
HAL Id: hal-00873430
https://hal.science/hal-00873430

Submitted on 15 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Point Sets Morphological Filtering and Semantic Spatial
Configurations Modeling: application to microscopic

image analysis
Nicolas Loménie, Daniel Racoceanu

To cite this version:
Nicolas Loménie, Daniel Racoceanu. Point Sets Morphological Filtering and Semantic Spatial Con-
figurations Modeling: application to microscopic image analysis. Pattern Recognition, 2012, 45 (8),
pp.2894-2911. �10.1016/j.patcog.2012.01.021�. �hal-00873430�

https://hal.science/hal-00873430
https://hal.archives-ouvertes.fr


Point Set Morphological Filtering and Semantic Spatial Configuration Modeling:
application to microscopic image and bio-structure analysis

Nicolas Loménie*1, Daniel Racoceanu2

Abstract

High-level spatial relation and configuration modeling issues are gaining momentum in the image analysis and pattern recognition
fields. In particular, it is deemed important whenever one needs to mine high-content images or large scale image databases in a
more expressive way than a purely statistically one. Continuing our previous efforts to incorporate structural analysis by developing
specific efficient morphological tools performing on mesh representations like Delaunay triangulations, we propose to formalize
spatial relation modeling techniques dedicated to unorganized point sets. We provide an original mesh lattice framework which
is more convenient for structural representations of large image data by the means of interest point sets and their morphological
analysis. The set of designed numerical operators is based on a specific dilation operator that makes it possible to handle concepts
like “between” or “left of” over sparse representations of image data such as graphs. While basically proposing a new theoretical
framework to reason about images, for the sake of illustration and discussion, we apply these new tools to high-level queries
over large histopathological images which are, by nature, high-content and large size image data to be explored for clinical visual
assessment.

Keywords: Shape analysis, mesh analysis, unorganized point set, spatial relation modeling, mathematical morphological operator,
image exploration, graph representation, semantic query, visual reasoning, digital histopathology.

1. Introduction

Shape in computer vision usually refers to either an explicit
segmented region over a radiometric image or an implicit fea-
ture vector as in Fig. 1. It is less commonly handled as a visual
geometrical point set. Yet it has been long the traditional way to
define synthetic object models in computer graphics. Recently,
representations of virtual models as point sets have started to
overtake the mainstream polygonal mesh or spline surface mod-
eling due to both hardware considerations and a few theoretical
advances [1].

x
v = (v1 , v2 , ..., v j , ..., vn

(a) (b) (c)
Figure 1: Shape as (a) a segmented subset of<2; (b) a point set representation;
(c) a feature vector v ∈ <n.
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On the other side of visual computing issues, traditional im-
age analysis is facing all the more challenging issues as the size,
resolution and pace of acquisition of images is exponentially
growing, in particular in the satellite and medical fields gener-
ating huge amount of visual database to be processed. In that
perspective, sparse handling of these data as opposed to redun-
dant radiometric traditional coding schemes must be studied.
Concise representations of images by the means of structural
elements like edges, point sets or graphs of regions are picking
up in the computer vision community [2, 3, 5, 6] and in par-
ticular in medical imaging applications [18, 34]. Geometrical
representations like point sets for shape or pattern analysis are
a means to smooth the way to the efficient handling of large
radiometric images: First, geometric features are more stable
than radiometric ones and second, as a global representation,
they encompass more structural information than local radio-
metric patches do.

We are ultimately interested in extending usual image analy-
sis tools to geometric representations such as perceptual graphs
[4]. Beyond current mainstream works about statistical pattern
recognition in the field of image analysis, roughly boiling down
to a specific feature extraction step feeding supervised classi-
fication algorithms like support vector machines, the research
works about structural representations of the image signal is
gaining momentum even [2, 3] for the recognition of natural
categories like horses. [5] proposed to use contour fragments
as descriptors instead of radiometric patches and build a kind
of structural codebook composed of the outer object contour
fragments associated to their position with regard to the center
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of the object while [6] extended it to bring a major improvement
to the representation by a coding (invariant to scale, translation
and rotation) of the geometric properties of each group of k ad-
jacent segments (kAS). One key point here is the definition of
spatial arrangements of structural elements, and that proved to
be useful even for natural images. The end-users can leverage
spatial relation and configuration modeling to enhance the inter-
active mining process over high-content images or large scale
image databases in a more expressive way than a purely statis-
tically one [7]. In addition, this structural modeling is likely to
be more resilient to radiometric variations inducing learning bi-
ases as well as more expressive for end-user interaction issues
and, accordingly, to foster the capabilities of now well-studied
and efficient statistical models using radiometric patches for in-
stance [8].

