = x -β t . ( 4.63) 
From (4.28) we can choose T sufficiently small such that for all 0 < t ≤ T,

R + (t, α, u 0 ) < R -(t, β, u 0 ) < R + (t, β, u 0 ) < R -(t, γ, u 0 ). (4.64) Claim: Let L(t) = R -(t, β, u 0 ), then for 0 < t ≤ T f (u(L(t)+, t)) ≤ R + (t, β, u 0 ) -β t ≤ f (q 0 ). (4.65) 
Let

x k > R + (t, β, u 0 ) be such that y + (x k , t, u 0 ) = y -(x k , t, u 0 ) and lim k→∞ x k = R + (t, β, u 0 ). Then from (4.55) f (m) ≤ x -y -(x k , t, u 0 ) t ≤ f (M ).
Letting k → ∞ and from (4.23) we have

f (m) ≤ R + (t, β, u 0 ) -y + (R + (t, β, u 0 ), t, u 0 ) t ≤ f (M ). (4.66) Let v 0 (y) = y β u 0 (θ)dθ, hence v 0 (β) = 0. Denote R(t) = R + (t, β, u 0 ), y ± (t) = y ± (R + (t, β, u 0 ), t, u 0 ), then from (4.63), y -(t) = β and from (4.4) we have tf * R(t) -β t = v 0 (y -(t)) + tf * R(t) -y -(t) t = v 0 (y + (t)) + tf * R(t) -y + (t) t ≤ M (y + (t) -β) + tf * R(t) -y + (t) t ≤ M (y + (t) -R(t)) + M (R(t) -β) + tf * R(t) -y + (t) t ,
and hence

f * R(t) -β t -M R(t) -β t ≤ f * R(t) -y + (t) t -M R(t) -y + (t) t .
From (4.66) it follows that

f * R(t) -β t -M R(t) -β t ≤ a 0 , Letting x tends to L(t) in (4.63) to obtain f (u(L(t)+, t)) = L(t) -β t ≤ R + (t, β, u 0 ) -β t ≤ f (q 0 ). (4.67) 
This proves (4.65) and hence the claim.

From (4.54), for R + (t, α, u 0 ) < x < R -(t, β, u 0 ) = L(t), u(x, t) ≥ inf y∈[α,β] u 0 (y),
hence from (4.62) and (4.67), we have

u(L(t)-, t) ≥ inf y∈[α,β] u 0 (y) ≥ q 0 + ε 0 ≥ u(L(t)+, t) + ε 0 = f * L(t)-β t + ε 0 . (4.68) 
From RH condition across L(t) gives

dL dt = f (u(L(t)-, t)) -f f * L(t)-β t u(L(t)-, t) -f * L(t)-β t . ( 4.69) 
Therefore L(t) satisfies the hypothesis (2) of Lemma 2.3 and hence from (4.47)

lim t→0 L(t) -β t = ∞, which contradicts the uniform Lipschitz continuity of L from (4) of Lemma 2.2. Hence R -(t, β, u 0 ) = R + (t, β, u 0 )
, for all t, and this proves the Lemma.

REMARK 4.1 Observe that q 0 entirely depends on the bounds of u 0 in [β, γ].

LEMMA 4.5 Let u be the solution of (1.2) with

ū0 (x) = u(x, 0) = a if x < α, u 0 (x) if x > α.
Then for x < R -(t, α, ū0 ), u(x, t) = a, (4.70) and v λ be as in (4.4). Let u λ = ∂v λ ∂x be the entropy solution of (1.2) in Ω = IR × IR + with initial data u λ 0 . Assume that λ > max(a, m), (4.74) then α is a point of rarefaction and β is the shock point.

f (a) = R -(t, α, ū0 ) -y -(R -(t,
u λ 0 (x) =    a if x < α, λ if α < x < β, m if x > β.
Let L 1 (t) = α + f (a)t, L λ 2 (t) = α + f (λ)t, S λ (t) = β + f (λ)-f (m) λ-m t.
Let (x 0 (λ), T 0 (λ)) be the point of intersection of L λ 2 and S λ given by

T 0 (λ) = β -α f (λ) -f (λ)-f (m) λ-m , x 0 (λ) = α + (β -α)f (λ) f (λ) -f (λ)-f (m) λ-m .
Since β is the point of shock and hence from (4.26) we have

R + (t, β, u λ 0 ) = R -(t, β, u λ 0 ) = R λ (t)(def). (4.75)
Then the solution u λ for t ≤ T 0 (λ) is given by R λ (t) = S λ (t). (4.76)

u λ (x, t) =        m if x > S λ (t), λ if L λ 2 (t) < x < S λ (t), (f ) -1 x-α t if L 1 (t) < x < L λ 2 (t), a if x < L 1 (t).
(4.77)

Define T 1 (λ) > T 0 (λ) be the first point of intersection of L λ 2 and R λ . If they do not meet, then define T 1 (λ) = ∞. Next Lemma describes the behavior of u λ for t > T 0 (λ).

