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ARITHMETIC PROPERTIES OF APERY-LIKE NUMBERS

E. DELAYGUE

ABSTRACT. We provide lower bounds for p-adic valuations of multisums of factorial ra-
tios which satisfy an Apéry-like recurrence relation: these include Apéry, Domb, Franel
numbers, the numbers of abelian squares over a finite alphabet, and constant terms of
powers of certain Laurent polynomials. In particular, we prove Beukers’ conjectures on
the p-adic valuation of Apéry numbers. Furthermore, we give an effective criterion for a
sequence of factorial ratios to satisfy the p-Lucas property for almost all primes p.

1. INTRODUCTION

1.1. Classical results of Lucas and Kummer. It is a well-known result of Lucas [20]
that, for all nonnegative integers m,n and all primes p, we have

(TZ) - ﬁ (ZZ) mod p, (1.1)

1=0

where m = mqo+myp+---+mp* and n = ng +nip+ - - - +nyp* are the base p expansions
of m and n.

In particular, a prime p divides the binomial (7:) if, and only if there is 0 < ¢ < k such
that m; < n;. Precisely, Kummer proved in [17] that, for all natural integers m > n, the
p-adic valuation (') of the binomial (7;:) is the number of carries which occur when n is
added to m — n in base p. As a consequence, we have

(m) € p*Z, where o=# {O <i<k: (ml> = 0} ) (1.2)
n n;

In this article, we show that many sequences of Apéry-like numbers satisfy congruences
similar to (1.1), that is, for all nonnegative integers n and all primes p, we have

k
A(n) = HA(n,) mod p,

1=0
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IThe p-adic valuation of an integer m is the maximum integer 3 such that p? divides m.
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where n = ng +nip+ - - - + np" is the base p expansion of n. Furthermore, we prove that
an analogue of (1.2) holds for those numbers, that is

A(n) € p*Z, where a = #{0<i <k : A(n;) =0 mod p},

which proves Beukers’ conjectures on the p-adic valuation of Apéry numbers.

1.2. Beukers’ conjectures on Apéry numbers. For all natural integers n, we set

-5 oo £ )

k=0 k=0

Those sequences were used in 1979 by Apéry in his proofs of the irrationality of ((3)
and ((2) (see [2]). In the 1980’s, several congruences satisfied by those sequences were
demonstrated (see for example [4], [5], [10], [16], [22]). In particular, Gessel proved in [16]
that A, satisfies the p-Lucas property for all prime numbers p, that is, for any prime p, all
vin {0,...,p — 1} and all natural integers n, we have

Aj(v+np) = Aj(v)A1(n) mod p.
Thereby, if n = ng 4+ nip + - -- + nyp? is the base p expansion of n, then we obtain
Ai(n) = Ai(no) -+~ Ar(ny)  mod p. (1.3)

In particular, p divides A;(n) if and only if there exists k in {0, ..., N} such that p divides
Aj(nyg). Beukers stated in [3]| two conjectures, when p = 5 or 11, which generalize this prop-
erty (%). Before stating these conjectures, we observe that the set of all v in {0,...,4} (re-
spectively v in {0, ..., 10}) satisfying A;(v) =0 mod 5 (respectively A;(v) =0 mod 11)
is {1, 3} (respectively {5}).

Conjecture A (Beukers, [3]). Let n be a natural integer whose base 5 expansion is n =
no +m5+ -+ nydY. Let a be the number of k in {0,..., N} such that ny = 1 or 3.
Then 5% divides Aq(n).

Conjecture B (Beukers, [3]|). Let n be a natural integer whose base 11 expansion is n =
no+mn1l+ - +ny11Y. Let a be the number of k in {0,..., N} such that ny = 5. Then
11% divides Ay(n).

Similarly, Sequence A, satisfies the p-Lucas property for all primes p. Furthermore,
Beukers and Stienstra proved in [6] that, if p =3 mod 4, then A (’%1) =0 mod p, and
Beukers stated in [3] the following conjecture.

Conjecture C. Let p be a prime number satisfying p = 3 mod 4. Let n be a natural
integer whose base p expansion is n = ng+nip +---+nyp~. Let a be the number of k in

{0,...,N} such that ny, = B2 Then p® divides As(n).

2If pis 2, 3 or 7, then for all v in {0,...,p — 1}, A;(v) is coprime to p so that, according to (1.3), for
all natural integers n, A;(n) is coprime to p.
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Conjectures A-C have been extended to generalized Apéry numbers and any prime p
by Deutsch and Sagan in [13, Conjecture 5.13] but this conjecture is false for at least one
generalization of Apéry numbers. Indeed, a counterexample is given by

n 2 3
n n—+k
A =
-2 (")
k=0
since A(1) =9 =0 mod 3 but A(4) = A(1 + 3) = 1152501 is not divisible by 3.

The main aim of this article is to prove Theorem 1, stated in Section 1.4, which demon-
strates and generalizes Conjectures A-C. First, we introduce some notations which we use
throughout this article.

1.3. Notations. Let d be a positive integer. If m = (my,...,my) and n = (nq,...,ng)
belong to R? and if A € R and k € {1,...,d}, then we write:

m-+n= (m1+n17"'7md+nd);

m-n=mn;+ -+ mgng;

mA = (mqA, ..., mgA);

lm| =my + -+ my;

m®*) = mi;

m > n if, and only if, for all 7 in {1,...,d}, we have m; > n;.

Furthermore, we set 0 = (0,...,0) € N4, 1 = (1,...,1) € N% and we write 1, for the vector
in N7, all of whose coordinates equal zero except the k-th which is 1. If p is a prime number
and n is nonzero, then we say that n = ny +n;p + --- +nyp" is the base p expansion of
n if, for all 4 in {0,..., N}, we have n; € {0,...,p — 1}¢, and ny # 0.

For all primes p, we write Z, for the ring of p-adic integers. If A = (A(n))neNd is a
Z,-valued family, then we say that A satisfies the p-Lucas property if and only if, for all

vectors v in {0,...,p — 1}¢ and n in N%, we have

A(v+np) = A(v)A(n) mod pZ,. (1.4)
We write f4 for the generating series of A defined by fa(z) := > e A(n)z”, where, if
z = (21,...,24) is a vector of variables and n = (ny,...,ng) € N4 z" denotes 21" - - - 2]}°.

In addition, we write Z,(A) for the set of all vectors v in {0,...,p — 1} such that
A(v) € pZ,. For every nonzero vector n in N? whose base p expansion is n = ng + nip +
-+ nyp", we write a,(A4,n) for the number of k in {0,..., N} such that n, € Z,(A),
and we set a,(A,0) = 0. Thereby, to prove Conjectures A-C, it is enough to show that
Ai(n) € p*»AiNZ withi=1,p=>5or 1l and i =2, p=3 mod 4.