In this paper, however, we are not directly dealing with ob-
ject categorization but rather with spatial arrangement charac-
terization by morphological considerations. In this perspective,
we are considering the issue of high-level spatial relation repre-
sentations. A few works have dealt with this issue concerning
a kind of spatial reasoning in images from a structural point
of view: that is how to model spatial relations like “between”
or “around” in a sound and generic framework. [9], [10] and
[11] provide good overviews or interesting ways for represent-
ing spatial relations in particular in the imprecise and uncertain
universe of image analysis.

While most of the algorithmic solutions to this visual reason-
ing purpose operate either over usual dense radiometric images
or within logical, abstract frameworks like first order logic, we
propose here an original, theoretically sound and generic frame-
work to work over sparse representations of visual scenes, such
as graphs, in an operational way. This paper continues and in
a sense completes our previous efforts for developing morpho-
logical tools for the analysis of point sets [12] and extends the
seminal ideas about spatial relations modeling over sparse rep-
resentations presented in [13]. In particular, this paper gives (a)
a unified version of the mesh morphological operators (b) de-
velops the set of spatial relationships modeling capabilities and
(c) extends it to algorithmic fuzzy versions within a real bio-
imaging application whereby the point set nuclei architecture
plays a major role. Even though generic, we chose to closely
relate this contribution to a specific application (that we are cur-
rently developing in the field of high-content histopathological
image exploration and analysis) both for illustration and proof-
of-concept purposes. In the following Section 2, we expose
the medical context of spatial reasoning from an image analysis
point of view with a few but inspiring related existing works
specially highlighting the underlying nuclei architecture. Sec-
tion 3 reviews the theoretical operators we designed for point
set analysis and in particular the mathematical lattice frame-
work. Then Section 4 presents the innovative contribution to the
modeling of high-level linguistic spatial relation modeling over
sparse representations of images as point sets. Last, Section 5
illustrates the handling of these spatial relationships within the
medical application of interest while Section 6 draws significant
theoretical and applicative perspectives of research in particular
in the bio-imaging field.

2. Motivation in the Bio-imaging Context

When describing medical or biological images, it is not rare
that high-level spatial descriptions be involved such as anatom-
ical entities being “close to” or “left of” another one. In par-
ticular, a few works deal with anatomical descriptions based
on macro image analysis [14–16]. Such qualitative reasoning
capabilities should be as much as useful at a microscopic level.
For instance, in [17], it is stated that there is suggestive evidence
that directed localization of chromatin loci is one mechanism
for regulating gene expression within the nucleus: inactivated
chromosomes are predominantly located at the periphery of the
nucleus, juxtaposed to the nuclear envelope, observing also an
inverse correlation between proximity to the nuclear periphery
and gene density. In the case of histo-pathological image anal-
ysis, not only the aspect but also the spatial configurations of
biological entities are of major importance during the progno-
sis process. In Fig. 2, a sketch classification of spatial cell
configurations is drawn for the prognosis of breast cancer from
histo-pathological images.

(a)

(b)
Figure 2: (a) Theoretical spatial configuration of cells corresponding to vari-
ous gradings and characteristics of breast cancer - Courtesy of http://www.
breastcancer.org; (b) Mesh representations with nucleus seeds as vertices
of α-complexes.

The automatic grading from such histo-pathological images
remains a major scientific issue from both the computer and
medical sciences sides. Physicians proceed by tedious, collabo-
rative prognosis sessions involving visual description of Whole
Slide Images (WSI) and hardly come to a rigorous consensus.
The size of a WSI (around eight gigabytes of image data) con-
stitutes by itself a technological barrier to handle the problem
with the help of a computerized system. Any new tool en-
hancing the capabilities of browsing, focusing, exploring and
thus mining such a huge digitalized image slide is valuable for
the pathologists in order to perform the grading from numerical
data.

