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ARITHMETIC PROPERTIES OF APÉRY-LIKE NUMBERS

É. DELAYGUE

Abstract. We provide lower bounds for p-adic valuations of multisums of factorial ra-
tios which satisfy an Apéry-like recurrence relation: these include Apéry, Domb, Franel
numbers, the numbers of abelian squares over a finite alphabet, and constant terms of
powers of certain Laurent polynomials. In particular, we prove Beukers’ conjectures on
the p-adic valuation of Apéry numbers. Furthermore, we give an effective criterion for a
sequence of factorial ratios to satisfy the p-Lucas property for almost all primes p.

1. Introduction

1.1. Beukers’ conjectures on Apéry numbers. For all n ∈ N, we set

A1(n) :=
n
∑

k=0

(

n

k

)2(
n + k

k

)2

and A2(n) :=
n
∑

k=0

(

n

k

)2(
n+ k

k

)

.

Those sequences were used in 1979 by Apéry in his proofs of the irrationality of ζ(3)
and ζ(2) (see [2]). In the 1980’s, several congruences satisfied by those sequences were
demonstrated (see for example [4], [5], [10], [15], [18]). In particular, Gessel proved in [15]
that A1 satisfies the p-Lucas property for all prime numbers p, that is, for any prime p, all
v ∈ {0, . . . , p− 1} and all n ∈ N, we have

A1(v + np) ≡ A1(v)A1(n) mod p.

Thereby, if n =
∑N

k=0 nkp
k with nk ∈ {0, . . . , p− 1}, then we obtain

A1(n) ≡ A1(n0) · · ·A1(nN) mod p. (1.1)

In particular, p divides A1(n) if and only if there exists k ∈ {0, . . . , N} such that p divides
A1(nk). Beukers stated in [3] two conjectures, when p = 5 or 11, which generalize this prop-
erty (1). Before stating these conjectures, we observe that the set of all v ∈ {0, . . . , 4} (re-
spectively v ∈ {0, . . . , 10}) satisfying A1(v) ≡ 0 mod 5 (respectively A1(v) ≡ 0 mod 11)
is {1, 3} (respectively {5}).

Conjecture A (Beukers, [3]). Let n ∈ N, n =
∑N

k=0 nk5
k with nk ∈ {0, . . . , 4}. Let α be

the number of k ∈ {0, . . . , N} such that nk ∈ {1, 3}. Then 5α divides A1(n).
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1When p ∈ {2, 3, 7}, for all v ∈ {0, . . . , p− 1}, A1(v) is coprime to p so that, according to (1.1), for all

n ∈ N, A1(n) is coprime to p.
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Conjecture B (Beukers, [3]). Let n ∈ N, n =
∑N

k=0 nk11
k with nk ∈ {0, . . . , 10}. Let α

be the number of k ∈ {0, . . . , N} such that nk = 5. Then 11α divides A1(n).

Similarly, Sequence A2 satisfies the p-Lucas property for all primes p. Furthermore,
Beukers and Stienstra proved in [6] that, if p ≡ 3 mod 4, then A2

(

p−1
2

)

≡ 0 mod p, and
Beukers stated in [3] the following conjecture.

Conjecture C. Let p be a prime number satisfying p ≡ 3 mod 4. Let n ∈ N, n =
∑N

k=0 nkp
k with nk ∈ {0, . . . , p − 1}. Let α be the number of k ∈ {0, . . . , N} such that

nk = p−1
2

. Then pα divides A2(n).

The main aim of this article is to prove Theorem 1, stated in Section 1.3, which demon-
strates and generalizes Conjectures A-C. First, we introduce some notations which we use
throughout this article.

1.2. Notations. For all primes p, we write Zp for the ring of p-adic integers. If d is a
positive integer and if A =

(

A(n)
)

n∈Nd is a Zp-valued family, then we say that A satisfies

the p-Lucas property if and only if, for all v ∈ {0, . . . , p− 1}d and all n ∈ Nd, we have

A(v + np) ≡ A(v)A(n) mod pZp. (1.2)

In (1.2) and in the sequel of this article, if m = (m1, . . . , md) and n = (n1, . . . , nd) belong
to Rd and if λ ∈ R, then we set m+n := (m1+n1, . . . , md+nd), m ·n := m1n1+ · · ·+mdnd

and mλ := (m1λ, . . . , mdλ). For all k ∈ {1, . . . , d}, we write m
(k) for mk. We write m ≥ n

if and only if, for all k ∈ {1, . . . , d}, we have mk ≥ nk. We set 0 := (0, . . . , 0) ∈ Rd,
1 := (1, . . . , 1) and, for all k ∈ {1, . . . , d}, we write 1k for the vector in Nd, all of whose
coordinates equal zero except the k-th which is 1. Furthermore, we write fA for the
generating function of A defined by fA(z) :=

∑

n∈Nd A(n)zn, where, if z = (z1, . . . , zd) is a
vector of variables and n = (n1, . . . , nd) ∈ Nd, zn denotes zn1

1 · · · znd

d .

In addition, we write Zp(A) for the set of all v ∈ {0, . . . , p− 1}d such that A(v) ∈ pZp.

For all n ∈ Nd, n =
∑N

k=0 nkp
k with nk ∈ {0, . . . , p − 1}d, N ∈ N and nN 6= 0, we write

αp(A,n) for the number of k ∈ {0, . . . , N} such that nk ∈ Zp(A). Thereby, to prove
Conjectures A-C, we have to show that Ai(n) ∈ pαp(Ai,n)Z with i = 1, p ∈ {5, 11} and
i = 2, p ≡ 3 mod 4.

Given tuples of vectors in Nd, e = (e1, . . . , eu) and f = (f1, . . . , fv), we write |e| =
∑u

i=1 ei

and, for all n ∈ Nd and all m ∈ N, we set

Qe,f(n) :=

∏u
i=1(ei · n)!

∏v
i=1(fi · n)!

and Se,f(m) :=
∑

n∈Nd,|n|=m

Qe,f(n).

For every positive integer r, we say that e is r-admissible if there exists s ∈ {0, . . . , r} such
that e satisfies the following conditions:

• s = 0 or there exist 1 ≤ i1 < · · · < is ≤ u, such that eij ≥ 1 for all j ∈ {1, . . . , s}.
• s = r or, for all k ∈ {1, . . . , d}, there exist 1 ≤ i1 < · · · < ir−s ≤ u, such that
eij ≥ d1k for all j ∈ {1, . . . , r − s}.
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For all primes p, we write Fd
p for the set of all functions g : Nd → Zp such that, for all

K ∈ N, there exists a sequence (PK,k)k≥0 of polynomial functions with coefficients in Zp

which converges pointwise to g on {0, . . . , K}d. For all tuples e and f of vectors in Nd, all
g ∈ Fd

p and all m ∈ N, we set

S
g
e,f(m) :=

∑

n∈Nd,|n|=m

Qe,f(n)g(n).

Finally, we set θ := z d
dz

and we say that a differential operator L ∈ Zp[z, θ] is of

• type I if L =
∑q

k=0 z
kPk(θ) with q ∈ N, Pk(X) ∈ Zp[X ], P0(Z

×
p ) ⊂ Z×

p and if, for

all k ∈ {2, . . . , q}, we have Pk(X) ∈
∏k−1

i=1 (X + i)2Zp[X ];

• type II if L =
∑2

k=0 z
kPk(θ) with Pk(X) ∈ Zp[X ], P0(Z

×
p ) ⊂ Z×

p and P2(X) ∈
(X + 1)Zp[X ].