Given tuples of vectors in N, e = (ey,...,e,) and f = (f1,...,f,), we write [e| = > | e
and, for all vectors n in N? and all natural integers m, we set

Q. +(n) :% and ©.p(m)= Y Q.fn).

neN< |n|=m



Let S :={1 <i<wu : e >1}. Forevery positive integer r, we say that e is r-admissible
if
1 <i1<wu:1 ;> >,
#8+1rgnklgd#{1 <i<u:i1¢S,e>dl >

For all primes p, we write 3; for the set of all functions g : N — Z, such that, for
all natural integers K, there exists a sequence (P )r>0 of polynomial functions with
coefficients in Z, which converges pointwise to g on {0, ..., K}?. For all tuples e and f of
vectors in N¢, all g € Sg and all natural integers m, we set

&l (m):= ) Qer(n)g(n).

neNd |n|=m

Finally, we set 6 := zd% and we say that a differential operator £ in Z,|z, 0] is of type I
if there is a natural integer ¢ such that:

o L =Py(0) + 2P, (0) + -+ 29P,(0) with P,(X) € Z,[X] for 0 < k < ¢
o for all kin {2,..., ¢}, we have P,(X) € [['21(X +1)2Z,[X].
We say that a differential operator £ in Z,[z, 0] is of type II if
o L =Py(0)+ zP1(0) + 22 Py(0) with Py(X) € Z,[X] for 0 < k < 2;
o Py(X) € (X + 1)Z,[X].

1.4. Main results. The main result of this article is the following.

Theorem 1. Let e and f = (1y,,...,13,) be two disjoint tuples of vectors in N¢ such that
le] = |f|, for alli in {1,...,v}, k; is in {1,...,d}, and e is 2-admissible. Let p be a fized
prime. Assume that fs, , is annihilated by a differential operator L € Z,[z,0] such that at
least one of the following conditions holds:

o L s of type L.

o Lis of type Il and p—1 € Z,(S, y).

Then, for all natural integers n and all functions g in 32, we have
657]"(77,) c pa’p(Ge,fvn)Z and 6g’f c pOép(Ge’fﬂl)—lZ’p.

In Section 1.6, we show that Theorem 1 applies to many classical sequences. In partic-
ular, Theorem 1 implies Conjectures A-C. Indeed, we have A; = &,, 5, and Ay = &, 5,
with d = 2,

er=((2,1),(2,1)) and f1 = ((1,0),(1,0),(1,0),(1,0),(0,1),(0,1)),
and

er=((2,1),(1,1)) and fo :4((1,0), (1,0),(1,0),(0,1), (0,1)).



Furthermore, it is well known that f4,, respectively f4,, is annihilated by the differential
operator L, respectively Lo, defined by
L1 =0 — 2(346° +- 5107 + 270 +5) + 2*(0 + 1)°
and
Lo=0%—2z(116% + 1160 + 3) — 2%(6 + 1)°.
Since £, and L, are of type I for all primes p, the conditions of Theorem 1 are satisfied by

Aj and As, and Conjectures A-C hold. In addition, for all primes p and all natural integers
n and «a, we obtain that

n 2 2 n 2
n n+k n n+k
E e ap(Al,n)—lz d E e ap(Ag,n)—1Z.

We provide a similar result which applies to the constant terms of powers of certain
Laurent polynomials. Consider a Laurent polynomial

k
A(x) = Z ax® € Ly, ..., r1],
i=1

where a; € Z¢ and a; # 0 for 4 in {1,...,k}. Recall that the Newton polyhedron of A is
the convex hull of {ay,...,a;} in R%. Hence we have the following result.

Theorem 2. Let p be a fived prime. Let A(x) € Zy[x¥, ..., 23] be a Laurent polynomial,
and consider the sequence of the constant terms of powers of A defined, for all natural
integers n, by
A(n) == [Ax)"],.
Assume that the Newton polyhedron of A contains the origin as its only interior integral
point, and that fa is annihilated by a differential operator L in Zy[z, 0] such that at least
one of the following conditions holds:
o L is of type 1.
o L is of type Il and p — 1 € Z,(A).
Then, for all natural integers n, we have
A(n) € pO‘P(A’")Zp.

For example, Theorem 2 applies to Apéry numbers A; thanks to the following formula
of Lairez [18]:

) K(l 4 ) (yz 42+ Z);i”)(w +a +y))"} "

By a result of Samol and van Straten [23], if A(x) € Z,[zT, ..., 23] contains the origin as
its only interior integral point, then ([A(X)”]O)n>0 satisfies the p-Lucas property, which is
essential for the proof of Theorem 2. Likewise, the proof of Theorem 1 rests on the fact that

S., s satisfies the p-Lucas property when |e| = |f], e is 2-admissible and f = (14, ..., 14,).
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Since those results deal with multisums of factorial ratios, it seems natural to study similar
arithmetic properties for simpler numbers such as families of factorial ratios. To that
purpose, we prove Theorem 3 below which gives an effective criterion for Q. ¢ to satisfy
the p-Lucas property for almost all primes p (3). Furthermore, Theorem 3 shows that
if A := Q. satisfies the p-Lucas property for almost all primes p, then, for all natural
integers n and all primes p, we have A(n) € p*»A"Z,

To state this result, we introduce some additional notations. For all tuples e and f of
vectors in N, we write A,  for Landau’s function defined, for all x in R?, by

Aep(x):=> le;-x| =Y |fi-x] € Z,
i=1 i=1
where | -] denotes the floor function. Therefore, according to Landau’s criterion [19] and a
precision of the author [11]|, we have the following dichotomy.

e If, for all x in [0, 1]¢, we have A, ;(x) > 0, then Q. ; is a family of integers;
e if there exists x in [0, 1]? such that A, ;(x) < —1, then there are only finitely many
primes p such that Q. ; is a family of p-adic integers.

In the rest of the article, we write D, ; for the semi-algebraic set of all x in [0, 1)¢ such
that there exists a component d of e or f satisfying d -x > 1. Observe that A, ; vanishes
on the nonempty set [0,1)4\ D, ;.

Theorem 3. Let e and [ be disjoint tuples of vectors in N% such that Q. is a family of
integers. Then we have the following dichotomy.

el = and if, for all x in D, s, we have A, s(x) > 1, then for all primes p,
1) [ d i, Ilx in D,y have A,y > 1, th Il pre

Q. ¢ satisfies the p-Lucas property;

if |e or if there exists x in D, ; such that A, ¢(x) = 0, then there are on
2) i f th st n De ¢ h that A. s 0, then th ly

finitely many primes p such that Q. satisfies the p-Lucas property.