LEMMA 4.6 Let λ satisfies (4.74). Then u λ is given by (see Figure 9). (i). For T 0 (λ) < t < T 1 (λ), y ± (L 1 (t), t, u λ 0 ) = a and

u λ (x, t) =    m if x > R λ (t), f -1 x-α t if L 1 (t) < x < R λ (t), a if x < L 1 (t).
(4.78) (ii). t > T 1 (λ), then u λ is the solution of (1.2) with initial data

u λ (x, T 1 (λ)) = a if x < R λ (T 1 (λ)), m if x > R λ (T 1 (λ)). ( 4 

.79)

Furthermore for any compact sets K 1 and K 2 of IR with

K = K 1 × K 2 , η > 0, T ≤ T 1 (λ) be bounded, then lim λ→∞ inf (a,m)∈K T 1 (λ) = ∞, (4.80) f (u λ (R λ (t)-, t) = f (λ) if 0 < t < T 0 (λ), R λ (t)-α t if T 0 (λ) < t < T 1 (λ). (4.81) lim λ→∞ inf (a,m)∈K T 0 (λ)≤t≤T u λ (R λ (t)-, t) = ∞. (4.82) lim λ→∞ inf η≤t≤T R λ (t) = ∞, (4.83) u ( x ,t ) = x - t L 2 L 1 u= T 1 ( ) T 0 u=a λ ( t ) = + t f ( a ) α ( t) = + tf ( ) α α λ λ ( ) λ R (t) ( ,0) ( ,0) λ u 0 (x) α β a λ λ Figure 9:
Proof. Let T 0 (λ) < t ≤ T 1 (λ). Since v λ 0 (x) is differentiable for x > β and hence from (4.13) and (4.51),

u λ (x, t) = u 0 (y + (x, t, u λ 0 )) = m if x > R + (t, β, u λ 0 ) = R λ (t). Next we show that for L 1 (t) < x < R λ (t), y ± (x, t, u λ 0 ) = α. L 1 (t) < x < R λ (t). Then y + (x, t, u λ 0 ) < β. Suppose for some x 0 ∈ (L 1 (t), R λ (t)), y -(x, t, u λ 0 ) < α, then for all x ∈ (L 1 (t), x 0 ), y -(x, t, u λ 0 )) < α, u λ (x, t) = u 0 (y -(x, t, u λ 0 )) = a and L 1 (t) -α t = f (a) = f (u λ (x, t)) = x -y -(x, t, u λ 0 ) t > L 1 (t) -α t ,
which is a contradiction. Suppose y + (x 0 , t, u λ 0 ) > α, then for all x 0 < x < R λ (t), α < y + (x, t, u λ 0 ) < β. Since u λ 0 is differentiable in (α, β) and hence from (4.13), for a.e x ∈ (x 0 , R λ (t)),

u λ (x, t) = u λ 0 (y + (x, t, u λ 0 )) = λ, f (λ) = f (u λ (x, t)) = x -y + (x, t, u λ 0 ) t . Suppose x 0 < L λ 2 (t), then for x 0 < x < min(L λ 2 (t), R λ (t)), f (λ) = x -y + (x, t, u λ 0 ) t < L λ 2 (t) -α t = f (λ),
which is a contradiction. Suppose L λ 2 (t) < x 0 < R λ (t), then for x ∈ (x 0 , R λ (t)), characteristic γ at (x, t) given by γ(θ) = y + (x, t, u λ 0 ) + f (λ)θ intersects S λ at t 0 , where

t 0 = β -y + (x, t, u λ 0 ) f (λ) -f (λ)-f (m) λ-m < β -α f (λ) -f (λ)-f (m) λ-m = T 0 (λ),
which contradicts NIP, since S λ (t) is a characteristic for 0 < t < T 0 (λ). Hence for L 1 (t) < x < R λ (t), y + (x, t, u λ 0 ) = y -(x, t, u λ 0 ) = α and from (4.21), we have

f (u λ (x, t)) = x -α t . (4.84)
Now letting x ↓ L 1 (t) and from (4.22) to obtain y + (L 1 (t), t, u λ 0 ) = α and f (u λ (L 1 (t) +, t)) = L 1 (t)-α t = f (a). This implies u λ (L 1 (t)+, t) = a. From RH condition across L 1 (t) implies that u λ (L 1 (t)-, t) = a. Therefore from (4.12),(4.22),(4.23) y ± (L 1 (t), t, u λ 0 ) = a. This implies for x < L 1 (t), y + (x, t, u λ 0 ) < α and hence from (4.13), u λ (x, t) = u 0 (y + (x, t, u λ 0 )) = a. This proves (4.78) and hence (4.79).

Let

y ± (t, λ) = y ± (R λ (t), t, u λ 0 ), y ± (λ) = y ± (R λ (T 1 (λ)), T 1 (λ), u λ 0 ), R λ = R λ (T 1 (λ)).
Let T 0 (λ) < t ≤ T 1 (λ) and letting x ↑ R λ (t) in (4.84) to obtain 

R λ (t) -y -(t, λ) t = f (u λ (R λ (t)-, t)) = R λ (t) -α t . (4.85) Hence y -(t, λ) = α. Also at t = T 1 (λ), f (a) = R λ -α T 1 (λ) = R λ -y - T 1 (λ) . ( 4 
-(β -α)λ + tf * R λ (t) -α t = (y + (t, λ) -β)m + tf * R λ (t) -y + (t, λ) t = m y + (t, λ) -R λ (t) t t + R λ (t) -β + tf * (f (m)) = -tmf (m) + m(R λ (t) -α) + m(α -β) + tf * (f (m)). (β -α)(λ -m) t = f * R λ (t) -α t - R λ (t) -α t -f * (f (m) + mf (m). (4.89) Let t = T 1 (λ) then R λ -α T 1 (λ) = f (a)
and hence the right hand side of (4.89) is bounded uniformly for (a, m) ∈ K and hence as λ → ∞, T 1 (λ) → ∞. This proves (4.80).