1.3. Main results. The main result of this article is the following.

Theorem 1. Let e and f = (1k1, . . . , 1kv) be two disjoint tuples of vectors in Nd such that

|e| = |f |, for all i ∈ {1, . . . , v}, ki ∈ {1, . . . , d}, and e is 2-admissible. Let p be a fixed

prime. Assume that fSe,f
is canceled by a differential operator L ∈ Zp[z, θ] such that at

least one of the following conditions holds:

• L is of type I.

• L is of type II and p− 1 ∈ Zp(Se,f).

Then, for all n ∈ N and all g ∈ Fd
p, we have

Se,f(n) ∈ pαp(Se,f ,n)Z and S
g
e,f ∈ pαp(Se,f ,n)−1Zp.

In Section 1.5, we show that Theorem 1 applies to many classical sequences. In particu-
lar, Theorem 1 implies Conjectures A-C. Indeed, we have A1 = Se1,f1 and A2 = Se2,f2 with
d = 2, e1 =

(

(2, 1), (2, 1)
)

, f1 =
(

(1, 0), (1, 0), (1, 0), (1, 0), (0, 1), (0, 1)
)

, e2 =
(

(2, 1), (1, 1)
)

and f2 =
(

(1, 0), (1, 0), (1, 0), (0, 1), (0, 1)
)

. Furthermore, it is well known that fA1
, respec-

tively fA2
, is canceled by the differential operator L1, respectively L2, defined by

L1 = θ3 − z(34θ3 + 51θ2 + 27θ + 5) + z2(θ + 1)3

and
L2 = θ2 − z(11θ2 + 11θ + 3)− z2(θ + 1)2.

Since L1 and L2 are of type I for all primes p, the conditions of Theorem 1 are satisfied by
A1 and A2, and Conjectures A-C hold. In addition, for all primes p and all n, α ∈ N, we
obtain

n
∑

k=0

kα

(

n

k

)2(
n + k

k

)2

∈ pαp(A1,n)−1Z and

n
∑

k=0

kα

(

n

k

)2(
n+ k

k

)

∈ pαp(A2,n)−1Z.

We provide a similar result which applies to the constant terms of powers of certain
Laurent polynomials.
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Theorem 2. Let p be a fixed prime. Let Λ(x) ∈ Zp[x
±
1 , . . . , x

±
d ] be a Laurent polynomial,

and consider the sequence of the constant terms of powers of Λ defined, for all n ∈ N, by

A(n) :=
[

Λ(x)n
]

0
.

Assume that the Newton polyhedron of Λ contains the origin as its only interior integral

point, and that fA is canceled by a differential operator L ∈ Zp[z, θ] such that at least one

of the following conditions holds:

• L is of type I.

• L is of type II and p− 1 ∈ Zp(A).

Then, for all n ∈ N, we have

A(n) ∈ pαp(A,n)Zp.

By a result of Mellit and Vlasenko [17, Theorem 1], if Λ(x) ∈ Zp[x
±
1 , . . . , x

±
d ] contains the

origin as its only interior integral point, then
(

[Λ(x)n]0
)

n≥0
satisfies the p-Lucas property,

which is essential for the proof of Theorem 2. Likewise, the proof of Theorem 1 rests
on the fact that Se,f satisfies the p-Lucas property when |e| = |f |, e is 2-admissible and
f = (1k1 , . . . , 1kv). Since those results deal with multisums of factorial ratios, it seems
natural to study similar arithmetic properties for simpler numbers such as families of
factorial ratios. To that purpose, we prove Theorem 3 below which gives an effective
criterion for Qe,f to satisfy the p-Lucas property for almost all primes p (2). Furthermore,
Theorem 3 shows that if A := Qe,f satisfies the p-Lucas property for almost all primes p,
then, for all n ∈ N and every prime p, we have A(n) ∈ pαp(A,n)Z.

To state this result, we introduce some additional notations. For all tuples e and f of
vectors in Nd, we write ∆e,f for Landau’s function defined, for all x ∈ Rd, by

∆e,f(x) :=

u
∑

i=1

⌊ei · x⌋ −

v
∑

i=1

⌊fi · x⌋.

Therefore, according to Landau’s criterion [16] and a precision of the author [11], we have
the following dichotomy.

• If, for all x ∈ [0, 1]d, we have ∆e,f(x) ≥ 0, then Qe,f is a family of integers;
• if there exists x ∈ [0, 1]d such that ∆e,f(x) ≤ −1, then there are only finitely many

primes p such that Qe,f is a family of p-adic integers.

In the rest of the article, we write De,f for the semi-algebraic set of all x ∈ [0, 1)d such
that there exists a component d of e or f satisfying d · x ≥ 1. Observe that ∆e,f vanishes
on the nonempty set [0, 1)d \ De,f .

Theorem 3. Let e and f be disjoint tuples of vectors in Nd such that Qe,f is a family of

integers. Then we have the following dichotomy.

(1) If |e| = |f | and if, for all x ∈ De,f , we have ∆e,f(x) ≥ 1, then for all primes p, Qe,f

satisfies the p-Lucas property;

2Throughout this article, we say that an assertion Ap is true for almost all primes p if there exists a
constant C ∈ N such that Ap holds for all primes p ≥ C.
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(2) if |e| 6= |f | or if there exists x ∈ De,f such that ∆e,f(x) = 0, then there are only

finitely many primes p such that Qe,f satisfies the p-Lucas property.

Furthermore, if Qe,f satisfies the p-Lucas property for all primes p, then, for all n ∈ Nd

and every prime p, we have

Qe,f(n) ∈ pαp(Qe,f ,n)Z.

Remark. Theorem 3 implies that Qe,f satisfies the p-Lucas property for all primes p if and
only if all Taylor coefficients at the origin of the associated mirror maps ze,f,k, 1 ≤ k ≤ d,
are integers (see Theorems 1 and 3 in [11]). Indeed, if ∆e,f ≥ 0 on [0, 1]d and if |e| 6= |f |,
then there exists k ∈ {1, . . . , d} such that |e|(k) > |f |(k).

Coster proved in [9] similar results to Theorems 1-3 for the coefficients of certain algebraic
power series. Namely, given a prime p ≥ 3, a1, . . . , ap−1 ∈ Z, and a sequence A such that

fA(z) = (1 + a1z + · · ·+ ap−1z
p−1)

1

1−p ,

Coster proved that, for all n ∈ N, we have

vp
(

A(n)
)

≥

⌊

αp(A, n) + 1

2

⌋

.

1.4. Auxiliary results. The proof of Theorem 1 rests on three results which may be
useful to study other sequences.

Proposition 1. Let p be a fixed prime and A a Zp-valued sequence satisfying the p-Lucas

property with A(0) ∈ Z×
p . Let A be the Zp-module spanned by A. Assume that

(a) there exists a set B of Zp-valued sequences with A ⊂ B such that, for all B ∈ B,

all v ∈ {0, . . . , p− 1} and all positive integers n, there exist A′ ∈ A and a sequence

(Bk)k≥0, Bk ∈ B, such that

B(v + np) = A′(n) +
∞
∑

k=0

pk+1Bk(n− k);

(b) fA(z) is canceled by a differential operator L ∈ Zp[z, θ] such that at least one of the

following conditions holds:

– L is of type I.

– L is of type II and p− 1 ∈ Zp(A).

Then, for all B ∈ B and all n ∈ N, we have

A(n) ∈ pαp(A,n)Zp and B(n) ∈ pαp(A,n)−1Zp.