Furthermore, if Q. satisfies the p-Lucas property for all primes p, then, for all n in N
and every prime p, we have

Q. r(n) € pr(QerZ,

Remark. Theorem 3 implies that Q. s satisfies the p-Lucas property for all primes p if and
only if all Taylor coefficients at the origin of the associated mirror maps 2. rx, 1 <k < d,
are integers (see Theorems 1 and 3 in [11]). Indeed, if A, ; is nonnegative on [0, 1] and if
le| # | f|, then there exists k in {1,...,d} such that |e|®) > |f|*).

Coster proved in 9] similar results to Theorems 1-3 for the coefficients of certain algebraic
power series. Namely, given a prime p > 3, integers aq,...,a,_1, and a sequence A such
that

falz) =0+az+---+ ap,lzpfl)ﬁ’

3Throughout this article, we say that an assertion A, is true for almost all primes p if there exists a
constant C' € N such that A, holds for all primes p > C.
6



Coster proved that, for all natural integers n, we have

() = | R

1.5. Auxiliary results. The proof of Theorem 1 rests on three results which may be
useful to study other sequences.

Proposition 1. Let p be a fized prime and A a Z,-valued sequence satisfying the p-Lucas
property with A(0) in Z5. Let 2 be the Z,-module spanned by A. Assume that

(a) there exists a set B of Zy-valued sequences with A C B such that, for all B in B,
allv in{0,...,p—1} and all positive integers n, there exist A" in 2 and a sequence
(Bk)k>0, Bi in B, such that

B(v+np) = A'(n) + Y p*' B(n — k);
k=0

(b) fa(z) is annihilated by a differential operator L in Zy|z, 0] such that at least one of
the following conditions holds:
— L 1is of type L
— L is of type Il and p— 1 € Z,(A).

Then, for all B in B and all natural integers n, we have
A(n) € p>»WW7Z, and B(n) € pA-17,.

In Proposition 1 and throughout this article, if (A(n)),>o is a sequence taking its values
in Z or Z,, then, for all negative integers n, we set A(n) := 0. Therefore, to prove
Theorem 1, it suffices to show that &, ; satisfies the p-Lucas property and Condition (a)
of Proposition 1 with B = {&? ; : g € 57}, To that purpose, we shall prove the following
results.

Proposition 2. Let e and f be disjoint tuples of vectors in N¢ such that le| = |f| and,
for allx in D, s, A f(x) > 1. Assume that e is 1-admissible. Then, &, ; is integer-valued
and satisfies the p-Lucas property for all primes p.

Proposition 3. Let p be a fized prime. We write I', for the p-adic Gamma function.
Then, there exists a function g in 312) such that, for all natural integers n and m, we have

r, ( (m + n)p)
L'y (mp)L'y(np)

1.6. Application of Theorem 1. By applying Theorem 1, we obtain similar results to

Conjectures A-C for numbers satisfying Apéry-like recurrence relations which we list below.

Characters in brackets in the last column of the following table form the sequence number
7

=1+ g(m,n)p.



in the Online Encyclopedia of Integer Sequences [25].

n1!4n2!4

Sequence Qc.f(n1,n2) L Reference
NRANLY (@ +na)? 1, (7)] | Apéry numbers (A005259)
2 \k) \ & 1t ingl? M pery Tmbers
n 2
k 2 ! !
S (7 i (2n1 + ”2'; (”'12 12! | 196, D] | Apéry numbers (A005258)
pr k k ni=na!
2n\ "2 (n1 + na)1? tvpe I Central binomial
n) = \k 120,12 ybe coefficients (A000984)
n 3 '3
" (4 m2)t” [26, A] | Franel numbers (A000172)
k n1!3n2!3
k=0
n 4 4
n (n1 + n2)!
—_— 14],|1 A0052
(+) utn) .25 (A005260)
k=0
"L /n\ (2K [2(n — k) (n1 4+ n2)!(2n1)!(2n2)!
1, (d A081
= <k><k>< n—k ) PNERNE 1, ()] (A081085)
n 2 12 | Number of abelian squares
Z <n> <2k> (my + Tﬁ) '(22721). [26, C] | of length 2n over an alphabet
im0 \F k e with 3 letters (A002893)
n 2
n 2k 2(n — k) (m + ng)'2(2n1)'(2n2)'
2 <k> < /<:> < ok STT] [1, ()] | Domb numbers (A002895)
L2\ 2(n — k) (2n1)12(2n2)12
—_— 1 A036917
k:o<k><n—k> 1. (3) (A036017)

All differential operators listed in the above table are of type I for all primes p, except
the one associated with Az(n) :=>"7_, (2)4 which reads

Ls5=0%—22(20 +1)(36> + 30 + 1) — 2%4(0 + 1)(460 + 5)(40 + 3).

Hence L5 is of type II for all primes p. By a result of Calkin [8, Proposition 3|, for all
primes p, we have As;(p — 1) = 0 mod p, i.e. p—1isin Z,(A;). Thus we can apply

Theorem 1 to As.

Observe that the generating function of the central binomial coefficients is annihilated
by the differential operator £ = 6 — z(46 + 2) which is of type I for all primes p.
According to the recurrence relation found by Almkvist and Zudilin (see Case (d) in [1]),

Ag(n) =31, (1) (35 (9

Ln/2]

Auln) = 3 4 (52) (2:)

8
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Furthermore, according to [24], Domb numbers Ag(n) = >, _, (2)2(2:) (2(:::)) are also

the numbers of abelian squares of length 2n over an alphabet with 4 letters.

Now we consider the numbers C;(n) of abelian squares of length 2n over an alphabet
with ¢ letters which, for all positive integers i > 2, satisfy (see [24])

ki+-+ki=n
k1,...,ki €N

According to [7], C;(n) is also the 2n-th moment of the distance to the origin after i steps
traveled by a walk in the plane with unit steps in random directions.

To apply Theorem 1 to Cj, it suffices to show that fo, is annihilated by a differential
operator of type I for all primes p. Indeed, by Proposition 1 and Theorem 2 in [7], for all
J > 2, Cj(n) satisfies the recurrence relation of order [j/2] with polynomial coefficients of
degree j — 1:

W) + (njl S T—en)G+1—a) (%)%_ ) Cj(n—i) =0,

i>1 aq,...,04 k=1
(1.5)
where the sum is over all sequences of positive integers aq, ..., q; satisfying a;, < 7 and
apr1 < ar — 2. We consider ¢ > 2 and 7 positive integers aq,...,q; < j satisfying

apr1 < ar — 2. We have

- % n—k ap—1 nj_l i—1 .
1l <n —k+ 1) = | [ —pmor ) (=),

k=1 k=1

with j —a; >0, ax —ag1 > 2 and a; —1 > 0. Then, fo,(2) is annihilated by a differential
operator £ = Py(0) + zPy(0) + - - - + 24P, () with Py(f) = 67! and, for all i > 2,

Pi(0) € i‘[(e +i—k)*Z[0) C ZH(@ + k)?Z[6),

k=1 k=1

so that L is of type I for all primes p, as expected.