The architecture of breast cancer relies on the spatial dis-
tribution of different biological entities such as nuclei, tubular
formations or lumina, all of them to be detected in the image ei-
ther by the pathologist or by the algorithm. Entails then a men-
tal process of spatial reasoning about these entities and their
organization that is not so much explicit because of the size
of the slide. Thus, most grading procedures consist in looking
at smaller image frames and scoring visual clues such as the
size and the texture of cells as well as the homogeneity of the
distribution of these attributes. But, much implicit knowledge
involved in that procedure is related to reasoning about spa-
tial relationships. For example, a pathologist will more likely
search for mitoses in the periphery of invasive regions. From
this statement, any improvement in the way pathologists can
perform enriched spatial query in a digitalized slide can im-
prove the quality of the grading. Besides, the basic biological
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entity is the nucleus which is easier to extract with state-of-
the-art image analysis tools than other biological entities. This
is the reason why we consider the set of extracted nuclei as a
useful, simplified representation of a slide on which the sys-
tem can perform efficient spatial query. In addition, this simpli-
fied architectural/structural representation is required to handle
such an amount of pixel data. Working on a restricted point set
representation instead of the radiometric WSI downsizes this
amount of data from around 2.5 billions radiometric color pix-
els up to 20 000 geometrical 2D points. In [18], the same kind
of considerations gave rise to a successful attempt to adapt im-
age processing frameworks (such as Partial Differential Equa-
tions based regularization methods) usually acting on radiomet-
ric images over a regular grid to unorganized point sets defined
within graph representations. From now, the set of nuclei cen-
troids can be seen as a set of geometrical unorganized point sets,
that is a minimal structural representation of the architecture of
the cell distribution in the tissue.

Thus, we do not work anymore on the regular lattices of ra-
diometric images but on a new irregular lattice dedicated to ge-
ometric images. In previous recent works, [12] developed new
morphological operators acting on meshes like Delaunay trian-
gulations (see section 3). The combination of these operators
made it possible to build sound and generic spatial relation-
ships operators (see section 4). We added fuzzy representa-
tion capabilities including a new morphological operator acting
on meshes and corresponding to the directional dilation as de-
scribed in [19] for radiometric images. Then, we applied these
new operators to the analysis and exploration of histopatho-
logical images in order to enhance the cognitive power of in-
teraction between the pathologist and a prototyped virtual mi-
croscope (see section 5). Yet the designed framework is actu-
ally a new generic toolbox to handle structural representations
of radiometric images as graphs of interest points. Last, as a
proof-of-concept, we developed a Java interface3 that imple-
ments most of the morphological operators acting on Delaunay
triangulation described in this paper.

3. Point set and mesh morphological operators

In [12], we set up a formal extension to the topological mesh
analysis proposed with the concepts of α-objects first exposed
to define “what is the shape” of a point set in [21, 22]. So
far, working on the shape analysis of unorganized point sets,
we have developed new morphological operators dealing with
mesh structures such as Delaunay triangulations in an efficient
algorithmic way. In the following, our work can be illustrated
as both point set analysis operators and mesh structure analy-
sis operators depending on the nature of a specific value φT .
Indeed, based on the same ranking operator max and min as α-
objects use it, and directly related to the way mathematical mor-
phology proceeds, we provided a sound algorithmic description
of these morphological operators. Then, we proved that these

3To test the presented results, a Java application and its source code are
available in the public domain at http://www.sip-crip5.org/lomn/.

algorithmic operators correspond to formal mathematical oper-
ators such as erosion or dilation. From that, we were able to
design a set of useful filtering operators such as opening filters
acting on point sets. We refer the interested reader to [12, 22]
to get more details about topological considerations on the data
structures and theoretical validation about these new dedicated
operators. Nevertheless, for the paper to be self-contained, we
give a different presentation (more compact and focused on the
lattice framework [23, 24]) of these new operators in the follow-
ing, insofar as, as noted by [25, 26], a very few works gave it
a try to extend morphology to curved manifolds and to meshes
and cell decompositions on curved manifolds ([27–31]).

3.1. Notations

Let us start with some notations about the geometrical and
topological structures and then about the lattice framework.

Topological and geometrical structures. Let S be a point
set in<2. [22] details how to compute the spectrum of α-shapes
S α(S ) for any visual point sets in 2D or 3D for any α ∈ [0,∞[
with: S∞ = conv(S ), where conv stands for the convex hull,
and S 0 = S as limit cases.

Let us define k-simplices σT = conv(T ), T ⊆ S and |T | =

k + 1 for 0 ≤ k ≤ 2. Let us remind that the α-objects rely on
the Delaunay triangulation Del(S ) of S and the φ(T ) values as-
sociated with any triangle T ∈ Del(S ), being the inverse radius
of the circumscribe sphere to T in the framework of α-objects.
Then, for the algorithmic design, we just need to remember that
for each simplex σT ∈ Del(S ), there is a single interval so that
σT is a face of the α-shape S α, i.e. if, and only if, α is contained
in this interval. Last, let up(σT ) be the set of all faces incident
to σT whose dimension is one higher than that of σT , that is :
up(σT )= {σT ′ ∈Del | T ⊂T ′ and |T ′|= |T |+1}

Lattice structures. Let us now define some notations related
to useful dedicated lattice structures.