In Proposition 1 and throughout this article, if
(

A(n)
)

n≥0
is a sequence taking its values

in Z or Zp, then, for all negative integers n, we set A(n) := 0. Therefore, to prove Theo-
rem 1, it suffices to demonstrate that Se,f satisfies the p-Lucas property and Condition (a)
of Proposition 1 with B = {Sg

e,f : g ∈ Fd
p}. To that purpose, we shall prove the following

results.
5



Proposition 2. Let e and f be disjoint tuples of vectors in Nd such that |e| = |f | and, for

all x ∈ De,f , ∆e,f(x) ≥ 1. Assume that e is 1-admissible. Then, Se,f is integer-valued and

satisfies the p-Lucas property for all primes p.

Proposition 3. Let p be a fixed prime. We write Γp for the p-adic Gamma function.

Then, there exists g ∈ F2
p such that, for all n,m ∈ N, we have

Γp

(

(m+ n)p
)

Γp(mp)Γp(np)
= 1 + g(m,n)p.

1.5. Application of Theorem 1. By applying Theorem 1, we obtain similar results to
Conjectures A-C for numbers satisfying Apéry-like recurrence relations which we list below.
Characters in brackets in the last column of the following table form the sequence number
in the Online Encyclopedia of Integer Sequences [20].

Sequence Qe,f(n1, n2) L Reference

n
∑

k=0

(

n

k

)2(
n+ k

k

)2 (2n1 + n2)!
2

n1!4n2!2
[1, (γ)] Apéry numbers (A005259)

n
∑

k=0

(

n

k

)2(
n+ k

k

)

(2n1 + n2)!(n1 + n2)!

n1!3n2!2
[21, D] Apéry numbers (A005258)

(

2n

n

)

=

n
∑

k=0

(

n

k

)2 (n1 + n2)!
2

n1!2n2!2
type I

Central binomial
coefficients (A000984)

n
∑

k=0

(

n

k

)3 (n1 + n2)!
3

n1!3n2!3
[21, A] Franel numbers (A000172)

n
∑

k=0

(

n

k

)4 (n1 + n2)!
4

n1!4n2!4
[13],[14] (A005260)

n
∑

k=0

(

n

k

)(

2k

k

)(

2(n− k)

n− k

)

(n1 + n2)!(2n1)!(2n2)!

n1!3n2!3
[1, (d)] (A081085)

n
∑

k=0

(

n

k

)2(2k

k

)

(n1 + n2)!
2(2n1)!

n1!4n2!2
[21, C]

Number of abelian squares
of length 2n over an alphabet

with 3 letters (A002893)
n
∑

k=0

(

n

k

)2(2k

k

)(

2(n − k)

n− k

)

(n1 + n2)!
2(2n1)!(2n2)!

n1!4n2!4
[1, (α)] Domb numbers (A002895)

n
∑

k=0

(

2k

k

)2(2(n− k)

n− k

)2 (2n1)!
2(2n2)!

2

n1!4n2!4
[1, (β)] (A036917)
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All differential operators listed in the above table are of type I for all primes p, except

the one associated with A5(n) :=
∑n

k=0

(

n
k

)4
which reads

L5 = θ3 − z2(2θ + 1)(3θ2 + 3θ + 1)− z24(θ + 1)(4θ + 5)(4θ + 3).

Hence L5 is of type II for all primes p. By a result of Calkin [8, Proposition 3], for all
primes p, we have A5(p−1) ≡ 0 mod p, i.e. p−1 ∈ Zp(A5). Thus we can apply Theorem 1
to A5.

Observe that the generating function of the central binomial coefficients is canceled by
the differential operator L = θ − z(4θ + 2) which is of type I for all primes p.

According to the recurrence relation found by Almkvist and Zudilin (see Case (d) in [1]),

A6(n) :=
∑n

k=0

(

n
k

)(

2k
k

)(

2(n−k)
n−k

)

is also Sequence E in Zagier’s list [21], that is

A6(n) =

⌊n/2⌋
∑

k=0

4n−2k

(

n

2k

)(

2k

k

)2

.

Furthermore, according to [19], Domb numbers A8(n) =
∑n

k=0

(

n
k

)2(2k
k

)(

2(n−k)
n−k

)

are also
the numbers of abelian squares of length 2n over an alphabet with 4 letters.

Now we consider the numbers Ci(n) of abelian squares of length 2n over an alphabet
with i letters which, for all positive integers i ≥ 2, satisfy (see [19])

Ci(n) =
∑

k1+···+ki=n
k1,...,ki∈N

(

n!

k1! · · · ki!

)2

.

According to [7], Ci(n) is also the 2n-th moment of the distance to the origin after i steps
traveled by a walk in the plane with unit steps in random directions.

To apply Theorem 1 to Ci, it suffices to show that fCi
is canceled by a differential

operator of type I for all primes p. Indeed, by Proposition 1 and Theorem 2 in [7], for all
j ≥ 2, Cj(n) satisfies the recurrence relation of order ⌈j/2⌉ with polynomial coefficients of
degree j − 1:

nj−1Cj(n) +
∑

i≥1

(

nj−1
∑

α1,...,αi

i
∏

k=1

(−αk)(j + 1− αk)

(

n− k

n− k + 1

)αk−1
)

Cj(n− i) = 0,

(1.3)
where the sum is over all sequences α1, . . . , αi satisfying 1 ≤ αk ≤ j and αk+1 ≤ αk − 2.
We consider i ≥ 2 and 1 ≤ α1, . . . , αi ≤ j, αk+1 ≤ αk − 2. We have

nj−1
i
∏

k=1

(

n− k

n− k + 1

)αk−1

=
nj−1

nα1−1

(

i−1
∏

k=1

(n− k)αk−αk+1

)

(n− i)αi−1,

7



with j − α1 ≥ 0, αk − αk+1 ≥ 2 and αi − 1 ≥ 0. Then, fCj
(z) is canceled by a differential

operator L =
∑q

k=0 z
kPk(θ) with P0(θ) = θj−1 and, for all i ≥ 2,

Pi(θ) ∈
i−1
∏

k=1

(θ + i− k)2Z[θ] ⊂
i−1
∏

k=1

(θ + k)2Z[θ],

so that L is of type I for all primes p, as expected.

1.6. Structure of the article. In Section 2, we use several results of [11] to prove The-
orem 3. Section 3 is devoted to the proofs of Theorem 2 and Proposition 1. In particular,
we prove Lemma 1 which points out the role played by the differential operators in our
proofs. In Section 4, we prove Theorem 1 by applying Proposition 1 to Se,f . This is the
most technical part of this article.

2. Proof of Theorem 3

First, we prove that if |e| = |f |, then, for all primes p, all a ∈ {0, . . . , p − 1}d and all
n ∈ Nd, we have

Qe,f(a+ np)

Qe,f(a)Qe,f(n)
∈

∏u
i=1

∏⌊ei·a/p⌋
j=1

(

1 + ei·n
j

)

∏v
i=1

∏⌊fi·a/p⌋
j=1

(

1 + fi·n
j

) (1 + pZp). (2.1)

Indeed, we have

Qe,f(a+ np)

Qe,f(a)Qe,f (n)
=

Qe,f(a+ np)

Qe,f(a)Qe,f (np)
·
Qe,f (np)

Qe,f(n)
.

Since |e| = |f |, we can apply [11, Lemma 7] (3) with c = 0, m = n and s = 0 which yields

Qe,f(np)

Qe,f (n)
∈ 1 + pZp.