Observe that R + (t, α, u λ 0 ) = L λ 2 (t) and L λ 2 (t) < R λ (t) for 0 < t < T 0 (λ). Hence for a.e x ∈ (L λ 2 (t), R λ (t)), y + (x, t, u λ 0 ) = y -(x, t, u λ 0 ) ∈ (α, β) and from (4.13), follows from (4.89). This proves the Lemma.

u λ (x, t) = u λ 0 (y + (x, t, u λ 0 )) = λ.
Next we generalize the above Lemma by replacing m by u 0 . More precisely let

u λ 0 (x) =    a if x < α, λ if α < x < β, u 0 (x) if x > β, (4.90)
and u λ be the solution of (1.2) with initial data u λ 0 . Let

m 1 = inf x≥α u 0 (x), m 2 = sup x≥α u 0 (x). (4.91) 
For i = 1, 2, define u i,λ 0 by

u i,λ 0 (x) =    a if x < α, λ if α < x < β, m i if β < x, (4.92) 
and let u λ i be the solution of (1.2) with intial data u i,λ 0 . Let L 1 (t), L λ 2 (t) be as defined earlier, then LEMMA 4.7 Let T > 0 be fixed, then there exist For i = 1, 2, let T i,0 (λ) be the first intersection point of L λ 2 (t) and R i (λ, t) and T i,1 (λ) > T i,0 (λ) be the points of intersections of L 1 (t) and R i (λ, t). Then from Lemma 4.8, we can choose 

λ 0 = λ 0 (m 1 , m 2 , a, t) such that for λ ≥ λ 0 , 0 < t ≤ T, R -(t, β, u λ 0 ) = R + (t, β, u λ 0 ). ( 4 
λ 0 ≥ q 0 + ū ∞ such that for all λ ≥ λ 0 , f (λ) > 0, f (λ) > f ( ū ∞ ) and T 1,1 (λ) > T, R 1 (λ, T ) > L 1 (t). (4.101) inf T 1,0 (λ)≤t≤T f * R 1 (λ, t) -α t = inf T 1,0 (λ)≤t≤T u 1,λ (R 1 (λ, t)-, t) > λ 0 . ( 4 
λ→∞ R(λ, T ) ≥ lim λ→∞ R 1 (λ, T ) = ∞.
This proves (4.94).

Next imitating the proof as in Lemma 4.6 and from (4.99) we have for 0 < t < T ,

u λ (x, t) =        ū(x, t) if x > R(λ, t), (f ) -1 x-α t if t > T 0 (λ), L 1 (t) < x < R(λ, t), λ if 0 < t < T 0 (λ), L λ 2 (t) < x < R(λ), a if x < L 1 (t). ( 4 

.103)

Let 0 < t < T 0 (λ) then from (4.100) and the choice of λ 0 , we have for a.e. t,

d dt R(λ, t) = f (u λ (R(λ, t)-, t)) -f (u λ (R(λ, t)+, t)) u λ (R(λ, t)-, t) -u λ (R(λ, t)+, t) = f (λ) -f (u λ (R(λ, t)+, t) λ -u λ (R(λ, t)+, t) > 0.
Let T 0 (λ) < t ≤ T, then from (4.98), T 1,0 (λ) ≤ T 0 (λ). Hence from (4.103), (4.102)

u λ (R(λ, t)-, t) = f * R(λ, t) -α t ≥ f * R 1 (λ, t) -α t = u 1,λ (R 1 (λ, t)-, t) > λ 0 . Since f (λ) > 0 for λ ≥ λ 0 , hence f (u λ (R(λ, t)-, t)) ≥ f (λ 0 ) > f ( ū ∞ ).
Therefore from (4.99), (4.100) we have for T 0 (λ) < t ≤ T.

d dt R(λ, t) = f (u λ (R(λ, t)-, t) -f (u λ (R(λ, t)+, t)) u λ (R(λ, t)-, t) -u λ (R(λ, t)+, t) = f (u λ (R(λ, t)-, t) -f (ū(R(λ, t)+, t) u λ (R(λ, t)-, t) -ū(R(λ, t)+, t) > 0.
This proves that t → R(λ, t) is a strictly increasing function.

Claim: R(λ, t) ≤ L λ 2 (t) for t > T 0 (λ).

Suppose for some t 0 > T 0 (λ), R(λ, t 0 ) > L λ 2 (t 0 ), then for a.e x ∈ (L λ 2 (t 0 ), R(λ, t 0 ) ), y + (x, t, u λ 0 ) ∈ (α, β) and hence from (4.13) and differentiability of u λ 0 in (α, β) gives u(x, t 0 ) = λ and f

(λ) = x-y + (x,t 0 ,u λ 0 ) t 0 . Hence the characteristic line r(θ) at (x, t 0 ) is parallel to L λ 2 and r(θ) ≥ L λ 2 (θ) for θ ∈ [0, t 0 ]. Since t → R(λ, t) is an increasing function for t ∈ (0, T 1 (λ)) and T 0 (λ) < t 0 , hence R(λ, T 0 (λ)) < x. Furthermore y + (R(λ, T 0 (λ)), T 0 (λ), u λ 0 ) ≥ β.
Hence the characteristic line at (R(λ, T 0 (λ)), T 0 (λ)) intersect r which contradicts NIP. This proves the claim.