For any point set S ∈ <2, M(Del) is the set of meshes on
Del(S ), i.e., the set of mappings from the triangles T in Del to
φT values. As for now, T stands for any triangle in Del. A mesh
M ∈ M(Del) is defined by {(T, φ)}T∈Del or equivalently by a
mapping φ : T ∈ Del→ [0,∞[.
℘(Del) is the set of all the corresponding sub-triangulations

Di of Del. From now, we can define two complete lattice struc-
tures for a point set including an order relation:

• the first one, within the set theory frame, called L1 =

(℘(Del),⊆) where D1 ⊆ D2 denotes the relation : ∀T ∈
Del,T ∈ D1 → T ∈ D2;

• the second one, within the functional theory frame, called
L2 = (M(Del),≤), where the partial ordering ≤ is defined
by: ∀M1 and M2 ∈ M(Del),M1 ≤ M2 ⇐⇒ ∀T ∈
Del, φ1

T ≤ φ
2
T

3.2. α-objects and mesh lattices

Depending on the nature of the φ(T ) values, the proposed op-
erators correspond either to an extension of the α-objects con-
cept for point sets or to new mathematical morphological oper-
ators acting on meshes. In the case of a φ(T ) value related to
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Figure 3: A spectrum of α − ob jects derived from the Edelsbruner’s modeling

intrinsic geometric properties of point set configurations such
as the inverse radius of the circumsphere of the σT simplices,
we can relate our operators to the α-objects concept that gives a
set of operators to define and filter the shape of a point set. The
operator α-bin defined later on in Equation 2 will make the con-
nection between our operators and the α − ob jects-based ones.
If φ(T ) is an extrinsic value (such as radiometric values asso-
ciated to pixels on a regular grid) then our operators constitute
new ways to process morphological properties over meshes.

Definition of α-objects. For each σT , two values λT and µT

are derived :
i f |T | = 3, λT = µT = φT

else


λT = min {λT ′ |σT ′ ∈ up(σT ) }
and
µT = max {µT ′ |σT ′ ∈ up(σT ) }

Then we can compute three different topological kinds of α-
objects spectra for planar graphs in 2D: α-shape, α-complex
and α-Delaunay triangulations. Table 1 classifies the simplices
of the Delaunay triangulation Del(S ) in order to compute these
various topological/geometrical structures:

Cα = {Singular σT } ∪ {Regular σT } ∪ {Interior σT }

Delα = {Interior Triangles T} ∪ {σT ∈ ∂T }

∂S α = {Regular σT } (1)

where ∂ stands for the boundary of a structure.
Note that Del∞(S ) = Del(S ) and S α = |Cα| = |Delα|. We

chose to represent the shape of a point set by the triangulation
of its inner region, thus, introducing new α-objects called Delα.
Doing that, we put apart any topological issues related to sin-
gular σT .

Table 1: Obtaining α-objects.
σT is... Singular Regular Interior

Triangle α ∈ [φT ,∞[
Edge, < ∂conv(S )α ∈ [φT , λT [α ∈ [λT , µT [α ∈ [µT ,∞[

∈ ∂conv(S ) α ∈ [φT , λT [α ∈ [λT ,∞[
Vertex, < ∂conv(S ) α ∈ [0, λT [ α ∈ [λT , µT [α ∈ [µT ,∞[

∈ ∂conv(S ) α ∈ [0, λT [ α ∈ [λT ,∞[

Point set and mesh binarization. Let us also define the bi-
narization operator α-bin as follows :

∀M ∈ M(Del(S )), α-bin(M) = {T ∈ Del(S ) | φT > α} (2)

and thus,

|α-bin(M)| = |α-Del(S )| = |α-shape(S)| (3)

In particular when φT is the inverse radius of the circum-
sphere of T we get the spectrum of α-region describing the

shape of a point set S and we can state that an α-shape(S ) is re-
lated to a kind of binarization operators acting on spaces whose
structure is given by an unorganized point set S (note that here
again we do not handle any topological issues about singular
simplices).

Based on the lattice structure, the binarization of a point set
is defined by:

∀S ∈ <2, α-bin(S ) = {x ∈ S | T ∈ Del(S ) and φT > αopt} (4)

with
αopt = 2 ∗medianT∈Del(S )(α) (5)

By extension and based on the organic relation between S
and Del(S ) in terms of neighborhood and topology, we can
write α-bin(S ) ≡ α-bin(M) when M = {T ∈ Del(S ), 1/ρT }.