Furthermore, we have

Qe,f(a+ np)

Qe,f(a)Qe,f (np)
=

1

Qe,f(a)

∏u
i=1

∏

ei·a
j=1(j + ei · np)

∏v
i=1

∏

fi·a
j=1(j + fi · np)

=

∏u
i=1

∏

ei·a
j=1

(

1 + ei·np
j

)

∏v
i=1

∏

fi·a
j=1

(

1 + fi·np
j

)

∈

∏u
i=1

∏⌊ei·a/p⌋
j=1

(

1 + ei·n
j

)

∏v
i=1

∏⌊fi·a/p⌋
j=1

(

1 + fi·n
j

) (1 + pZp),

3The proof of this lemma uses a lemma of Lang which contains an error. Fortunately, Lemma 7 remains
true. Details of this correction are presented in [12, Section 2.4].
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because, if p does not divide j, then 1 + (ei · np)/j ∈ 1 + pZp. This finishes the proof of
(2.1).

Now we prove Assertion (1) in Theorem 3. Let p be a fixed prime number. It is well
known that, for all n ∈ N, we have

vp(n!) =
∞
∑

ℓ=1

⌊

n

pℓ

⌋

.

Thus, for all n ∈ Nd, we have

vp
(

Qe,f(n)
)

=

∞
∑

ℓ=1

∆e,f

(

n

pℓ

)

.

Let n ∈ Nd and a ∈ {0, . . . , p− 1}d be fixed. Let {·} denote the fractional part function.
For all x = (x1, . . . , xd) ∈ Rd, we set {x} := ({x1}, . . . , {xd}). Since |e| = |f |, we have

vp
(

Qe,f(a+ np)
)

=

∞
∑

ℓ=1

∆e,f

({

a+ np

pℓ

})

≥ ∆e,f

(

a

p

)

,

because ∆e,f is nonnegative on [0, 1]d. On the one hand, if a/p ∈ De,f , then we have both
Qe,f(a+np) ≡ 0 mod p and Qe,f(a)Qe,f (n) ≡ 0 mod p. On the other hand, if a/p /∈ De,f ,
then, for all d in e or f , we have ⌊d · a/p⌋ = 0 so that (2.1) yields

Qe,f(a+ np) ≡ Qe,f(a)Qe,f (n) mod pZp,

as expected. This proves Assertion (1) in Theorem 3.

Now we prove Assertion (2) in Theorem 3. If |e| 6= |f | then, since ∆e,f is nonnegative
on [0, 1]d, there exists k ∈ {1, . . . , d} such that |e|(k) − |f |(k) = ∆e,f(1k) ≥ 1. Thereby, for
almost all primes p, we have

vp
(

Qe,f(1k + 1kp)
)

=
∞
∑

ℓ=1

∆e,f

(

1k + 1kp

pℓ

)

≥ ∆e,f

(

1k +
1k

p

)

≥ 1,

but vp
(

Qe,f(1k)
)

= 0 so that Qe,f does not satisfy the p-Lucas property.

Throughout the rest of this proof, we assume that |e| = |f |. According to Section 7.3.2
in [11], there exist k ∈ {1, . . . , d} and a rational fraction R(X) ∈ Q(X), R(X) 6= 1, such
that, for all large enough prime numbers p, we can choose ap ∈ {0, . . . , p − 1}d satisfying
Qe,f(ap) ∈ Z×

p , and such that, for all n ∈ N, we have (see [11, (7.10)])

Qe,f (ap + 1knp) ∈ R(n)Qe,f (ap)Qe,f(1kn)(1 + pZp).

We fix n ∈ N satisfying R(n) 6= 1. For almost all primes p, R(n), Qe,f(1kn) and Qe,f(ap)
belong to Z×

p , and R(n) 6≡ 1 mod pZp. Thus, we obtain

Qe,f(ap + 1knp) 6≡ Qe,f(ap)Qe,f(1kn) mod pZp,

which finishes the proof of Assertion (2) in Theorem 3.
9



Now we assume that |e| = |f | and that, for all x ∈ De,f , we have ∆e,f(x) ≥ 1. Hence,
for every prime p, we have

Zp(Qe,f) =
{

v ∈ {0, . . . , p− 1}d : v/p ∈ De,f

}

.

Furthermore, if v/p ∈ De,f , then, for all positive integers N and all a0, . . . , aN−1 ∈
{0, . . . , p− 1}d, we have

v

p
≤

{

a0 + a1p+ · · ·+ aN−1p
N−1 + vpN

pN+1

}

∈ De,f ,

so that, for all n ∈ Nd, n =
∑∞

k=0 nkp
k with nk ∈ {0, . . . , p− 1}d, we have

vp
(

Qe,f(n)
)

=
∞
∑

ℓ=1

∆e,f

({

∑ℓ−1
k=0 nkp

k

pℓ

})

≥ αp(Qe,f ,n),

and Theorem 3 is proved.

3. Proofs of Theorem 2 and Proposition 1

3.1. Induction via Apéry-like recurrence relations. In this section, we fix a prime
p. If A is a Zp-valued sequence, then, for all r ∈ N, we write UA(r) for the assertion “For
all n, i ∈ N, i ≤ r, if αp(A, n) ≥ i, then A(n) ∈ piZp”. As a first step, we shall prove the
following result.

Lemma 1. Let A be a Zp-valued sequence satisfying the p-Lucas property with A(0) ∈ Z×
p .

Assume that fA is canceled by a differential operator L ∈ Zp[z, θ] such that at least one of

the following conditions holds:

• L is of type I.

• L is of type II and p− 1 ∈ Zp(A).

Let r ∈ N be such that UA(r) holds. Then, for all n0 ∈ Zp(A) and all m ∈ N satisfying

αp(A,m) ≥ r, we have

A(n0 +mp) ∈ pr+1Zp.

Proof. Since A satisfies the p-Lucas property, we can assume that r ≥ 1. The series fA(z)
is canceled by a differential operator L =

∑q
k=0 z

kPk(θ) with q ∈ N, Pk(X) ∈ Zp[X ] and
P0(Z

×
p ) ⊂ Z×

p . Thus, for all n ∈ N, we have

q
∑

k=0

Pk(n− k)A(n− k) = 0. (3.1)

We fix m ∈ N satisfying αp(A,m) ≥ r. In particular, since r ≥ 1 and A(0) ∈ Z×
p , we

have m ≥ 1. Furthermore, for all v ∈ {0, . . . , p − 1}, we also have αp(A, v + mp) ≥ r.
According to UA(r), we obtain that, for all v ∈ {0, . . . , p− 1}, we have A(v +mp) ∈ prZp

so that A(v +mp) =: β(v,m)pr, with β(v,m) ∈ Zp.
10



By (3.1), for all v ∈ {q, . . . , p− 1}, we have

0 =

q
∑

k=0

Pk(v − k +mp)A(v − k +mp) = pr
q
∑

k=0

Pk(v − k +mp)β(v − k,m)

≡ pr
q
∑

k=0

Pk(v − k)β(v − k,m) mod pr+1Zp,

because, for all P ∈ Zp[X ] and all a, c ∈ Z, we have P (a + cp) ≡ P (a) mod pZp. Thus,
for all v ∈ {q, . . . , p− 1}, we obtain

q
∑

k=0

Pk(v − k)β(v − k,m) ≡ 0 mod pZp. (3.2)

We claim that if v ∈ {1, . . . , q − 1}, then, for all k ∈ {v + 1, . . . , q}, we have

Pk(v +mp− k)A(v +mp− k) ∈ pr+1Zp. (3.3)

Indeed, on the one hand, if L is of type II, then we have q = 2 and P2(X) ∈ (X+1)Zp[X ]
which yields

P2(−1 +mp)A(−1 +mp) ∈ pA
(

p− 1 + (m− 1)p
)

Zp.

Since 0 /∈ Zp(A), we have αp(A,m− 1) ≥ r − 1 which, together with p− 1 ∈ Zp(A), leads
to

αp

(

A, p− 1 + (m− 1)p
)

≥ r.