Hence for t ≥ T

0 (λ), R(λ, t) -α t ≤ L λ 2 (t) -α t = f (λ). (4.104) Let λ 0 ≤ λ 1 < λ 2 , then u λ 1 0 ≤ u λ 2 0 and hence R(λ 1 , t) ≤ R(λ 2 , t
) and for a.e. x, y ± (x, t, u λ 1 0 ) ≥ y ± (x, t, u λ 2 0 ). Suppose for some 0

< t 0 < T, R = R(λ 1 , t 0 ) = R(λ 2 , t 0 ). From (4.99) at x = R, we have α ≤ y -(R, t 0 , u λ 2 0 ) ≤ y -(R, t 0 , u λ 1 0 ) < β, and u λ 1 (R+, t 0 ) = ū(R+, t 0 ) = u λ 2 (R+, t 0 ). Hence from (4.23) y + (R, t 0 , u λ 1 0 ) = y + (R, t 0 , u λ 2 0 ). Let for i = 1, 2, y = y + (R, t 0 , u λ i 0 ), y i = y -(R, t 0 , u λ i 0 ) and V λ i 0 (y) = y β u λ i 0 (θ)dθ, then V λ 1 0 (y) = V λ 2 0 (y) for y ≥ β. Hence from (4.4) we have λ 2 (y 2 -β) + t 0 f * R -y 2 t 0 = V λ 2 0 (y 2 ) + tf * R -y 2 t 0 = V λ 2 0 (y) + tf * R -y t 0 = V λ 1 0 (y) + tf * R -y t 0 = V λ 1 0 (y 1 ) + tf * R -y 1 t 0 = λ 1 (y 1 -β) + t 0 f * R -y 1 t 0 . Let f (θ i ) = R-y i t 0 , then R = f (θ i )t 0 + y i and since y 2 ≤ y 1 implies that f (θ 2 ) ≥ f (θ 1 ), hence θ 2 ≥ θ 1 .
Substituting this in the above expression and using f

* (f (p)) = pf (p) -f (p) to obtain (R -t 0 f (θ 2 ))λ 2 + t 0 f * (f (θ 2 )) = (R -t 0 f (θ 1 ))λ 1 + t 0 f * (f (θ 1 )) + β(λ 2 -λ 1 ) R = β + t 0 (λ 2 -λ 1 ) [(λ 2 -θ 2 )f (θ 2 ) -(λ 1 -θ 1 )f (θ 1 )] + f (θ 2 ) -f (θ 1 ) λ 2 -λ 1 t 0 .
That is for i = 1, 2, Since V λ i 0 is differentiable for y ∈ (α, β) and hence from (4.13) , (4.23), we have f (λ i ) = R-y i t 0 . Therefore from (4.105) and from strict convexity of f we have

y i = β + t 0 (λ 2 -λ 1 ) [(λ 2 -θ 2 )f (θ 2 ) -(λ 1 -θ 1 )f (θ 1 )] + t 0 f (θ 2 ) -f (θ 1 ) λ 2 -λ 1 -f (θ i ) .
y 1 = β + t 0 f (λ 2 ) -f (λ 1 ) λ 2 -λ 1 -f (λ 1 ) > β.
which is a contradiction. Case(iii): Let α = y 2 < y 1 .

Since

y 1 > α, hence f (θ 1 ) = R-y 1 t 0 = f (λ 1 ) and R-α t 0 = f (θ 2 ). From (4.104), f (θ 2 ) ≤ f (λ 2 ) and hence λ 2 ≥ θ 2 . Since λ 1 ≥ λ 0 and hence f (θ 2 ) ≥ f (λ 1 ) > 0.
(ii). For 0 < t < T 1 (µ), t → R(µ, t) is a strictly decreasing function of t.

Interaction of R ± with initial data:

We study the interaction of R ± with varying parameters in the data. For this first we need the following elementary results.

Let B 1 , B 2 , µ 0 < λ 0 , L ∈ C(IR + × [λ 0 , ∞)), R ∈ C(IR + × (-∞, µ 0 ]
) be given and for λ ≥ λ 0 , µ ≤ µ 0 , L and R satisfies the following hypothesis, (H 1 ). λ → L(t, λ), µ → R(t, µ) are strictly increasing functions such that for all

λ ≥ λ 0 , µ ≤ µ 0 , L(0, λ) = B 1 , R(0, µ) = B 2 , ( 4.110) 
and for any 0 < α < β,

lim λ→∞ inf t∈[α,β] L(t, λ) = ∞, lim µ→-∞ sup t∈[α,β] R(t, µ) = -∞. (4.111) (H 2 ). For λ ≥ λ 0 , µ ≤ µ 0 , t → L(t, λ)
, is a strictly increasing function and t → R(t, µ) is a strictly decreasing function.

Let I = [λ 0 , ∞) × (-∞, µ 0 ] and define x 0 (t), y 0 (t), λ(x, t), µ(y, t), δ(λ, µ), c(λ, µ) as follows:

x 0 (t) = L(t, λ 0 ), y 0 (t) = R(t, µ 0 ) (4.112) L(t, λ(x, t)) = x, R(t, µ(y, t)) = y (4.113) L(δ(λ, µ), λ) = R(δ(λ, µ), µ) = c(λ, µ), ( 4.114) 
then we have the following LEMMA 4.9 1. x 0 is a strictly increasing continuous and y 0 is a strictly decreasing function satisfying (x 0 (0), y 0 (0)) = (B 1 , B 2 ). (4.115)