Point set and mesh morphological operators.
To define morphological operators, we need to affect to each

triangle values eT and dT in addition to the measure φT , defined
by :

eT = min{φT ′ |T ′ ∈ν(T )}
dT = max{φT ′ |T ′ ∈ν(T )} (6)

where ν(T ) (in the framework of α-objects) is the set of all tri-
angles T of Del sharing at least one vertex with the triangle T ,
that is:

ν(T ) = {T ′ ∈ Del|T ′ ∩ T , ∅} (7)

In our case, νT plays the role of a structuring entity (element
or graph [27]). We proved in [12] that with this definition of
a structuring entity the following designed operators are actual
mathematical dilation and erosion.

Indeed, in the framework of α-objects, we define the α-
eroded of any point set as the reunion of all the triangles of
Delα whose eT value is superior to α, that is :

α-eroded(S ) = {T ′ ∈ Del|eT ′ > α} (8)

(a) (b)

Figure 4: (a) A point set S in<2; (b) α-eroded(S) for α = αopt

And in a dual way, the α-dilated of any point set is defined
as the reunion of all the triangles of Delα whose dT value is
superior to α, that is :

α-dilated(S ) = {T ′ ∈ Del|dT ′ > α} (9)

Then, in the lattice framework, we define two operators e(M)
and d(M) on the complete lattice L2 by :

∀M ∈ M(Del),
e(M) = {T ∈ Del, eT } and d(M) = {T ∈ Del, dT }
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(a) (b)

Figure 5: (a) A point set S in<2; (b) α-dilated(S) for α = αopt

with eT and dT defined in Eq. 6.
From this point on, eL1 and eL2 denote the erosions defined

on L1 and L2, respectively. Last, we defined more formally
the erosion and dilation operators on the sub-triangulation com-
plete lattice L1. Let D be a sub-triangulation of Del. Let D be
seen as a subset of the topological space Del. Then, T is an
interior triangle of D (that is T ∈ int(D)) if there exists a neigh-
borhood of T which is contained in D. Then, with this formal
definition T ∈ int(D) ≡ ∃ ν(T ) ⊂ D:

∀M ∈ ℘(Del),
e(D) = {T ∈ Del | T ∈ int(D)}
d(D) = {T ∈ Del | T < int(D)C} (10)

We proved that e(D) and d(D) are respectively erosion and
dilation morphological operators on L1.

Last, we stated the following:

∀M ∈ M(Del(S )), (11)
α-bin(eL2 (M)) = eL1 (α-bin(M)) = α-eroded(S )
α-bin(dL2 (M)) = dL1 (α-bin(M)) = α-dilated(S )

showing with Eq. (4) that our new structures and operators can
embed the α-objects concept in a lattice framework, regardless
topological issues due to singular σT in the simplicial complex
structures. That is, computing the eroded and dilated sub- trian-
gulations as defined previously is equivalent to first computing
the α-complex and performing the erosion and dilation directly
in that geometrical structure.

The interesting point is that with these lattice structures, we
inherit all the properties of classical morphology and particu-
larly for the opening and closing filtering operators.

3.3. Mesh Morphological Filtering: a new tool
We have established so far that a spectrum of filtered shape

extracted out of any point set can be computed extending the
spectrum of classical α-objects first proposed in [22]. We high-
lighted the fact that depending on the nature of the φT values
associated to the simplicial complex extracted from S we get
structures directly related to visual shape representation of a
point set like in the framework of α-object or we get new oper-
ators acting on meshes whose vertices are the sites in S .

From now, we need to adapt these new tools for a practical
use in the case of spatial relationship representation between
entities defined over a Delaunay triangulation Del(S ) of a point
set S .

As for now, φT values are limited to the interval [0, 1] and is
related to a notion of visibility of the triangle or of membership
to an object of interest within the mesh. Thus, we can define
interactively or automatically sub-triangulations of interest as
regions of interest in the meshed image. In the following, we
illustrate our results on the histopathological image in Fig. 6(a)

and its corresponding underlying meshed nuclei architecture.
This image is about 1000 x 1000 pixels size and each pixel is
0.25µm resolution. The Whole Slide Image contains hundreds
of such sample images. In Fig. 6(b), we illustrate the definition
of a region of interest over Del(S ) by a set of triangles whose φT

values are set to 1 (in white) and others to 0 (no filling color).