According to UA(r), we obtain pA
(

p− 1 + (m− 1)p
)

∈ pr+1Zp, as expected. On the other
hand, if L is of type I, then for all v ∈ {1, . . . , q − 1} and all k ∈ {v + 1, . . . , q}, we have

vp
(

Pk(v +mp− k)
)

≥ vp

(

k−1
∏

i=1

(v +mp− k + i)2

)

.

Writing k− v = a+ bp with a ∈ {0, . . . , p− 1} and b ∈ N, we obtain k− 1 ≥ a+ bp so that

vp

(

k−1
∏

i=1

(mp + i− a− bp)

)

≥

{

b if a = 0;

b+ 1 if a ≥ 1.
.

Thus, it is enough to prove that

A(v +mp− k) ∈

{

pr+1−2bZp if a = 0;

pr−1−2bZp if a ≥ 1.
. (3.4)

We have v +mp− k = −a+ (m− b)p. If −a+ (m− b)p < 0, then A(v +mp− k) = 0 and
(3.4) holds. If m− b ≥ 0, then we have αp(A,m− b) ≥ r − b. Thus, we have either a = 0
and αp(A, v +mp− k) ≥ r − b, or a,m− b ≥ 1 and

αp(A, v +mp− k) = αp

(

A, p− a+ (m− b− 1)p
)

≥ r − b− 1.
11



Hence Assertion UA(r) yields

A(v +mp− k) ∈

{

pr−bZp if a = 0;

pr−1−bZp if a ≥ 1.
.

If a = 0, then b ≥ 1 so that (3.4) holds and (3.3) is proved.

By (3.3), for all v ∈ N, 1 ≤ v ≤ min(q − 1, p− 1), we have

0 =

q
∑

k=0

Pk(v − k +mp)A(v − k +mp)

≡
v
∑

k=0

P (v − k +mp)A(v − k +mp) mod pr+1Zp

≡ pr
v
∑

k=0

Pk(v − k +mp)β(v − k,m) mod pr+1Zp

≡ pr
v
∑

k=0

Pk(v − k)β(v − k,m) mod pr+1Zp.

Thus, for all v ∈ N, 1 ≤ v ≤ min(q − 1, p− 1), we have

v
∑

k=0

Pk(v − k)β(v − k,m) ≡ 0 mod pZp. (3.5)

Both sequences
(

β(v,m)
)

0≤v≤p−1
and

(

A(v)
)

0≤v≤p−1
satisfy Equations (3.2) and (3.5).

Furthermore, for all v ∈ {1, . . . , p − 1}, we have P0(v), A(0) ∈ Z×
p . Hence there exists

γ(m) ∈ {0, . . . , p − 1} such that, for all v ∈ {0, . . . , p − 1}, we have β(v,m) ≡ A(v)γ(m)
mod pZp so that

A(v +mp) ≡ A(v)γ(m)pr mod pr+1Zp.

Since n0 ∈ Zp(A), we obtain A(n0 +mp) ∈ pr+1Zp and Lemma 1 is proved. �

3.2. Proof of Theorem 2. Let p be a fixed prime number. For every positive integer n,
we set ℓ(n) := ⌊logp(n)⌋ + 1 the length of the expansion of n to the base p, and ℓ(0) := 1.
For all positive integers r, n1, . . . , nr, we set

n1 ∗ · · · ∗ nr := n1 + n2p
ℓ(n1) + · · ·+ nrp

ℓ(n1)+···+ℓ(nr−1),

so that the expansion of n1 ∗ · · · ∗ nr to the base p is the concatenation of the respective
expansions of n1, . . . , nr. Then, by a result of Mellit and Vlasenko [17, Lemma 1], there
exists a Zp-valued sequence (cn)n≥0 such that, for all n ≥ 1, we have

A(n) =
∑

n1∗···∗nr=n

1≤r≤ℓ(n), ni≥0

cn1
· · · cnr

and cn ≡ 0 mod pℓ(n)−1Zp. (3.6)
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For all r ∈ N, we write U(r) for the assertion: “For all n, i ∈ N, i ≤ r, if αp(A, n) ≥ i,
then A(n), cn ∈ piZp”. To prove Theorem 2, it suffices to show that, for all r ∈ N, Assertion
U(r) holds.

First we prove U(1). By Theorem 1 of [17], A satisfies the p-Lucas property. In addition,
if v ∈ Zp(A), then v 6= 0 because A(0) = 1, and by (3.6) we have cv = A(v) ∈ pZp. Now, if
n ∈ N satisfies ℓ(n) = 2 and αp(A, n) ≥ 1, then Equation (3.6) yields A(n) ≡ cn mod pZp,
so that cn ∈ pZp. Hence, by induction on ℓ(n), we obtain that, for all n ∈ N satisfying
αp(A, n) ≥ 1, we have cn ∈ pZp, so that U(1) holds.

Let r be a positive integer such that U(r) holds. We shall prove that U(r + 1) is true.
For all positive integers M , we write UM(r+1) for the assertion: “For all n, i ∈ N, n ≤ M ,
i ≤ r + 1, if αp(A, n) ≥ i, then A(n), cn ∈ piZp”. Hence UM(r + 1) is true if ℓ(M) ≤ r.
Let M be a positive integer such that UM(r + 1) holds. We shall prove UM+1(r + 1). By
Assertions U(r) and UM(r + 1), it suffices to prove that if αp(A,M + 1) ≥ r + 1, then
A(M +1), cM+1 ∈ pr+1Zp. In the rest of the proof, we assume that αp(A,M +1) ≥ r+1.

If 2 ≤ u ≤ ℓ(M + 1) and n1, . . . , nu ∈ N satisfy n1 ∗ · · · ∗ nu = M + 1, then, for all
i ∈ {1, . . . , u}, we have ni ≤ M and αp(A, n1) + · · ·+ αp(A, nu) = αp(A,M + 1) ≥ r + 1.
Then there exist 1 ≤ a1 < · · · < ak ≤ u, 1 ≤ i1, . . . , ik ≤ r + 1, such that αp(A, naj ) ≥ ij
and i1 + · · ·+ ik ≥ r+ 1. Thereby, Assertion UM(r+ 1) yields cn1

· · · cnu
∈ pr+1Zp, so that

∑

n1∗···∗nu=M+1

2≤u≤ℓ(M+1), ni≥0

cn1
· · · cnu

∈ pr+1Zp.

By (3.6), we obtain

A(M + 1) ≡ cM+1 mod pr+1Zp and cM+1 ≡ 0 mod pℓ(M+1)−1Zp.

Hence it suffices to consider the case ℓ(M + 1) = r + 1. In particular, we have M + 1 =
v + mp with v ∈ Zp(A) and m ∈ N, αp(A,m) = r. Since U(r) holds, Lemma 1 yields
A(M + 1) ∈ pr+1Zp. Thus we also have cM+1 ∈ pr+1Zp and Assertion UM+1(r + 1) holds.
This finishes the proof of U(r + 1) so that of Theorem 2. �

3.3. Proof of Proposition 1. Let p be a prime and A a Zp-valued sequence satisfying
hypothesis of Proposition 1. For all n ∈ N, we write α(n), respectively Z, as a shorthand
for αp(A, n), respectively for Zp(A). For all r ∈ N, we define assertions

U(r) : “For all n, i ∈ N, i ≤ r, if α(n) ≥ i, then A(n) ∈ piZp.” ,

and

V(r) : “For all n, i ∈ N, i ≤ r, and all B ∈ B, if α(n) ≥ i, then B(n) ∈ pi−1Zp”.