2. For x ≥ x 0 (t), y ≤ y 0 (t), (λ(x, t), µ(y, t)) ∈ I, x → λ(x, t), t → µ(y, t) are strictly increasing functions and t → λ(x, t), y → µ(y, t) are strictly decreasing continuous functions in (0, ∞). Also for x > B 1 , y < B 2 lim t→0 (λ(x, t), µ(y, t)) = (∞, -∞). 1. Follows from (H 1 ). 

u k 0 (x) = θ f if x < x k , λ if x > x k .
Then the solution u and u k with respective initial datas u 0 and u k 0 are given by

u(x, t) =    θ f if x < 0, t > 0, (f ) -1 ( x t ) if 0 < x ≤ f (λ)t, λ if x > f (λ)t,
then R -(t, 0, u 0 ) = 0.

u k (x, t) =    θ f if x < x k , t > 0, (f ) -1 ( x-x k t ) if x k < x < f (λ)t + x k , λ if x > f (λ)t + x k , then R -(t, 0, u k 0 ) = f (λ)t, IR |u 0 (x) -u k 0 (x)|dx = 0 x k (λ -θ f ) = (λ -θ f )|x k | → 0 as k → ∞.
But lim k→∞ R -(t, 0, u k 0 ) = f (λ)t > 0 = R -(t, 0, u 0 ). 

u 0 (x) = a 2 if x > B 2 a 1 if x < B 1 ,
where a 2 < θ f and θ f is the point of minima of f.

Suppose there exists a solution (u, ū0 ) to problem (I), then by Lax-Oleinik formula we have

ū0 (x) = θ f if x ∈ (B 1 , B 2 ) u(x, t) = θ f if (x, t) ∈ (B 1 , B 2 ) × (0, T ).
On the otherhand, since a 2 < θ f there is a shock wave entering the region (B 1 , B 2 ) × (0, T ) at (B 2 , 0) which is a contradiction because the solution u = θ f in this region. (2). From (1.23) , g(x) = m if and only if δ ≤ ρ(x) ≤ T and hence δ ≤ x-T f (m) ≤ T. This implies (5.2). Similarly (5.3) follows from (1.25) and (1.26). This proves the theorem.

(3). Follows similarly.

Controllability on the boundary

As mentioned in the introduction problems (I) and (III) deal with the controllability at time t = T. What about the controllability at x = A 2 . More precisely Problem (IV): Let T > 0 and A 1 < A 2 . Given u 0 ∈ L ∞ (IR), g ∈ L ∞ (0, T ) find ū0 ∈ L ∞ ((A 1 , A 2 )) and u a solution of (1.2) in Ω = (-∞, A 2 ) × (0, T ) such that f (u(A 2 , t)) = g(t) if 0 < t ≤ T, (5. A 2 -ρ(t) t ≤ ∧, (5.6) and f (g(t)) = A 2 -ρ(t) t . Then there exist (u, ū0 ) satisfying (5.4) and (5.5).

Proof. Proof follows on the same lines as in theorem (1.2) and hence only sketch the main idea of the proof.

Step 1. This step is analogous to Lemma 2.1. Frist assume that ρ is discrete. That is there exist a partition 0 = t n ≤ t n-1 ≤ . . . ≤ t 0 = T and B = x 0 < x 1 < . . . < x n = A 2 . Define a i and b i by

f (a i ) = A 2 -x i t i , f (b i ) = A 2 -x i-1 t i s i (t) = A 2 + (t -t i ) f (a i ) -f (b i ) a i -b i f (a i ) = A 2 -x i t i > A 2 -x i-1 t i = f (b i ). Then f (b i ) = A 2 -x i-1 t i < A 2 -x i-1 t i-1 = f (a i-1 ).
Hence a i > b i , a i+1 > b i and from convexity. f (a i ) > f (a i )-f (b i ) a i -b i > f (b i ). Therefore

x i = A 2 -tf (a i ) < A 2 -t f (a i )-f (b i ) a i -b i = s i (0) < A 2 -tf (b i ) = x i+1 .
Hence for 0 ≤ t ≤ T, l i (t) ≤ s i (t) ≤ m i (t),

where l i (t) = x i + f (a i )t, m i (t) = x i-1 + f (b i )t. Define ρ n and g n by

ρ n (t) = x 0 χ [T,t 1 ] + n i=1 x i χ (t i ,t i+1 ] (t) f (g n (t)) = A 2 -ρn(t) t .
Define u n in Ω = (-∞, A 2 ) × (0, T ) by

f (u n (x, t)) =        a n if x ≤ l n (t), a i if l i (t) ≤ x < s i (t), b i if s i (t) < x ≤ m i (t), (f ) -1 ( A 2 -x i t ) if m i (t) ≤ x ≤ l i-1 (t),
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 11 Analysis of Discretization and Convergence: Let ρ : [A, C] → [δ, T ] be a non increasing right continuous function. Then it follows that {x : ρ

(4. 1 )

 1 Controlled Curves: Let x ∈ IR, 0 ≤ s < t and define the controlled curves Γ (x, s, t) by Γ (x, s, t) = {r : [s, t] → IR; r is linear and r(t) = x}, (4.2)

(4. 14 )

 14 (b). L 1 loc contractivity: Let c = max( u 0 ∞ , w 0 ∞ ) and I = [-c, c]. Then there exist a M > 0, depending on Lipschitz constant f restricted to I such that for all t > 0, a < b, b a |u(x, t) -w(x, t)|dx ≤ b+M t a-M t |u 0 (x) -w 0 (x)|dx. (4.15)

  .42) Hence from (4.37) , (4.41) and (4.42), for x ∈ D, y ± (x) = lim k→∞ y k ± (x) = y ± (x, t, u 0 ). (4.43)

. 47 )

 47 Proof.[START_REF] Adimurthi | Finer analysis of characteristic curves, and its applications to shock profile, exact and optimal controllability of conservation law with strict convex fluxes[END_REF]. Let Ω ε = {x; d(x, Ω c ) > ε}. Then for x ∈ Ω, there exists an ε 0 > 0, such that x ∈ Ω ε , for all ε < ε 0 . Hence x -εy ∈ Ω, for a.e y ∈ B(1) a.e inf ξ∈Ω u 0 (ξ) ≤ u 0 (x -εy) ≤ sup ξ∈Ω u 0 (ξ).