(a) (b)

Figure 6: (a) A real biological image and the underlying nuclei architecture
embedded in a Delaunay triangulation Del(S ) mesh representation; (b) a crisp
region of interest as a sub-triangulation of Del(S ): A membership function of
1 is represented by a white triangle and a membership of 0 is represented by
transparent triangles.

In that case, the binarization performed by the previously de-
fined operator α-bin on Del(S ) is made by another process ei-
ther interactively by an end-user or automatically by any image
analysis process. The notion of α cut or α spectrum is no longer
needed. We will focus now on operational morphological oper-
ators defined on the lattice L2 = (M(Del),≤) where the map-
ping φT is restricted to [0, 1] with a fuzzy interpretation in term
of membership function to a region of interest.

Thus, we can define the whole set of operators in a more clas-
sical way similar to regular grid formulation used with radio-
metric images. The structuring entity is the neighborhood ν(T )
associated to each triangle whose definition can vary according
to a specific relevant morphological operator (see Section 4).
Having proved that the operators designed to obtain these new
structures are theoretically sound as mathematical adjunctions,
they can provide the whole set of mathematical morphological
operators like opening acting on an unorganized point set S or
on a mesh M. We can define opening o(M) end closing c(M):

∀M ∈ M(Del(S )), o(M) = d ◦ e(M) and c(M) = e ◦ d(M)
(12)

In functional radiometric mathematical morphology, an
opening is idempotent but the size of the structuring element
is flexible. To adapt the size of the structuring element in the
case of mesh operators, we need to define opening of order n
as:

∀M ∈ M(Del(S )), on(M) = dn ◦ en(M) (13)

so that:
∀n > 1, on(M) , o(M) (14)

but we still get the idempotent property of the mathematical
morphology opening:

∀M ∈ M(Del(S )) and ∀n ∈ N, (d ◦ e(M))n = d ◦ e(M). (15)

(a) (b)

Figure 7: (a) A point set S in<2; (b) α-open(S) for α = αopt

and benefits of all the inherited operators based on the ero-
sion and the involution operators c:

∀M ∈ M(Del(S )),Mc = {T ∈ Del, 1 − φT } (16)

5



Thus, as expected,

∀M ∈ M(Del(S )), e(M) = d(Mc)c (17)

The proof of the theoretical soundness of these operators is
directly related to the lattice structure presented in [12] and
briefly in the previous subsection. Then, we can deal with new
ways of expressing spatial relationships with fuzzy extent over
mesh representations like Delaunay triangulations and illustrate
how it can benefit the interactive exploration of huge images as
the domain of histopathological biopsy images provides.

Extension to fuzzy neighborhood. Let us focus on the dila-
tion operator. A definition of a fuzzy dilation in the functional
framework is given by (see [32]):

Dν(µ)(x) = supyt[µ(y), ν(x − y)] (18)

where µ design the fuzzy set to be dilated, ν the structuring ele-
ment, x and y points of space and t any t−norm (see [33]). Usual
t − norms are given by: t(a, b) = min(a, b) or the Lukasiewicz’
definition t(a, b) = max(0, a + b − 1)∀(a, b) ∈ [0, 1]. With that
latter t − norm definition in mind, we propose hereby an algo-
rithmic formulation convenient for the computation of such a
fuzzy dilation over an irregular discretized space. Let us de-
fine a maximum order of dilation N for the fuzzy dilation. This
is related to the shape of a fuzzy structuring element in clas-
sical mathematical morphology. We define a fuzzy discrete
neighborhood on meshes and a specific t − norm formulation
in the case of mesh dilation that makes it possible to compute
the fuzzy dilation d f (M) of a mesh M within the lattice L2 by
Algorithm 1.

Algorithm 1 Fuzzy Dilation
INPUT: a mesh M defined over the lattice L2
for all i = 0 to N + 1 do

for all T ∈ Del do
dT = 0;
dT = max{dT , max

T ′∈ν(T )
{(φT , φT ′ + (1 − i/N) − 1}};

end for
for all T ∈ Del do
φT = dT ;

end for
end for
OUTPUT a resulting mesh d f (M)

The fuzzy structuring element or neighborhood is defined in
an algorithmic way and can be represented by the discrete mem-
bership function along a neighborhood order as illustrated in
Fig. 8(a).