To prove Proposition 1, we have to show that, for all r ∈ N, Assertions U(r) and V(r)
are true. We shall prove those assertions by induction on r.

Observe that Assertions U(0), V(0) and V(1) are trivial. Furthermore, since A satisfies
the p-Lucas property, Assertion U(1) holds. Let r0 be a fixed positive integer, r0 ≥ 2, such
that Assertions U(r0 − 1) and V(r0 − 1) are true. First, we prove Assertion V(r0).
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Let B ∈ B and m ∈ N be such that α(m) ≥ r0. We write m = v + np with v ∈
{0, . . . , p−1}. Since r0 ≥ 2 and 0 /∈ Z, we have n ≥ 1 and, by Assertion (a) in Proposition 1,
there exist A′ ∈ A and a sequence (Bk)k≥0, Bk ∈ B, such that

B(v + np) = A′(n) +
∞
∑

k=0

pk+1Bk(n− k). (3.7)

In addition, we have α(n) ≥ r0 − 1 and, since 0 /∈ Z, we have α(n − 1) ≥ r0 − 2. By
induction, for all k ∈ N, k ≤ n, we have α(n−k) ≥ r0−1−k. Thus, by (3.7) in combination
with U(r0 − 1) and V(r0 − 1), we obtain

A′(n) ∈ pr0−1 and pk+1Bk(n− k) ∈ pk+1+r0−2−kZp ⊂ pr0−1Zp,

so that B(v + np) ∈ pr0−1Zp and V(r0) is true.

Now we prove Assertion U(r0). We write UN(r0) for the assertion: “For all n, i ∈ N,
n ≤ N , i ≤ r0, if α(n) ≥ i, then A(n) ∈ piZp”. We shall prove UN (r0) by induction on
N . Assertion U1(r0) holds. Let N be a positive integer such that UN(r0) is true. Let
n := n0+mp ≤ N +1 with n0 ∈ {0, . . . , p−1} and m ∈ N. We can assume that α(n) ≥ r0.

If n0 ∈ Z, then we have α(m) ≥ r0 − 1 and, by Lemma 1, we obtain A(n) ∈ pr0Zp as
expected. It remains to consider the case n0 /∈ Z. In this case, we have α(m) ≥ r0. By
Assertion (a) in Proposition 1, there exist A′ ∈ A and a sequence (Bk)k≥0 with Bk ∈ B

such that

A(n) = A′(m) +
∞
∑

k=0

pk+1Bk(m− k).

We have m ≤ N , α(m) ≥ r0 and α(m−k) ≥ r0−k, hence, by Assertions UN (r0) and V(r0),
we obtain A(n) ∈ pr0Zp. This finishes the induction on N and proves U(r0). Therefore, by
induction on r0, Proposition 1 is proved. �

4. Proof of Theorem 1

To prove Theorem 1, we shall apply Proposition 1 to Se,f . As a first step, we prove that
this sequence satisfies the p-Lucas property.

Proof of Proposition 2. For all x ∈ [0, 1]d, we have ∆e,f(x) = ∆e,f({x}) ≥ 0 so that, by
Landau’s criterion, Qe,f is integer-valued. Let p be a fixed prime, v ∈ {0, . . . , p− 1} and
n ∈ N. We have

Se,f(v + np) =
∑

k1+···+kd=v+np

ki∈N

Qe,f(k1, . . . , kd).

Write ki = ai+mip with ai ∈ {0, . . . , p−1} and mi ∈ N. If a1+ · · ·+ad 6= v, then we have
a1+ · · ·+ad ≥ p and there exists i ∈ {1, . . . , d} such that ai ≥ p/d. Since e is 1-admissible,
we have (a1, . . . , ad)/p ∈ De,f so that ∆e,f

(

(a1, . . . , ap)/p
)

≥ 1 and Qe,f(k1, . . . , kd) ∈ pZp.
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In addition, by Theorem 3, Qe,f satisfies the p-Lucas property for all primes p. Hence we
obtain

Se,f(v + np) ≡
∑

a1+···+ad=v
0≤ai≤p−1

∑

m1+···+md=n

mi∈N

Qe,f (a1 +m1p, . . . , ad +mdp) mod pZp

≡
∑

a1+···+ad=v
0≤ai≤p−1

∑

m1+···+md=n

mi∈N

Qe,f (a1, . . . , ad)Qe,f(m1, . . . , md) mod pZp

≡ Se,f(v)Se,f(n) mod pZp.

This finishes the proof of Proposition 2. �

If e is 2-admissible then e is also 1-admissible. Furthermore, if f = (1k1 , . . . , 1kv), then,
for all x ∈ De,f , we have

∆e,f(x) =

u
∑

i=1

⌊ei · x⌋ ≥ 1.

Hence, if e and f satisfy the conditions of Theorem 1, then Proposition 2 implies that,
for all primes p, Se,f has the p-Lucas property and Se,f(0) = 1 ∈ Z×

p . Thereby, to prove
Theorem 1, it remains to prove that Se,f satisfies Condition (a) in Proposition 1 with

B = {Sg
e,f : g ∈ Fd

p}.

First we prove that some special functions belong to Fp.

4.1. Special functions in Fp. For all primes p, we write | · |p for the ultrametric norm
on Qp (the field of p-adic numbers) defined by |a|p := p−vp(a). Note that (Zp, | · |p) is a
compact space. Furthermore, if (cn)n≥0 is a Zp-valued sequence, then

∑∞
n=0 cn is convergent

in (Zp, | · |p) if and only if |cn|p −→
n→∞

0. In addition, if
∑∞

n=0 cn converges, then (cn)n∈N is a

summable family in (Zp, | · |p).

In the rest of the article, for all primes p and all positive integers k, we set Ψp,k,0(0) = 1,
Ψp,k,i(0) = 0 for i ≥ 1 and, for all i,m ∈ N, m ≥ 1, we set

Ψp,k,i(m) := (−1)iσm,i

(

1

k
,

1

k + p
, . . . ,

1

k + (m− 1)p

)

,

where σm,i is the i-th elementary symmetric polynomial of m variables. Let us remind to
the reader that, for all positive integers m and all i ∈ N, i > m, we have σm,i = 0.

The aim of this section is to prove that, for all primes p, all k ∈ {1, . . . , p− 1} and all
i ∈ N, we have

i!Ψp,k,i ∈ Fp. (4.1)

Proof of (4.1). Throughout this proof, we fix a prime number p and an integer k ∈
{1, . . . , p − 1}. Furthermore, for all nonnegative integers i, we use Ψi as a shorthand
for Ψp,k,i and N≥i as a shorthand for the set of integers larger than or equal to i. We shall
prove (4.1) by induction on i. To that end, for all i ∈ N, we write Ai for the following
assertion:
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“There exists a sequence (Ti,r)r≥0 of polynomial functions with coefficients
in Zp which converges uniformly to i!Ψi on N”.

First, observe that, for all m ∈ N, we have Ψ0(m) = 1, so that assertion A0 is true. Let
i be a fixed positive integer such that assertions A0, . . . ,Ai−1 are true. According to the
Newton-Girard formulas, for all m ∈ N, m ≥ i, we have

i(−1)iσm,i(X1, . . . , Xm) = −
i
∑

t=1

(−1)i−tσm,i−t(X1, . . . , Xm)Λt(X1, . . . , Xm),

where Λt(X1, . . . , Xm) :=
∑m

s=1X
t
s. Thereby, for all m ≥ i, we have

iΨi(m) = −

i
∑

t=1

Ψi−t(m)Λt

(

1

k
, . . . ,

1

k + (m− 1)p

)

. (4.2)

For all j, t ∈ N, we have

1

(k + jp)t
=

1

kt

1

(1 + j
k
p)t

=
1

kt
+

∞
∑

s=1

(−1)s

kt

(

t− 1 + s

s

)(

j

k

)s

ps, (4.3)

where the right hand side of (4.3) is a convergent series in (Zp, | · |p) because k ∈ Z×
p .