1.7. Structure of the article. In Section 2, we use several results of [11] to prove Theo-
rem 3. Section 3 is devoted to the proofs of Theorem 2 and Proposition 1. In particular, we
prove Lemma 1 which points out the role played by differential operators in our proofs. In
Section 4, we prove Theorem 1 by applying Proposition 1 to &, . It is the most technical

part of this article.
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2. PROOF OF THEOREM 3

First, we prove that if |e| = | f|, then, for all primes p, all a in {0,...,p — 1}¢ and all n
in N¢, we have

Qe7f(a+ np) ) Hz . HLez a/p] ( jn)

Qe,f<a>Qe,f(n) H H | f;- a/pJ (1 i ﬂ]_n) <1 +pr). (2.1)

Indeed, we have

Qcr(a)Qesm)  Qef(a)Qes(np) Qeys(n)’
Since |e| = | f|, we can apply [11, Lemma 7| (*) with ¢ = 0, m = n and s = 0 which yields

Q. ;(np)
Q..t(n)

Q.j(atnp) _ Quslatmp) Qo s(np)

c 1+ pZ,.

Furthermore, we have

Qevf(a +np) _ 1 H? 1 Heza(J +e- np)
Qos(@)Qesr(mp) Q@) [[, [155G + £ - 1p)

TSI (1 =)
I TS (1 )
IS L (1e22)
T I (1 )

because, if p does not divide j, then 1+ (e; - np)/j belongs to 1 + pZ,. This finishes the
proof of (2.1).

(14 pZ,),

Now we prove Assertion (1) in Theorem 3. Let p be a fixed prime number. It is well
known that, for all natural integers n, we have

vy(nl) = : L%J .

Thus, for all vectors n in N¢, we have
(0. s(n z B ()

4The proof of this lemma uses a lemma of Lang which contains an error. Fortunately, Lemma 7 remains
true. Details of this correction are presented in [12, Section 2.4].
10



Let fix nin N? and a in {0,...,p—1}¢. Let {-} denote the fractional part function. For any
vector of real numbers x = (z1,...,x4), we set {x} := ({x1},...,{zq}). Since |e| = |f|,

we have
e S (57) 2 2)

because A, ; is nonnegative on [0,1]%. On the one hand, if a/p is in D, s, then both
Q. r(a+mnp) and Q. r(a)Q. r(n) are congruent to 0 modulo p. On the other hand, if a/p
is not in D, y, then, for all d in e or f, we have |d-a/p| = 0 so that (2.1) yields

Qesla+mnp) = Q. s(a)Qer(n) mod pZy,

as expected. This proves Assertion (1) in Theorem 3.

Now we prove Assertion (2) in Theorem 3. If |e| # |f]| then, since A, is nonnegative
on [0, 1]9, there exists k in {1,...,d} such that |e|®) — |f|®) = A, ;(1;) > 1. Thereby, for
almost all primes p, we have

> 1, +1 1
p(Qep(Lr + Lip)) = > Acy <’“—’“p) > A,y (f + 1k) > 1,

7
=1 p
but v, (Qe,f(1x)) = 0 so that Q. y does not satisfy the p-Lucas property.

Throughout the rest of this proof, we assume that |e| = |f|. According to Section 7.3.2
in [11], there exist &k in {1,...,d} and a rational fraction R(X) in Q(X), R(X) # 1, such
that, for all large enough prime numbers p, we can choose a, in {0,...,p — 1}¢ satisfying
Q.,s(ay) € Z), and such that, for all natural integers n, we have (see [11, (7.10)])

Q. r(a, + 1xnp) € R(n) Qe r(ay) Qe s (1xn)(1 + pZy).

We fix a natural integer n satisfying R(n) # 1. For almost all primes p, the numbers R(n),
Q. r(1yn) and Q. ¢(a,) are invertible in Z,, and R(n) # 1 mod pZ,. Thus, we obtain

Qe.r(ay + 1xnp) # Qe () Qe p(1xn) mod pZy,
which finishes the proof of Assertion (2) in Theorem 3.

Now we assume that |e| = |f| and that, for all x in D, ;, we have A, f(x) > 1. Hence,
for every prime p, we have

Z,(Qey)={ve{0,...,p— 1 v/pe Des}-
Furthermore, if v/p belongs to D. s, then, for all positive integers N and all vectors

ag,...,ay_1 in {0,...,p— 1}4, we have

N-1 N
{ao+alp+ +ay_1p +vp } €D,

M <
= pN+1

p
so that, for every m in N¢, n = 77 n;p* with ng € {0,...,p — 1}¢, we have

Qef ZAef ({Zk 0 BkP }) > a,(Qe,p 1),

p*
11



and Theorem 3 is proved.

3. PROOFS OF THEOREM 2 AND PROPOSITION 1

3.1. Induction wvia Apéry-like recurrence relations. In this section, we fix a prime
p. If Ais a Z,-valued sequence, then, for all natural integers r, we write Ua(r) for the
assertion “For all n,i € N, ¢ < r, if a,(A,n) > i, then A(n) € p'Z,”. As a first step, we
shall prove the following result.

Lemma 1. Let A be a Z,-valued sequence satisfying the p-Lucas property with A(0) in Z .
Assume that fa is annihilated by a differential operator L € Zy[z,0] such that at least one
of the following conditions holds:

o L is of type 1.
o L is of type Il and p — 1 € Z,(A).
Let r be a natural integer such that Ua(r) holds. Then, for all ng in Z,(A) and all natural
integers m satisfying a,(A, m) > r, we have
A(ng +mp) € p"Z,.
Proof. Since A satisfies the p-Lucas property, we can assume that r is nonzero. The series

fa(z) is annihilated by a differential operator £ = Py(0) + zPy(0) + - - - + 27P,(0) with
Pr(X) in Zp[X] and Py(Z)) C Z). Thus, for every natural integer n, we have

> Pi(n—k)A(n —k) =0. (3.1)
k=0

We fix a natural integer m satisfying a,(A, m) > r. In particular, since 7 is nonzero and
A(0) is invertible in Z,, we have m > 1. Furthermore, for all v in {0,...,p — 1}, we also
have a,(A,v + mp) > r. According to Us(r), we obtain that, for all v in {0,...,p — 1},
A(v + mp) belongs to p"Z, so that A(v + mp) =: (v, m)p", with S(v,m) € Z,.