From this and ( 4 .

 4 85) , (4.81) follows. Let T 0 (λ) < t ≤ T, then from superlinearity of f * , (4.82) follows from (4.85), (4.89). Suppose lim λ→∞ T 0 (λ) = 0, and then (4.83) follows from (4.81) , (4.82). Hence assume that lim λ→∞ T 0 (λ) > 0, then if η < T 0 (λ), then(4.83) 

  Let y 2 = y 1 . Then θ 2 = θ 1 and hence from (4.105), β = y 1 < β which is a contradiction. Case (ii): Let α < y 2 < y 1 .

3 .

 3 Let B 1 < B 2 and (λ, µ) ∈ I. Then δ(λ, µ) exist and is a continuous function. Furthermore λ → δ(λ, µ) is a decreasing function and µ → δ(λ, µ) is an increasing function

3 .= B 2 ,

 32 For (λ, µ) ∈ I, t → L(t, λ) ≥ B 1 and is a strictly increasing function and t → R(t, µ) ≤ B 2 is a strictly decreasing function. Hence there exist a unique δ(λ, µ) satisfying (4.114) and B 1 ≤ c(λ, µ) ≤ B 2 and continuity follows from the uniqueness of δ(λ, µ).Let λ 1 < λ 2 and δ(λ 1 , µ) ≤ δ(λ 2 , µ). Then R(δ(λ 1 , µ), µ) = L(δ(λ 1 , µ), λ 1 ) ≤ L(δ(λ 2 , µ), λ 1 ) < L(δ(λ 2 , µ), λ 2 ) = R(δ(λ 2 , µ), µ)and hence δ(λ 2 , µ) < δ(λ 1 , µ) which is a contradiction. Suppose limλ→∞ δ(λ, µ) = δ 0 > 0, then from (4.111), ∞ = lim λ→∞ L(δ(λ, u), λ) = lim δ(λ,µ)→δ 0 R(δ(λ, µ), µ) = R(δ 0 , µ) < ∞,which is a contradiction hence δ 0 similarly for µ → δ(λ, µ). This proves (3) and hence the Lemma.

EXAMPLE 4 . 1 (

 41 Counter Example) : Let α = 0, x k < 0, lim k→∞ x k = 0, λ > θ f and define u 0 , u k 0 by u 0 (x) = θ f if x < 0, λ if x > 0.

EXAMPLE 4 . 2 (

 42 Counter Example) : Let A 1 = B 1 = C 1 , A 2 = B 2 = C 2 , ρ(x) = x for x ∈ (C 1 , C 2 ) and

PROPOSITION 5 . 1 ( 2 . 3 . 2 T

 51232 Controllability of constant states):1. In theorem 1.1, g(x) = m a constant if and only if m satisfiesC 2 -A 2 T ≤ f (m) ≤ C 1 -In theorem 1.2, g(x 0 ) = m a constant if and only m satisfies f (m) In theorem 1.3, g 1 (x) = m 1 , g 2 (x) = m 2 are constants. then g 1 , g 2 is controllable if and only if m 1 , m 2 satisfies f (m 1 ) ≥ C -A 1 T -δ , f (m 2 ) ≤ A 2 -C T -δ . (5.3)Proof.[START_REF] Adimurthi | Finer analysis of characteristic curves, and its applications to shock profile, exact and optimal controllability of conservation law with strict convex fluxes[END_REF].g(x) = m if and only if ρ(x) = x -T f (m) for all x ∈ (C 1 , C 2 ). Hence from (1.22) we have A 1 ≤ ρ(x) ≤ A 2 implies that x-A ≤ f (m) ≤ x-A 1 Tand hence (5.1) holds.

THEOREM 5 . 1 :

 51 u 0 (x) if x < A 1 ū0 (x) if A 1 < x < A 2 .(5.5)Then we have the following58 Let A 1 < B < A 2 , ∧ > 0 and ρ : [0, T ] → [B, A 2] be a non increasing left continuous function such that for all t ∈ [0, T ],

of initial value problem with data taking three values :

  From (4.22) and letting x ↑ R -(t, α, ū0 ) to obtain (4.71). This proves the Lemma. Consider the following initial value problem taking three values. Let a, λ, m ∈ IR, α < β and consider

			t	α, ū0 ), t, ū0 )	.	(4.71)
	x			
	Proof. Since v0 (x) =	ū0 (θ)dθ is differentiable for x < α and hence from (4.13), for
	α			
	a.e, x < α, u(x, t) = ū0 (y + (x, t, ū0 )) = a and	
		f (a) =	x -y + (x, t, ū0 ) t	.
	Analysis			