At this point, it is worth noting that defining morphological
operators on irregular grids is not as straightforward as often
stated [20]. The flexibility of defining versatile structuring ele-
ments has not been really handled in a tractable way so far in the
world of general graphs [27]. Likewise the definition of sound
fuzzy sets over these representations has not been theoretically
dealt with. These seminal, practical tools give first insights into
the development of morphological operators acting on meshes
in 2D as well as in 3D.

membershipfunction

neighborhood
order k

0 k N

ε

πα
(a) (b)

Figure 8: (a) Discrete membership function along a neighborhood order; (b)
Crisp angle representation for the directional dilation.

4. Mesh Morphological Operators and Spatial Relation-
ships

In the field of pure image analysis, few works have dealt with
the effective modeling of spatial relations such as “between”,
“surround” or “along”. The major difficulty comes from the
high level of contextual references associated to the semantic
of these linguistic representation of image content. Obviously,
inherent issues about accurate, robust segmentation of the re-
gion of interests within the image are part of the difficulties to
handle such a tough problem in comparison with artificial intel-
ligence approaches. For instance, the notion of crisp adjacency
that is central to most of the formal system dealing with spatial
reasoning is error-prone due to imprecise segmentation results.
To us, the more interesting modeling results in the field of im-
age processing can be found in [19] for which, besides the use
of mathematical morphology operators, a fuzziness representa-
tion framework deals with imprecision and context-dependent
numerical implementations of such symbolical descriptions.

Our aim is to apply similar considerations to geometrical rep-
resentations. Usually, Delaunay triangulations can be associ-
ated with the underlying point-of-interests architecture associ-
ated with a radiometric image. We state that these simplified
representations are more correlated with the semantic of the
images and hence consider that spatial relation reasoning on
such representations should be closer to the cognitive spatial
reasoning processing performed by the pathologists onto histo-
pathological images, and more generally by linguistic-based
query.

We developed a Java interface as a plugin for the imageJ
platform to test the proposed operators that implements all the
morphological operators acting on Delaunay triangulation de-
scribed hereby. We added fuzzy representation capabilities in-
cluded a new morphological operator acting on meshes and cor-
responding to the directional dilation as described in [19] for
radiometric images.

4.1. The directional dilation
The whole set of spatial relation concepts modeling is based

on the directional dilation operator defined over regular lattice
images. We propose a specific operator for directional dilation
over sparse representations such as Delaunay triangulations.

Let α be the directional angle with regard to the horizontal
axis of the representation plane. For any mesh M ∈ L2, the
definition of the neighborhood ν(T ) of a mesh triangle T acts as
a directional structural element of direction α:

να(T ) = {T ′ ∈ Del|T ′ ∩ T , ∅ and ∠(T,T ′) < α + ε} (19)
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with
∠(T,T ′) = ∠(

−−−−−→
BT BT ′ , (O−→x )) (20)

where BT is the barycenter of the triangle T .
Eq. 19 defines an anisotropic neighborhood referred as να,

to be put in parallel with the isotropic neighborhood definition
νiso(T ) = ν(T ) of Eq. 7, where iso stands for isotropic as op-
posed to directional and α stands for the angle with the hori-
zontal axis (O−→x ) and ε is the width or tolerance angle of the
structuring element (see Fig. 8(b)).

We can define the directional dilation as:

∀M ∈ M(Del(S )), dα,ε(M) = dνα (M) (21)

where dν stands for the computation of dT values over a specific
system of neighborhood ν. When ε is not written, ε = π/8.0 and
dα,ε = dα.

It is worthwhile being able to define fuzzy appreciations of
such qualitative concepts as spatial relations that depend both
on the context and on the reference object. This is the reason
why we designed a fuzzy version for all the morphological op-
erators acting on meshes following the algorithmic procedure in
Alg. 1. The left fuzzy operator is directly obtained by combin-
ing Equation 21 associated with the directional neighborhood
να into the algorithmic procedure used to compute d f .

4.2. The basic relations “left of” and “around”
Directional relations can now be defined. For instance, the

absolute directional spatial relation like “left of” is defined as
follows:

Leftdil(M1) = dn
π(M1) with n/ dn

π(M1) = dn+1
π (M1) (22)

where dn stands for d ◦ d ◦... ◦ d n times.
Fig. 9 illustrates the region “left of” of the biological lumina

region M1 as defined in Fig. 6(b). The region Leftdil(M1) in
9(a) corresponds to the left landscape defined over an irregular
grid. Due to this irregularity, the output region need to be post-
processed with a opening-like mesh filtering or at least in this
case a dilation one. The final filtered region dνiso (Leftdil(M1))
is presented in 9(b) with holes filled up. In general, any se-
mantic region obtained by the mesh operator needs to be post-
processed with an opening-like operator in order to provide
compact region to the linguistic queries.