By (3.1), for all v in {q,...,p — 1}, we have

O:ZPk(v—k+mp)A(v—k+mp) :prZPk(v—k+mp)6(v—k:,m)

k=0 k=0
q
=p ZPk(v —k)B(v —k,m) mod p"Z,,
k=0

because, for all polynomials P in Z,[X] and all integers a and ¢, we have P(a+ cp) = P(a)
mod pZ,. Thus, for all v in {q,...,p — 1}, we obtain

q
Z Piy(v—Fk)B(v—Fk,m)=0 mod pZ,. (3.2)
k=0

We claim that if v is in {1,...,¢ — 1}, then, for all k in {v +1,...,q}, we have

P.(v+mp—k)A(v +mp — k) € p"t'Z,. (3.3)
12



Indeed, on the one hand, if £ is of type II, then we have ¢ = 2 and P5(X) belongs to
(X + 1)Z,[X] which yields

Py(=1+mp)A(=1+mp) € pA(p — 1+ (m — 1)p)Z,.

Since 0 is not in Z,(A), we have a,(A,m —1) > r — 1 which, together with p—1 € Z,(A),
leads to

ap(A,p—1+(m—1)p) >r.

According to Ua(r), we obtain that pA(p -1+ (m— l)p) is in p"™17Z,, as expected. On
the other hand, if £ is of type I, then for all v in {1,...,;¢—1} and all k in {v+1,...,q},
we have

k-1
Uy (Pe(v+mp — k)) > v, (H(v +mp —k+ z)2> .
i=1
Writing k —v = a+bp with a in {0,...,p—1} and b in N, we obtain k —1 > a+ bp so that
k-1 :
b if a =0;
| —a—b > "
o (illmpﬂ ¢ p)> = {b+1 ifa>1.
Thus, it is enough to prove that

pr=%7, ifa=0;

) 3.4
p %7, ifa>1. (34)

A(v—irmp—k:)e{

We have v+mp—k = —a+ (m —>b)p. If —a+ (m —b)p is negative, then A(v+mp—Fk) =0
and (3.4) holds. If m — b is nonnegative, then we have a,(A,m —b) > r —b. Thus, we
have either a = 0 and a,(A,v+mp —k) >r —0b, or a,m —b > 1 and

ap(Av+mp—k)=o,(Ap—a+(m—-b—1)p) >r—b—1.
Hence Assertion Ua(r) yields

r—b :
/S if a =0;
A —k) e .
(v+mp— k) {p”lbzp ifa> 1.

If a =0, then b > 1 so that (3.4) holds and (3.3) is proved.
13



By (3.3), for all natural integers v satisfying 1 < v < min(q — 1,p — 1), we have

q
0= ZPk(v —k+mp)A(v — k + mp)
k=0

= Z P.(v —k+mp)A(v — k +mp) mod p"t'Z,
k=0

=9 Z Pi.(v —k +mp)B(v —k,m) mod p"*'Z,
k=0

=p Z P.(v—k)B(v —k,m) mod p"t'Z,.
k=0
Thus, for all natural integers v satisfying 1 < v < min(¢ — 1,p — 1), we have

Z Py(v—k)B(v—Fk,m)=0 mod pZ,. (3.5)
k=0

Both sequences (8(v,m))o<p<p—1 and (A(v))o<y<p—1 satisfy Equations (3.2) and (3.5).
Furthermore, for all v in {1,...,p — 1}, Py(v) and A(0) are invertible in Z,. Hence there
exists y(m) in {0,...,p — 1} such that, for all v in {0,...,p — 1}, we have B(v,m) =
A(v)y(m) mod pZ, so that

A(v+mp) = A(v)y(m)p" mod p"Z,.

Since ng is in Z,(A), we obtain that A(ng + mp) belongs to p"™'Z, and Lemma 1 is
proved. 0

3.2. Proof of Theorem 2. Let p be a fixed prime number. For every positive integer n,
we set £(n) := |log,(n)] + 1 the length of the expansion of n to the base p, and £(0) := 1.
For all natural integers nq,...,n,, we set

Ny k- %N, =Ny + n2p€(n1) 4o+ nrpz(nl)-i-u.-i-f(nrfl)’

so that the expansion of n; % --- * n, to the base p is the concatenation of the respective

expansions of ni,...,n,. Then, by a result of Mellit and Vlasenko [21, Lemma 1|, there
exists a Z,-valued sequence (c,),>0 such that, for all positive integers n, we have
A(n) = Z Cny -y and ¢, =0 mod p"™M1Z,. (3.6)

Nnk--*kNpr=n
1<r<t(n), nr>0
For every natural integer r, we write U(r) for the assertion: “For all n,i € N, i < r, if
ay(A,n) >4, then A(n),c, € p'Z,”. To prove Theorem 2, it suffices to show that, for all
natural integers r, Assertion U(r) holds.

First we prove U(1). By Theorem 1 in [21], A satisfies the p-Lucas property. In addition,

if v is in Z,(A), then v is nonzero because A(0) = 1, and by (3.6) we have ¢, = A(v) € pZ,.
14



Now, if a natural integer n satisfies £(n) = 2 and «a,(A,n) > 1, then Equation (3.6) yields
A(n) = ¢, mod pZ,, so that ¢, is in pZ,. Hence, by induction on ¢(n), we obtain that,
for all natural integers n satisfying a,(A,n) > 1, ¢, belongs to pZ,, so that /(1) holds.

Let  be a positive integer such that U(r) holds. We shall prove that U(r + 1) is true.
For all positive integers M, we write Uy (r + 1) for the assertion:
“For all n,i e Ny n < M, i <r—+1,if a,(A,n) >4, then A(n),c, € p'Z,”.
Hence Up(r + 1) is true if {(M) < r. Let M be a positive integer such that Uy (r + 1)
holds. We shall prove Uy 41(r +1). By Assertions U (r) and Uy, (r + 1), it suffices to prove
that if a,(A, M + 1) is greater than r, then A(M + 1) and c¢jr41 belong to p"t1Z,. In the
rest of the proof, we assume that a,(A, M + 1) is greater than r.

If w and ny,...,n, are natural integers satisfying 2 < u < ¢(M + 1) and ny * - -+ xn, =
M + 1 with n, > 0, then, for all 7 in {1,...,u}, we have n; < M and

ap(A,ng) + -+ ap(A,n,) =op(A,M+1) >r+ 1.