  2. From (4.111) for t > 0, L(t, •) : [λ 0 , ∞) → [x 0 (t), ∞) is a homeomorphism and hence λ(x, t) exist and x → λ(x, t) is a strictly increasing function. Let t 1 < t 2 and suppose λ(x, t 1 ) ≤ λ(x, t 2 ), thenx = L(t 1 , λ(x, t 1 )) ≤ L(t 1 , λ(x, t 2 )) < L(t 2 , λ(x, t 2 )) = x,which is a contradiction. Hence t → λ(x, t) is a strictly decreasing function.Let (x n , t n ) → (x, t), λ(x n , t n ) → λ, then x = lim n→∞ L(t n , λ(x n , t n )) = L(t, λ),and hence λ = λ(x, t). This proves the continuity of λ(x, t). Suppose as t n → 0, {λ(x, t n )} is bounded. Then for a subsequence still denote by n such that λ(x, , t n ) → λ as n → ∞. Therefore by continuity of L and (4.110)

	B 1 < x = lim

n→∞ L(t n , λ(x, t n )) = L(0, λ) = B 1 ,

which is a contradiction. Hence λ(x, t) → ∞ as t → 0. Similarly for µ(y, t) and this proves (2).

(ii). λ → R(λ, t) is a strictly increasing function. Let T 1 (λ) be the first point of intersection of L 1 (t) and R(t, λ). Then for any fixed T > 0

Let T 0 (λ) be the first point of intersection of L λ 2 (t) and R(λ, t). Then

(4.95)

Proof. Let q 0 be as in (4.62), then for λ > q 0 , from Lemma 4.4 we have for i = 1, 2,

and denote R i (λ, t) = R -(t, β, u i,λ 0 ), T 11 (λ), T 1 (λ), T 21 (λ) the first points of intersection of L 1 (t) with R 1 (λ, t), R(λ, t), R 2 (λ, t) respectively. Since u 1,λ 0 ≤ u λ 0 ≤ u 2,λ 0 , hence from (4.30)

Then from (4.80), it follows that

Next we obtain a bound on u λ (R(λ, t)+, t). For this let ū(x, t) be the solution of (1.2) with initial data ū0 (x) defined by ū0 (x) = min(a, m 1 ) if x < β, u 0 (x) if x > β, then for λ > m, ū0 (x) ≤ u 1,λ 0 (x) ≤ u λ 0 (x) and hence ū(x, t) ≤ u λ (x, t) and R + (t, β, ū0 ) ≤ R(λ, t). Since for y > β, y β ū0 (θ)dθ = y β u λ 0 (θ)dθ and hence from (4.51) we have for x > R(λ, t),

From (4.105), θ 1 = λ 1 and convexity of f we have

which is a contradiction. This proves λ → R(λ, t) is a strictly increasing function for λ ≥ λ 0 and 0 < t ≤ T. This proves the Lemma.

Next we consider the variation from the right, Let u µ be the solution of (1.2) with initial data u µ 0 given by

We state the following Lemma without proof since the proof follows exactly as that of Lemma 4.7.

and denote R(µ, t) = R -(t, α, u µ 0 ). Let T 0 (µ) > 0 be the first point of intersection of R(µ, t) and L µ 2 (t) and T 1 (µ) > T 0 (µ) be the first point of intersection of R(µ, t) and

.108)

Furthermore let T > 0 be fixed, then there exist µ 0 = µ 0 (T, µ 1 ) < µ 1 such that (i). µ → R(µ, t) is a strictly increasing function for 0 < t ≤ T and

This proves the Corollary.

Let T > 0 and

Let u λ 1 and u µ 2 be solutions of (1.2) with respective initial data u λ 0 , u µ 0 given by

(4.120)

(4.121)

From Lemma 4.7 and 4.8 we can choose

and for 0 < t ≤ T, L and R satisfies the hypothesis (H 1 ), (H 2 ) of Lemma 4.9. Let (c(λ, µ), δ(λ, µ)) be the point of intersection of L(t, λ) and R(t, µ) as defined in (4.114). From Corollary 4.1, choose

LEMMA 4.10 With the above notation and let u(x, t, λ, µ) be the solution of (1.2) with initial condition u λ,µ 0 given by

(4.125)

(4.127)

(4.129)

Claim: Let v 1,λ , v 2,µ be the corresponding value functions associated to v 1,λ 0 , v 2,µ 0 defined in (4.4). Then 

and hence for a.e. x, u 1,λ (x, t) = ∂v 1,λ ∂x (x, t) = ∂v 2,µ ∂x (x, t) = u 2,µ (x, t). This proves (4.126). In view of (4.126), RHS of (4.127) is a solution of (1.2) with initial data u λ,µ 0 . Hence from uniqueness of solutions (4.127) follows. This proves the Lemma.

As an immediate consequence of Lemma 4.10 and (4.27), (4.122), (4.123) we have

From (4) of Lemma 4.1 and from (3) of Lemma 4.3, the right hand side tends to zero as k → ∞. Let v λ,µ be the cost function associated to v λ,µ 0 defined in (4.4). For x < S(t, λ, µ), y ± (x, t, u λ,µ 0 ) < B 1 and hence from (4.129), v λ,µ (x, t) = v 1,λ (x, t). Hence u(x, t, λ, µ) = ∂v 1,λ ∂x (x, t) = u 1,λ (x, t). Similarly for x > S(t, λ, µ), u(x, t, λ, µ) = u 2,µ (x, t), this proves (4.127) and hence the Lemma.