Therefore, we obtain that

Λt

(

1

k
, . . . ,

1

k + (m− 1)p

)

=
m

kt
+

m−1
∑

j=0

∞
∑

s=1

(−1)s

kt

(

t− 1 + s

s

)(

j

k

)s

ps

=
m

kt
+

∞
∑

s=1

(−1)s

kt+s

(

t− 1 + s

s

)

ps

(

m−1
∑

j=0

js

)

. (4.4)

According to Faulhaber’s formula, for all positive integers s, we have

ps
m−1
∑

j=0

js =

s+1
∑

c=1

(−1)s+1−c

(

s+ 1

c

)

ps
Bs+1−c

s+ 1
(m− 1)c,

where Bk is the k-th first Bernoulli number. For all positive integers s and t, we set
R0,t(X) := X/kt and

Rs,t(X) :=
1

kt+s

(

t− 1 + s

s

) s+1
∑

c=1

(−1)1−c

(

s+ 1

c

)

ps
Bs+1−c

s+ 1
(X − 1)c,

so that

Λt

(

1

k
, . . . ,

1

k + (m− 1)p

)

=

∞
∑

s=0

Rs,t(m).

In the rest of this article, for all polynomials P (X) =
∑N

n=0 anX
n ∈ Zp[X ], we set

‖P‖p := max
{

|an|p : 0 ≤ n ≤ N
}

.
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We claim that, for all s, t ∈ N, t ≥ 1, we have

Rs,t(X) ∈ Zp[X ], ‖Rs,t‖p −→
s→∞

0 and Rs,t(0) = 0. (4.5)

Indeed, on the one hand, if p = 2 and s = 1, then we have

R1,t(X) =
−t

kt+1

(

X − 1 + (X − 1)2
)

∈ XZ2[X ].

On the other hand, if p ≥ 3 or s ≥ 2, then we have ps > s + 1 so that vp(s + 1) ≤ s − 1.
Furthermore, according to the von Staudt-Clausen theorem, we have vp(Bs+1−c) ≥ −1.
Thus, we obtain that Rs,t(X) ∈ Zp[X ]. To be more precise, we have vp(s+1) ≤ logp(s+1),
so that ‖Rs,t‖p −→

s→∞
0 as expected. In addition, we have

Rs,t(0) = −
ps

(s + 1)kt+s

(

t− 1 + s

s

) s+1
∑

c=1

(

s+ 1

c

)

Bs+1−c

= −
ps

(s + 1)kt+s

(

t− 1 + s

s

) s
∑

d=0

(

s+ 1

d

)

Bd = 0,

where we used the well known reccurence relation satisfied by the Bernoulli numbers

s
∑

d=0

(

s+ 1

d

)

Bd = 0, (s ≥ 1).

According to A0, . . . ,Ai−1, for all j ∈ {0, . . . , i − 1}, there exists a sequence (Tj,r)r≥0

of polynomial functions with coefficients in Zp which converges uniformly to j!Ψj on N.
According to (4.2) and (4.5), for all N ∈ N, there exists SN ∈ N such that, for all r ≥ SN

and all m ≥ i, we have

i!Ψi(m) ≡ −

i
∑

t=1

(i− 1)!

(i− t)!
Ti−t,r(m)

r
∑

s=0

Rs,t(m) mod pNZp.

Thus, the sequence (Ti,r)r≥0 of polynomial functions with coefficients in Zp, defined by

Ti,r(x) := −
i
∑

t=1

(i− 1)!

(i− t)!
Ti−t,r(x)

r
∑

s=0

Rs,t(x), (x, r ∈ N), (4.6)

converges uniformly to i!Ψi on N≥i. To prove Ai, it suffices to show that, for all m ∈
{0, . . . , i− 1}, we have

Ti,r(m) −→
r→∞

0. (4.7)
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Observe that Equations (4.6) and (4.5) lead to Ti,r(0) = 0. In particular, if i = 1, then
(4.7) holds. Now we assume that i ≥ 2. For all m ≥ 2, we have

m
∑

j=0

Ψj(m)Xj =
m−1
∏

w=0

(

1−
X

k + wp

)

=

(

1−
X

k + (m− 1)p

)m−2
∏

w=0

(

1−
X

k + wp

)

=

(

1−
X

k + (m− 1)p

)m−1
∑

j=0

Ψj(m− 1)Xj.

Thereby, for all j ∈ {1, . . . , m− 1}, we obtain that

Ψj(m) = Ψj(m− 1)−
Ψj−1(m− 1)

k + (m− 1)p
,

with
1

k + (m− 1)p
=

∞
∑

s=0

(−1)s

ks+1
ps(m− 1)s.

Thus, there exists a sequence (Ur)r≥0 of polynomials with coefficients in Zp such that, for
all positive integers N , there exits SN ∈ N such that, for all r ≥ SN and all m ≥ i+ 1, we
have

Ti,r(m) ≡ Ti,r(m− 1)− Ti−1,r(m− 1)Ur(m− 1) mod pNZp. (4.8)

But, if V1(X), V2(X) ∈ Zp[X ] and if there exists a ∈ N such that, for all m ≥ a, we
have V1(m) ≡ V2(m) mod pNZp, then, for all n ∈ Z, we have V1(n) ≡ V2(n) mod pNZp.
Indeed, let n be an integer, there exists v ∈ N satisfying n+vpN ≥ a. Thus, we obtain that
V1(n) ≡ V1(n + vpN) ≡ V2(n + vpN) ≡ V2(n) mod pNZp. In particular, Equation (4.8)
also holds for all positive integers m.

Furthermore, according to Ai−1, for all m ∈ {0, . . . , i − 2}, we have Ti−1,r(m) −→
r→∞

0.

Thus, for all positive integers N , there exists SN ∈ N, such that, for all r ≥ SN and all
m ∈ {1, . . . , i− 1}, we have

Ti,r(m) ≡ Ti,r(m− 1) mod pNZp.

Since Ti,r(0) = 0, we obtain that Ti,r(m) ≡ 0 mod pNZp for all m ∈ {0, . . . , i− 1}, so that
(4.7) holds. This finishes the induction on i and proves (4.1). �

4.2. On the p-adic Gamma function. For every prime p, we write Γp for the p-adic
Gamma function, so that, for all n ∈ N, we have

Γp(n) = (−1)n
n−1
∏

λ=1
p∤λ

λ.

The aim of this section is to prove Proposition 3.
18



Proof of Proposition 3. Let p be a fixed prime number. For all n,m ∈ N, we have

Γp

(

(m+ n)p
)

Γp(mp)Γp(np)
=

(

(m+n)p
∏

λ=np

p∤λ

λ

)

/

(

mp
∏

λ=1
p∤λ

λ

)

=

(

mp
∏

λ=1
p∤λ

(np+ λ)

)

/

(

mp
∏

λ=1
p∤λ

λ

)

=

mp
∏

λ=1
p∤λ

(

1 +
np

λ

)

. (4.9)

Let X, T1, . . . , Tm be m+ 1 variables. Then, we have

m
∏

j=1

(X − Tj) = Xm +
∞
∑

i=1

(−1)iσm,i(T1, . . . , Tm)X
m−i.

