Résumé :

La dynamique d'un écoulement décollé en régime subsonique est étudié. Il a été montré numériquement et expérimentalement pour ce type d'écoulement en régime incompressible, que la zone de recirculation est caractérisée par un phénomène basse-fréquence auto-entretenu. L'objectif sera ici d'étudier la sensibilité d'un tel écoulement vis-à-vis des effets de compressibilité. Pour cela l'étude de stabilité linéaire globale bi-et tridimensionnelle sera menée.

Ces résultats contribueront à la compréhension du phénomène de battement basse-fréquence observé expérimentalement et généralement rencontré dans des écoulements décollés en régime compressible subsonique.

Abstract :

Flow separation is a common feature in wall-bounded flow, where it is generally induced by an adverse pressure gradient. Here we reconsider a bump-type geometry which has been used in previous numerical investigations of the stability of the laminar recirculation bubble for incompressible flow. It has been shown for low Reynolds number that the first bifurcation of the 2D stationnary flow is characterized by a zero-frequency 3D instability mode. For larger Reynolds number a second bifurcation appears (Hopf bifurcation) and separated boundary-layer is then subject to a low frequency phenomenon known as 'flapping'. The influence of compressibility for this type of flow is assessed.

We first solve the compressible Navier-Stokes equations in order to obtain an equilibrium solution for increasing compressibility effects. Two-dimensional global stability of this solution is then investigates and we assess the influence of Mach number on the critical Reynolds number for which the separated flow becomes unstable with respect to oscillatory perturbations.

Three-dimensional transverse instabilities are addressed as well and in particular the evolution of growth rate and transverse wave length of the most unstable mode for several Mach numbers.

Mots clefs : instabilités globales, écoulements compressibles, décollement L'étude des instabilités globales transverses sera ensuite menée pour différents nombres de Mach pour des solutions d'équilibre homogènes dans la direction transversale. Les évolutions du taux de croissance et de la longueur d'onde transverse du mode le plus instable en fonction du nombre de Mach sont étudiées ainsi que l'influence de la compressibilité sur la nature de la bifurcation 3D.

Formulation du problème

Les équations du mouvement considérées ici sont les équations de Navier-Stokes 3-D compressibles.

Ces équations sont adimensionnées respectivement par l'épaisseur de déplacement δ 0 , de la couche limite imposée à l'entrée x 0 = 0 du domaine de calcul, la vitesse extérieure U ∞ , la pression p ∞ et la température statique extérieure T ∞ Ces équations s'écrivent :

∂ρ ∂t + (u. )ρ + ρ( .u) = 0 ρ ∂u ∂t + (u. )u = - 1 γM 2 p + 1 3Re ( .u) + 1 Re 2 u ρ ∂T ∂t + (u. )T = -(γ -1)p( .u) + γ(γ -1)M 2 Re τ : u + γ ReP r 2 T (1) 
Le nombre de Reynolds et de Prandtl s

'écrivent respectivement Re = ρ ∞ U ∞ δ 0 /µ ∞ , P r = C p µ ∞ /κ c∞ .
La viscosité dynamique µ ∞ ainsi que la conductivité thermique κ c∞ sont supposées constantes par la suite. Ce système d'équation est fermée par la loi d'état des gaz parfaits p = ρrT . Le système d'équations (1) peut formellement s'écrire sous la forme du système dynamique suivant :

B ∂Q ∂t = F(Q) (2) 
où Q = (u, v, T, ρ) est le vecteur d'état instantané.

Calcul du champ de base

Le champ de base, autour duquel l'analyse de stabilité linéaire est réalisée, est recherché comme une solution d'équilibre des équations de Navier-Stokes. La géométrie considérée est celle d'une bosse, homogène dans la direction transversale z, montée sur une plaque plane. Le champ de base peut donc être considéré comme étant bidimensionnel en accord avec les symétries du problème. Formellement, on recherche Q 0 (x, y) tel que

F(Q 0 ) = 0. (3) 
La figure (1) illustre la géométrie du système et le domaine de calcul. L'état de base est caractérisé par une zone de recirculation en aval de la bosse, dont la hauteur est 2 fois celle de l'épaisseur de la couche limite à l'entrée. La hauteur (y n = 60δ 0 ) du domaine a été choisie de façon à récupérer un écoulement uniforme loin de la plaque. 