LEMMA 4.11 Let λ ≥ λ 1 , µ ≤ µ 1 and δ(λ, µ) < t 0 ≤ T, then (i). Suppose l 1 (t 0 ) = S(t 0 , λ, µ). Then for all t 0 < t < T, S(t, λ, µ) < l 1 (t).

(4.133) 

) and hence from (4.13), for a.e. x ∈ (x 0 , S(t, λ, µ))

which is a contradiction since λ > a 1 . Hence y + (x, t, u λ,µ 0 ) ≤ A 1 for all x ∈ (x 0 , S(t, λ, µ

< l 1 (θ) be the characteristic at (x, t), then from (c) of (3) in Theorem 2.1, γ x is also a characteristic at (γ x (s), s) for 0 < s < t and

) which is a contradiction. T his proves the claim.

Let t 0 > δ(λ, µ) such that l(t 0 ) = S(t 0 , λ, µ). From (4.132) and Lemma 4.8 for x > S(t 0 , λ, µ), a 2 = max(µ, a 2 ) ≥ u(x, t 0 , λ, µ). (4.139) Let t 0 < t < T and w be the solution of (1.2) with initial data w 0 at t 0 is given by

55

Then w admits a shock at l 1 (t 0 ) and for t > t 0 is given by

since f is strictly convex and f (a 1 ) > 0 > f (a 2 ). From (4.138) and (4.139), w 0 (x) ≥

u(x, t 0 , λ, µ) and therefore from (4.29) and (4.30) we have for t > t 0 , l 1 (t) > η(t) ≥ S(t, λ, µ). This proves (4.133).

From (3) of Lemma 2.4, (λ, µ) → S(T, λ, µ) is a continuous function for λ ≥ λ 1 and µ ≤ µ 1 . From (4.94), choose a λ1 > λ 1 such that S(T, λ1 , µ 1 ) > T and from (4.109) choose μ1 < µ 1 such that S(T, λ 1 , μ1 ) < T. (4.136). This proves the Lemma.

Proof of Lemma 2.3. In Lemma 4.7, take A = α, B = β, l(t) = L 1 (t). Then from (4.94), choose a λ 0 large such that for all 0 < t ≤ T and for all λ ≥ λ 0 , l(t) < R(λ, t). Then (2.23) follows from (4.95) and from Rankine-Hugoniot condition across l(t). Similarly (2.24) follows from Lemma 4.8 and (4.107) and (4.108).

Proof of Lemma 2.4

This follows from Lemma 4.11 and (4.136) and Rankine-Hugoniot conditions across l 1 (t) and l 2 (t). then u n is a solution of (1.2) in Ω satisfying

Let ūn,0 (x) = u n (x, 0) for B ≤ x ≤ A 2 , then as in the proof of Lemma 2.1 and from (5.6), for a subsequence u n → ũ in L 1 ioc (Ω), u n (•, 0) → ũ0 in L 1 ((B, A 2 )), ρ n → ρ a. e. such that u satisfies (1.2) and for a.e. t,

)

(5.9)

Step 2. From Lemma 4.8 there exists a µ and a solution u 1 of (1.2) in Ω satisfying

Then (u, ū0 ) is the required solution to problem (IV).

Controllability of initial and boundary values:

All three problems deals with finding either initial data or purely boundary data. In fact one can combine both and is as follows.

(ii) ρ 2 is a non decreasing function.

Define g 1 and g 2 by

Then the problem is to find b ∈ L ∞ (0, T ) and ū0 ∈ L ∞ (0, A) such that a solution u of (1.2) in IR × (0, T ) satisfying the following initial boundary data

and

(5.13) THEOREM 5.2 Let λ > 0, 0 < A 1 < A be given. Let ρ 1 and ρ 2 , g 1 and g 2 be as above and satisfying

then problem (V) admits a solution.

Idea of the proof. First get a free region by choosing λ large such that the solution u λ of (1.2) in IR × (0, ∞) satisfying for 0 < t < T,

Existence of u λ is guaranteed from Lemma 4.7. Let f (a 0 ) = C 1 T and for 0 < t < T define the free region F 1 and F 2 by F 1 = {(x, t) : 0 < x < l 0 (t) = tf (a 0 )}, F 2 = {(x, t) : l 0 (t) < x < l 1 (t) = A 1 + tf (a 1 )}.

Since 0 ≤ ρ 1 (x) ≤ T for x ∈ (0, C 1 ) and satisfying (5.14), therefore from Lemma 4.1, there exist a solution u 1 of (1.2) in F 1 and b ∈ L ∞ (0, T ) such that u 1 (0, t) = b(t) u 1 (x, T ) = g 1 (x) if x ∈ (0, C 1 ) u 1 (l 0 (t)-, t) = a 0 . 61 From Lemma 4.2, there exist a solution u 2 of (1.2) in F 2 and ũ0 ∈ L ∞ (0, A 1 ) such that u 2 (x, T ) = g 2 (x) if x ∈ (C 1 , C 2 ) u 2 (x, 0) = ũ0 (x) if x ∈ (0, A 1 ) u 2 (l 0 (t)+, t) = a 0 , u 2 (l 1 (t)-, t) = a 1 .

From RH conditions, glue u 1 , u 2 , u λ to a single solution u of (1.2) in 0, ∞)×(0, T ) by u(x, t) =    u 1 (x, t) if (x, t) ∈ F 1 , u 2 (x, t) if (x, t) ∈ F 2 , u λ (x, t) if x > l 1 (t), and

Then (u, u(x, 0), b) is the required solution to problem (V) The same method allows to generalize problem III also.