Therefore, we obtain

mp
∏

λ=1
p∤λ

(

1 +
np

λ

)

=

p−1
∏

k=1

m−1
∏

ω=0

(

1 +
np

k + ωp

)

=

p−1
∏

k=1

(

1 +

∞
∑

i=1

(−1)iσm,i

(

−np

k
, · · · ,

−np

k + (m− 1)p

)

)

=

p−1
∏

k=1

(

1 +
∞
∑

i=1

(−1)inipiΨp,k,i(m)

)

. (4.10)

Let k ∈ {1, . . . , p− 1} be fixed. By (4.1), for all positive integers i, there exists a sequence
(Pi,ℓ)ℓ≥0 of polynomial functions with coefficients in Zp which converges pointwise to i!Ψp,k,i.
We fix K ∈ N. For all positive integers N , we set

fN(x, y) := 1 +

K+1
∑

i=1

(−1)ixi p
i

i!
Pi,N(y).

If n,m ∈ {0, . . . , K}, then we have

RN : = 1 +

∞
∑

i=1

(−1)inipiΨp,k,i(m)− fN(n,m)

=
K+1
∑

i=1

(−1)inip
i

i!

(

i!Ψp,k,i(m)− Pi,N(m)
)

−→
N→∞

0.
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Furthermore, we have fN(x, y) ∈ 1 + pZp[x, y]. Indeed, if i = i0 + i1p + · · · + iap
a with

ij ∈ {0, . . . , p− 1}, then we set sp(i) := i0 + · · ·+ ia so that, for all positive integers i, we
have

i− vp(i!) = i−
i− sp(i)

p− 1
=

i(p− 2) + sp(i)

p− 1
> 0.

Hence, by (4.10), we obtain that there exists g ∈ F2
p such that, for all n,m ∈ N, we have

mp
∏

λ=1
p∤λ

(

1 +
np

λ

)

= 1 + g(n,m)p,

which, together with (4.9), finishes the proof of Proposition 3. �

4.3. Last step in the proof of Theorem 1. Let A be the Zp-module spanned by Se,f .
We set B = {Sg

e,f , g ∈ Fd
p}. We shall prove that Se,f and B satisfy Condition (a) of

Proposition 1. Obviously, B is constituted of Zp-valued sequences and we have A ⊂ B.
Let g ∈ Fd

p, v ∈ {0, . . . , p− 1} and n ∈ N be fixed. For all a ∈ {0, . . . , p− 1}d and m ∈ Nd,
we have

Qe,f(a+mp) =

∏u
i=1(ei ·mp)!

∏

ei·a
k=1(ei ·mp + k)

∏v
i=1(fi ·mp)!

∏

fi·a
k=1(fi ·mp + k)

,

with
∏u

i=1(ei ·mp)!
∏v

i=1(fi ·mp)!
= p(|e|−|f |)·mQe,f(m)

∏u
i=1(−1)ei·mpΓp(ei ·mp)

∏v
i=1(−1)fi·mpΓp(fi ·mp)

and
∏u

i=1

∏

ei·a
k=1(ei ·mp + k)

∏v
i=1

∏

fi·a
k=1(fi ·mp+ k)

=

∏u
i=1

∏

ei·a
k=1,p∤k(ei ·mp + k)

∏v
i=1

∏

fi·a
k=1,p∤k(fi ·mp+ k)

·p∆e,f (a/p)

∏u
i=1

∏⌊ei·a/p⌋
k=1 (ei ·m+ k)

∏v
i=1

∏⌊fi·a/p⌋
k=1 (fi ·m+ k)

.

Since |e| = |f |, we have
∏u

i=1(−1)ei·mpΓp(ei ·mp)
∏v

i=1(−1)fi·mpΓp(fi ·mp)
=

∏u
i=1 Γp(ei ·mp)

∏v
i=1 Γp(fi ·mp)

.

By Proposition 3, there exists h ∈ Fd
p such that, for all m1, . . . , md ∈ N, we have

Γp

(

(m1 + · · ·+md)p
)

Γp(m1p) · · ·Γp(mdp)
=

d
∏

i=2

Γp

(

(m1 + · · ·+mi−1)p+mip
)

Γp

(

(m1 + · · ·+mi−1)p
)

Γp(mip)
= 1 + h(m1, . . . , md)p.

Since f is only constituted by vectors 1k, there exists g′ ∈ Fd
p such that, for all m ∈ Nd,

we have
∏u

i=1 Γp(ei ·mp)
∏v

i=1 Γp(fi ·mp)
= 1 + g′(m)p.

Furthermore, for all a ∈ {0, . . . , p− 1}d, there exist λa ∈ Zp and ga ∈ Fd
p such that, for all

m ∈ Nd, we have
∏u

i=1

∏

ei·a
k=1,p∤k(ei ·mp + k)

∏v
i=1

∏

fi·a
k=1,p∤k(fi ·mp+ k)

= λa + ga(m)p.
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Since f is only constituted by vectors 1k, for all i ∈ {1, . . . , v}, we have ⌊fi · a/p⌋ = 0.
Thereby, for all a ∈ {0, . . . , p− 1}d, there exists ha ∈ Zp + Fd

p, such that, for all m ∈ Nd,
we have

Qe,f(a+mp) = Qe,f(m)ha(m)p∆e,f (a/p)
u
∏

i=1

⌊ei·a/p⌋
∏

k=1

(ei ·m+ k).

For all a ∈ {0, . . . , p − 1}d and m ∈ Nd, we set τa(m) := g(a + mp)ha(m), so that
τa ∈ Zp + pFd

p. Therefore, we have

S
g
e,f(v + np) =

∑

0≤a≤1(p−1)

∑

|a+mp|=v+np

g(a+mp)Qe,f (a+mp)

=
∑

0≤a≤1(p−1)

∑

|a+mp|=v+np

Qe,f(m)τa(m)p∆e,f (a/p)
u
∏

i=1

⌊ei·a/p⌋
∏

k=1

(ei ·m+ k).

If |a+mp| = v + np, then we have |a| = v + jp with

0 ≤ j ≤ min

(

n,

⌊

d(p− 1)− v

p

⌋)

=: M.

Furthermore, we have ⌊|a|/p⌋ = j and there is k ∈ {1, . . . , d} such that a(k) ≥ (v + jp)/d.
Since e is 2-admissible and f = (1k1, . . . , 1kv), we obtain that

∆e,f(a/p) =

u
∑

i=1

⌊

ei · a

p

⌋

≥ 2j.

In addition, we have either

p∆e,f (a/p)
u
∏

i=1

⌊ei·a/p⌋
∏

k=1

(ei ·m+ k) = 1, (∀m ∈ Nd),

or

m 7→ p∆e,f (a/p)
u
∏

i=1

⌊ei·a/p⌋
∏

k=1

(ei ·m+ k) ∈ pFd
p.

Hence, for all a ∈ {0, . . . , p − 1}d, there exist a function fa wich is either constant or in
pFd

p, and ga ∈ Fd
p such that

S
g
e,f(v + np) =

∑

0≤a≤1(p−1)

|a|=v

∑

|m|=n

Qe,f(m)τa(m)fa(m)

+

M
∑

j=1

p2j
∑

0≤a≤1(p−1)

|a|=v+jp

∑

|m|=n−j

Qe,f(m)τa(m)ga(m).
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Therefore, there exist A′ ∈ A and a sequence (Bk)k≥0, Bk ∈ B, such that

S
g
e,f(v + np) = A′(n) + pB0(n) +

∞
∑

k=1

pk+1Bk(n− k).

This shows that Se,f and B satisfy Condition (a) in Proposition 1, so that Theorem 1 is
proved. �
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