Calcul de stabilité globale

On suppose que le champ instantané Q(x, y, z, t) peut se décomposer comme la somme d'un champ de base Q 0 (x, y) et d'un champ perturbé Q(x, y, z, t), de composantes Q = (û, v, ŵ, T , ρ) pour des perturbations 3D, avec une amplitude infinitesimale :

Q(x, y, z, t) = Q 0 (x, y) + Q(x, y, z, t) où ||Q 0 || || Q||. (4) 
En injectant la relation ( 4) dans (2) et en linéarisant autour du champ de base, on obtient les équations d'évolution pour la perturbation

B ∂ Q ∂t = ∂F ∂Q (Q 0 ) Q + O || Q 2 || (5) 
où A = ∂F/∂Q(Q 0 ) est l'opérateur jacobien. On cherche ensuite les solutions sous la forme L'évolution de la longueur de la zone de recirculation, L sep , présentée sur la figure 3, montre les effets de compressibilité sur la solution d'équilibre. L'évolution de cette grandeur est non-linéaire, montrant une influence progressive des effets de compressibilité sur le champ de base au fur et à mesure que le nombre de Mach augmente. Une telle augmentation de la zone de recirculation avec la compressibilité a également été obervée pour des écoulements d'arrière-corps [START_REF] Meliga | Effect of compressibility on the global stability of axisymmetric wake flows[END_REF]. Les perturbations bidimensionnelles globales de type Kelvin-Helmholtz, dont la superposition donne lieu au battement basse fréquence, typique des couches limites décollées, en régime incompressible [START_REF] Passaggia | Transverse instability and low-frequency flapping in incompressible separated boundary layer flows : an experimental study[END_REF], apparaissent comme étant particulièrement sensibles aux effets de compressibilité. Ainsi, le nombre de Reynolds critique pour ces perturbations est diminué de 40 % pour un nombre de Mach de 0.7, en comparaison avec le régime incompressible. Ce comportement semble directement lié à l'augmentation avec le nombre de Mach de la longueur de la zone de recirculation. À l'inverse, pour des perturbations globales tridimensionnelles, une diminution du taux d'amplification du mode stationnaire le plus instable est observée lorsque la compressibilité augmente, ce qui a également pour effet d'augmenter la longueur d'onde transverse de la perturbation.

Q(x, y, z, t) = Q (x, y; ω, β)e i(βz-ωt) + c.c. (6) 
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 1 Figure 1 -Solution d'équilibre pour la vitesse longitudinale U 0 (x, y) et pour M = 0.1

  où β ∈ R, et ω ∈ C. Le système d'équations (5) devient sous cette hypothèse : (A -iωB)Q (x, y; ω, β) = 0 (7) Le système d'équation (7) représente ainsi un problème aux valeurs propres généralisé où ω est la valeur propre et Q (x, y; ω, β) le vecteur propre associé. Ce problème aux valeurs propres est fermé par des conditions aux limites compatibles avec celles utilisées pour le champ de base. Le système (7) étant de taille importante (dim(A) = (5 × N x × N y ) 2 ) pour des perturbations 3D, un algorithme d'Arnoldi est utilisé pour le calcul de la partie significative du spectre des valeurs propres. 3 Résultats 3.1 Analyse du champ de base La géométrie de type bosse bidimensionnelle et les dimensions du domaine considérées sont données sur la figure 1. La grille utilisée pour discrétiser le problème possède (N x , N y ) = (300, 60) points de collocation spectrale Chebychev respectivement dans la direction longitudinale et selon la direction normale à la paroi. Des transformations de coordonnées sont utilisées pour passer d'un domaine [-1; +1] 2 à un domaine [0; X n ] × [0; Y n ]. Les iso-valeurs de vitesse longitudinale U 0 du champ de base, pour un nombre de Reynolds Re = 600 et une hauteur de bosse h = 2δ 0 sont représentées sur la figure 2(a) et 2(b).
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 5 Figure 5 -Diagramme de stabilité globale pour a) Re = 600 et M = 0.3, 0.5, 0.7 ;b) M = 0.7 en fonction du nombre de Reynolds
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 6 Figure 6 -a) Composante longitudinale u et b) Composante transverse w du mode globale le plus instable pour Re = 400 et M = 0.4 correspondant à β = 0.2
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 7 Figure 7 -Taux d'amplification du mode globale le plus instable en fonction du nombre d'onde transverse β et du nombre de Mach M , (Re = 400)