Then there exist 1 <a; <---<ap <wand 1 <iy,... 4 <r+1such that a,(A,ng,) > i;
and iy + - -+ i > 7 + 1. Thereby, Assertion Uy (r + 1) yields ¢y, - - - ¢,, € p"'7Z,, so that

Z Cpy***Cpy € pTJrlZp-

nyk-kny,=M-+1
2<u<l(M+1), ny>0

By (3.6), we obtain
AM+1)=cyy; mod p't'Z, and cyy =0 mod pZ(MH)lep'

Hence it suffices to consider the case ¢(M+1) = r+1. In particular, we have M +1 = v+mp
where v is in Z,(A) and m is a natural integer satisfying o, (A, m) = r. Since U(r) holds,
Lemma 1 yields A(M + 1) € p"™'Z,. Thus we also have cj41 € p"*'Z, and Assertion
Upr41(r + 1) holds. This finishes the proof of U (r + 1) so that of Theorem 2. O

3.3. Proof of Proposition 1. Let p be a prime and A a Z,-valued sequence satisfying
hypothesis of Proposition 1. For every natural integer n, we write a(n), respectively Z,
as a shorthand for a,(A,n), respectively for Z,(A). For every natural integer r, we define
Assertions

U(r): “For all n,i € N, i <r, if a(n) > i, then A(n) € p'Z,.”,
and
V(r): “For all n,i € N, i <r, and all B € 9B, if a(n) > i, then B(n) € p"'Z,”.

To prove Proposition 1, we have to show that, for all natural integers r, Assertions U(r)
and V(r) are true. We shall prove those assertions by induction on r.

Observe that Assertions U(0), V(0) and V(1) are trivial. Furthermore, since A satisfies
the p-Lucas property, Assertion ¢(1) holds. Let rq be a fixed positive integer, 1o > 2, such

that Assertions U(ro — 1) and V(ry — 1) are true. First, we prove Assertion V(7).
15



Let B in B and m in N be such that a(m) > ro. We write m = v + np with v
in {0,...,p — 1}. Since 7y > 2 and 0 does not belong to Z, we have n > 1 and, by
Assertion (a) in Proposition 1, there exist A" in 2 and a sequence (By)k>0, with By in B,
such that

B(v+mnp) = A'(n) + Y p""'Bi(n — k). (3.7)

In addition, we have a(n) > ry — 1 and, since 0 is not in Z, we have a(n — 1) > g — 2.
By induction, for all natural integers k satisfying k < n, we have a(n — k) > rg — 1 — k.
Thus, by (3.7) in combination with U(rg — 1) and V(ry — 1), we obtain

A'(n) € p°'Z and p*UBi(n— k) € prtito2ky ¢ proiz,,
so that B(v + np) belongs to p™~'Z, and V(ry) is true.

Now we prove Assertion U(rg). We write Uy (1) for the assertion:
“For all n,i € N, n < N, i <rg, if a(n) > i, then A(n) € p'Z,”.

We shall prove Uy (ro) by induction on N. Assertion U;(rg) holds. Let N be a positive
integer such that Uy (rg) is true. Let n:=mny+ mp < N + 1 with ng in {0,...,p — 1} and
m in N. We can assume that a(n) > ro.

If ng is in Z, then we have a(m) > ro — 1 and, by Lemma 1, we obtain that A(n)
belongs to p°Z, as expected. If ng is not in Z, then we have a(m) > ry. By Assertion (a)
in Proposition 1, there exist A’ in 2 and a sequence (Bj)r>0 with By in B such that

A(n) = A'(m) + Zpk“Bk(m — k).

k=0

We have m < N, a(m) > ro and a(m — k) > ro — k, hence, by Assertions Uy (ry) and
V(r0), we obtain that A(n) belongs to p™Z,. This finishes the induction on N and proves
U(ro). Therefore, by induction on ry, Proposition 1 is proved. O

4. PROOF OF THEOREM 1

To prove Theorem 1, we shall apply Proposition 1 to &, s. As a first step, we prove that
this sequence satisfies the p-Lucas property.

Proof of Proposition 2. For all x in [0, 1]¢, we have A, ;(x) = A, ;({x}) > 0 so that, by

Landau’s criterion, Q. s is integer-valued. Let p be a fixed prime, v in {0,...,p — 1} and
n a natural integer. We have
Seslotnp)= > Qeslkr,... k).
k1+---+kg=v+np
k;eN

Write k; = a; +m;p with a; in {0,...,p—1} and m; in N. If a; +- - -+ a4 # v, then we have
a;+---+aq > p and there exists ¢ in {1, ..., d} such that a; > p/d. Since e is 1-admissible,

(a1,...,aq)/p belongs to D¢ so that A, ;((a1,...,a,)/p) > 1 and Q. f(ki,. .., kq) is in
16



pZ,. In addition, by Theorem 3, Q. ; satisfies the p-Lucas property for all primes p. Hence
we obtain

S (v +np) = Z Z Q. rlar +mup, ..., a9+ mgp) mod pZ,
al+--+ag=v mi+---+mg=n
0<a;<p—1 m; EN

Z Z Qe,f(ah---,ad)Qe,f(ml,...,md) mod pZ,

ai1+--+ag=v mi+---+mg=n

0<a;<p—1 m; EN
= 6. ;(v)8, (n) mod pZ,.
This finishes the proof of Proposition 2. O
If e is 2-admissible then e is also 1-admissible. Furthermore, if f = (14,,..., 1k, ), then,

for all x in D, ¢, we have
u

Acs(x) =) le;-x| > 1.
i=1
Hence, if e and f satisfy the conditions of Theorem 1, then Proposition 2 implies that, for
all primes p, &, ; has the p-Lucas property and &, ¢(0) = 1 is invertible in Z,. Thereby,
to prove Theorem 1, it remains to prove that &, ; satisfies Condition (a) in Proposition 1
with
B = {6£7f cg e}

First we prove that some special functions belong to 311,.

4.1. Special functions in 311). For all primes p, we write | - |, for the ultrametric norm
on @, (the field of p-adic numbers) defined by |a|, := p~*@. Note that (Z,,|- |,) is a
compact space. Furthermore, if (¢, ),>0 is a Z,-valued sequence, then >~ ¢, is convergent
in (Z,,| - |,) if and only if |¢,|, tends to 0 as n tends to infinity. In addition, if > 7 ¢,
converges, then (¢, )nen is a summable family in (Z,, | - |,).

In the rest of the article, for all primes p and all positive integers k, we set ¥, 0(0) = 1,
U, 1:(0) =0 for i > 1 and, for all natural integers ¢ and m, m > 1, we set

sl = (1 (5 )

Ek+p  k+(m—1)p

where o,,; is the i-th elementary symmetric polynomial of m variables. Let us remind to
the reader that, for all natural integers m and ¢ satisfying ¢ > m > 1, we have o,,,; = 0.

The aim of this section is to prove that, for all primes p, all k£ in {1,...,p — 1} and all
natural integers i, we have

iWyki € T (4.1)
Proof of (4.1). Throughout this proof, we fix a prime number p and an integer k in
{1,...,p — 1}. Furthermore, for all nonnegative integers i, we use V¥; as a shorthand

for ¥, ;; and N>; as a shorthand for the set of integers larger than or equal to i. We shall
17



prove (4.1) by induction on i. To that end, for all natural integers ¢, we write A4; for the
following assertion:

“There exists a sequence (T;,),>o of polynomial functions with coefficients
in Z, which converges uniformly to ¢!¥; on N”.

First, observe that, for all natural integers m, we have Wy(m) = 1, so that Assertion
Ajg is true. Let ¢ be a fixed positive integer such that assertions Ay, ..., A;_; are true.
According to the Newton-Girard formulas, for all integers m > ¢, we have

i

(=1 o (X1 - X)) = = D (1) o (X, X)) Ae(X, -, Xon),

t=1
where Ay(X7q,..., X)) = Xt + -+ X! . Thereby, for all integers m > i, we have
: 1 1
U A (=, — ) 42

t=1

For all natural integers j and ¢, we have

(k +1jp)t li (1+1 Lp)t +i It (t_HS) (%)p (4.3)

s=1

where the right hand side of (4.3) is a convergent series in (Z,, | - |,) because k is invertible
in Z,. Therefore, we obtain that

m—1 oo
1 1 m t—145s\ (]
ANl =) ——— — = s
t(k’ ’k+(m—1> k+FO; kt( s )(k)p
[ee] m—1
m Z( 1) (t—1+s 5
kf_+ k;t-i—s( ) ( ]). (4.4)
s=1 7=0

According to Faulhaber’s formula, for all positive integers s, we have

m—1 s+1

. s+ 1 B 1—
s s _ _1)stl-c s Pstl—c —1)°
P (=1) <C)ps+1(m )

where By is the k-th first Bernoulli number. For all positive integers s and ¢, we set
Ry (X) := X/k" and

1 (t—145\ e~ . (s+1\ Bec .

so that

1 1 >
ANl=,... —— | =
(o T p) = X et

18



In the rest of this article, for all polynomials P(X) = S N 0 @ X™ in Z,[X], we set
|P||p :== max {|ay|, : 0 <n < N}.
We claim that, for all natural integers s and ¢, t > 1, we have

Rs(X) € Z,[X], || Rstllp = 0 and R,.(0)=0. (4.5)
Indeed, on the one hand, if p =2 and s = 1, then we have

_—t(X — 1+ (X — 1)) € XZy[X].

Riy(X) = Lt+1

On the other hand, if p > 3 or s > 2, then we have p* > s+ 1 so that v,(s +1) <s— 1.
Furthermore, according to the von Staudt-Clausen theorem, we have v,(Bsti1—.) > —L1.
Thus, the coefficients of Rs:(X) belong to Z,. To be more precise, we have v,(s + 1) <
log, (s + 1), so that ||Rs.|l, = 0 as expected. In addition, we have

s+1
p° t—1+4+s s+1
= E Bsiq-
Rs,t(o) ($+1)]€t+8< s ) ( c ) s+1—c

c=1

p° t—145\ = (s+1
= —-— B =
<s+1>kt+s< : )Z( d ) =0

where we used the well known relation satisfied by the Bernoulli numbers

i (Szl)deo, (s >1).

d=0

According to Ay, ..., A;_y, for all j in {0,...,7 — 1}, there exists a sequence (7}, ),>0
of polynomial functions with coefficients in Z, which converges uniformly to j!W¥; on N.
According to (4.2) and (4.5), for all natural integers N, there exists Sy in N such that, for
all » > Sy and all m > i, we have

i, (m) = —Z ((17 it ( ZR” mod pNZp.
t=1

Thus, the sequence (7}, ),>¢ of polynomial functions with coefficients in Z,, defined by

T, (x) = —Z (= 1) Titr( ZR” (x,r € N), (4.6)

— (1 —t)!

converges uniformly to ¢!¥; on Ns;. To prove A;, it suffices to show that, for all m in
{0,...,i— 1}, we have
T;,(m) — 0. (4.7)

r—00
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Observe that Equations (4.6) and (4.5) lead to 7;,(0) = 0. In particular, if ¢ = 1, then
(4.7) holds. Now we assume that ¢ > 2. For all m > 2, we have

w=0

4“%)112(%@)

g
- o

3

- (1 — m) U;(m—1)X7.

[e=]

<

Thereby, for all 7 in {1,...,m — 1}, we obtain that

() = Wy = 1) -

with . 1)
1 1y .
k4 (m—1)p :Z ot P (m = 1)

s=0
Thus, there exists a sequence (U, ),>o of polynomials with coefficients in Z, such that, for
all positive integers IV, there exits a natural integer Sy such that, for all » > Sy and all
m > 1+ 1, we have

Tiv(m) =Tip(m—1) = Tj_1,(m — 1)U,(m — 1) mod p"Z,. (4.8)
But, if V1(X) and V5(X) are polynomials with coefficients in Z, and if there exists a
natural integer a such that, for all m > a, we have Vi(m) = Vo(m) mod pNZ,, then, for

all integers n, we have Vi(n) = Va(n) mod pVZ,. Indeed, let n be an integer, there exists
a natural integer v such that n 4+ vp" > a. Thus, we obtain that

Vi(n) = Vi(n + vp") = Va(n + vp™) = Va(n) mod pVZ,.
In particular, Equation (4.8) also holds for all positive integers m.
Furthermore, according to A;_;, for all m in {0,...,7 — 2}, T;_1 .(m) tends to zero as r

tends to infinity. Thus, for all positive integers N, there exists a natural integer Sy such
that, for all r > Sy and all m in {1,...,i — 1}, we have

T;r(m) =T;.(m —1) mod p"Z,.
Since T;,.(0) = 0, we obtain that T} .(m) =0 mod p"Z, for all m in {0,...,i—1}, so that
(4.7) holds. This finishes the induction on ¢ and proves (4.1). O

4.2. On the p-adic Gamma function. For every prime p, we write I', for the p-adic
Gamma function, so that, for all natural integers n, we have



The aim of this section is to prove Proposition 3.

Proof of Proposition 3. Let p be a fixed prime number. For all natural integers n and m,

we have
Fp((m+n)p) B (m+n)p mp
Ly (mp)Ly(np) _< I[ »)/ AHf

A=np

piA ptA
_ (ﬁ w4 ) ) <H>\>
o PiA
- ﬁ (1 + ”—f) (4.9)
A=1

PiA
Let X,T,...,T,, be m+ 1 variables. Then, we have
[[x-1) Xm+z Vi mi(Th, ... Tp) X™
j=1

Therefore, we obtain that

);\1 k=1 w=0
B p—1 o o | p Cp
TH(H,E;( oms (5 57 1>p)>
- 1:[ (1 + Z(—1)inz‘pillfp7k7i(m)> ' (4.10)
k=1 i=1

Let kin {1,...,p—1} be fixed. By (4.1), for all positive integers i, there exists a sequence
(Pi.¢)e>o of polynomial functions with coefficients in Z, which converges pointwise to i!\W,, ;. ;.
We fix a natural integer K. For all positive integers N, we set

K+1
fn(z,y) —HZ ”p N ().
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If n and m belong to {0, ..., K}, then we have

Ry =1+ Z(—l)inipi‘l’p,k,z'(m) = [n(n,m)
i=1

K+1 ;
i iP (.
= Z;(—l) n ﬂ(z!\pr7k7i(m) — PZ-7N(m)) e 0.

Furthermore, we have fy(z,y) € 1+pZ,[x,y|. Indeed, if i = ig+i1p+ - - - +i,p® with ¢; in
{0,...,p— 1}, then we set s,(i) :=ig + - - - + 4, so that, for all positive integers i, we have

. Y .

i uy(il) =i — =2l =D 50
p—1 p—1

Hence, by (4.10), we obtain that there exists a function ¢ in 312) such that, for all natural
integers n and m, we have

mp

n
IIQ+~f):1+gmnmn
A=1
PIA
which, together with (4.9), finishes the proof of Proposition 3. O

4.3. Last step in the proof of Theorem 1. Let 2 be the Z,-module spanned by &, ;.
We set B = {&7,, g € Fi}. We shall prove that &,y and B satisfy Condition (a) in
Proposition 1.

Obviously, B is constituted of Z,-valued sequences and 2 is a subset of ‘8. For all a in
{0,...,p—1}% and m in N¢, we have

H? (e - mp)'Hk 1(el mp—l—k).
[[i=, (fi - mp)! Hk S (fi-mp + k)

Q. fla+mp) =
For every natural integer n, we have

)

n!

so that we have
[[=(e; - mp)!
[[- (£ - mp)!

Furthermore, we have
Hz 1Hk 1(62 mp+k)
Hz IHk 1<f mp+k>
Hl 1Hk 1Mk(el mp+k) ‘ efa/p)Hz 1HLeZa/PJ( m+k)

I Hk:l,pm(fz‘ -mp + k) T, T2 m 4+ k)
22
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Since |e| = | f|, we have

[[ie, (=)™, (e; - mp) _ [1ie, Tp(ei - mp)

[[o (=1)f ™Dy -mp)  [Li, Ip(fi - mp)
Let g, ..., aq be natural integers with a;, > 1 for some i in {1,...,d}. By Proposition 3,
there exists a function A in Sg such that, for all natural integers myq, ..., mg, we have

Tp((a1m1 4t admd)p)
Ly ((camy + -+ (o — 1)myy + -+ - + agma)p) Tp(migp)

=14 h(my,...,mg)p.

Hence, there exists a function A’ in Sg such that, for all natural integers mq, ..., mgy, we
have
Tp((ozlml + et admd)p)
Lp(map)er -« - T'p(map) ™

Since f is only constituted by vectors 1j, there exists ¢’ in S;l such that, for all m in N¢,

we have .
Hi:l I'y(e; - mp)

[Tic Tp(fi - mp)
Furthermore, if k is an integer coprime with p, and d a vector in N?, then for every m in

N?, we have
1 o - s(d ‘m)s s
d-mp+k_§<_1) o+t D

=1+ n'(my,...,mg)p.

=1+ ¢'(m)p.

so that there is a function ¢” in S;f such that, for all m in N%, we have

1 1 + ¢"(m)
_— = m)p.
d mp+k &k g b
Hence, for all a in {0,...,p — 1}¢, there exist a p-adic integer A\, and a function g, in 3;

such that, for all m in N? we have
[Lo IS pfk<ez mp + k)
I 1Hk 1p+k<f mp + k)

Since f is only constituted by vectors 1y, for all ¢ in {1,...,v}, we have |f;-a/p] = 0.
Thereby, for all a in {0,...,p — 1}%, there exists a function h, in Z, + pS;l, such that, for

all m in N%, we have

= >\a + ga(m)p~

u e’L a/pJ

Qcf(a+mp) = Q. r(m)h, Bet a/p)H H -m + k).
=1 k=1

Furthermore, if |e; - a/p| > 1 for some 4, then A, f(a/p) > 1. Hence we obtain that

u |ei-a/p]

m|—>p6fa/pH H -m+k) €Z, —|—p§d
i=1 =
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Let g be a function in S;f. For all ain {0,...,p — 1}? and m in N¢, we set

u e’L a/pJ

7a(m) := g(a+ mp)ha(m)p=s @7 ] H ‘m + k),
=1 k=1
so that 7, € Z, +p3g. Therefore, for all v in {0,...,p — 1} and n in N, we have
&, (vtnp) = Y > gla+mp)Q. s(a+ mp)

0<a<l(p—1) m>0
|a+mp|=v-+np

- ) Y Qes(m)7a(m).

0<a<l(p-1) m>0
|a+mp|=v+np

If |a 4+ mp| = v + np, then we have |a| = v + jp with
d(p—1)
0 <j <min (n, {MJ) =: M.
p

Furthermore, we have ||a|/p| = j and there is k in {1,...,d} such that a®®) > (v + jp)/d.
Since e is 2-admissible and f is constituted by vectors 1;, we obtain that

A s(a/p) = i Leip' aJ > 9j

i=1
In particular, there is 7} in 3; such that 7, = p¥7.. Hence, for all a in {0,...,p — 1}%, we
have
M
S (vtmp) = > D Qpmma(m)+ Y p7 > Y Q. s(m)7(m).
0<a<1(p—1) |m|=n j=1 0<a<l(p—1) lm|=n—j
|la|=v laj=v+jp

Therefore, there exist A" in 2 and a sequence (Bg)x>0, with By in B, such that
&7 (v +mnp) = A'(n) +pBo(n) + Y _ 0" Be(n — k).
k=1

This shows that &, ; and B satisfy Condition (a) in Proposition 1, so that Theorem 1 is
proved. O
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