(a)

(b)

Figure 9: (a) The left region of the region M1 in Fig 6; (b) The filtered open
region left of M1 with νiso : dνiso (Leftdil(M1)).

The fuzzy version of the left dilation operator is illustrated
in Fig. 10 in which the dilation operator dn

π is replaced by its
algorithmic fuzzy version defined in Alg. 1 in which the neigh-
borhood structuring element ν is replaced by νπ:

Left f
dil(M1) = d f

π(M1) (23)

(a)

(b)

Figure 10: (a) The fuzzy left region of the region M1; (b) The resulting mesh
after an isotropic opening.

Similarly, we can also define a fuzzy spatial relation like
“around” as illustrated in Fig. 11:

Around f uzDil(M1) = d f
νiso (M1) (24)

ans its post-processed version with an mesh opening
o(Around f uzDil(M1) = d f

νiso (M1)) as described respectively in
Fig. 11(a) and (b).

(a) (b)

Figure 11: (a) The fuzzy region ’around M1’; (b) The filtered open region
around M1.

4.3. The complex relation “between”

As for now, we can consider the more complex and subjec-
tive spatial relation like “between”. We refer the reader to [19]
for the thorough presentation of the modeling issues about this
very high-level concept, taking into account the extent of the
different reference objects. We define here new morphological
operators giving the region “between” of two spatial mesh enti-
ties M1 and M2 defined over L2. We refer again to three possi-
ble definitions of this relation based on directional dilations as
reviewed in [19]:

βdil(M1,M2) = dn[dn(M1) ∩ dn(M2)] ∩ MC
1 ∩ MC

2

with n = in f {k/dk(M1) ∩ dk(M2) , ∅}

β1
α(M1,M2) = dn

α(M1) ∩ dn
π+α(M2) ∩ MC

1 ∩ MC
2 (25)

β2
α(M1,M2) = dα(M1) ∩ dπ+α(M2) ∩ MC

1 ∩ MC
2

∩ [dα(M1) ∩ dα(M2)]C ∩ [dπ+α(M1) ∩ dπ+α(M2)]C

Fig. 12 and Fig. 13 illustrate the different steps of the mor-
phological processing of the underlying mesh associated with
the studied histopathological image for two regions of interest
with the definition βDil and β1

α respectively. We based our result
on a crisp dilation operator. In case of a fuzzy definition, we re-
place the mathematical operator d by the algorithmic operator
d f and the ∩ operator is a t-norm defined over the mesh lattice
by:
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∀M1,M2 ∈ M(Del(S )),
t(M1,M2) = {T ∈ Del(S ), t(φ1

T , φ
2
T )} (26)

with t(φ1
T , φ

2
T ) a t-norm on the real lattice such as t(a, b) =

min(a, b).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12: (a) Two sub-meshes of interest M1 and M2; (b) The dilated meshes
(b) d2

( M1) and (c) d2
( M2); (d) Their intersection d2(M1) ∩ d2(M2); (e) and

the twice dilated of the intersection d2[d2(M1) ∩ d2(M2)]; (f) The comple-
mented mesh MC

1 ∩MC
2 ; (g) and the final output of the between region operator

βDil(M1,M2) as defined in Equation ??; (h) the filtered result after an isotropic
opening o(βDil(M1,M2)).

(a) (b)

(c) (d)

(e) (f)

Figure 13: (a) Two sub-meshes of interest M1 and M2; (b) The twice dilated
meshes dn

α(M1) and (c) dn
π+α(M2); (d) The intersection MC

1 ∩MC
2 ; (e) the region

between β1
α(M1,M2) as defined in Equation 25; (f) after an isotropic opening

filtering o(β1
α(M1,M2)).

Due to the non-regular pavage of the underlying topological
space, a post-filtering step by an isotropic opening filter is re-
quired to obtain coherent results (see Fig. 12(g)). If the second
region of interest is not convex, as illustrated in Fig. 14, the
third definition gives better results removing parts in the con-
cavity.

(a) (b)

(c) (d)

Figure 14: (a) One non convex sub-mesh of interest M2; (b) Result with the sec-
ond definition β1

α(M1,M2); (c) [dα(M1)∩dα(M2)]C ∩ [dπ+α(M1)∩dπ+α(M2)]C ;
(d) Result with the third definition β2

α(M1,M2).

In general, the choice of the angle α should incorporate much
information about the extent of the different objects of refer-
ence. In this study, we choose the average angle between pairs
of respective triangles T1 ∈ M1 and T2 ∈ M2. Note also that the
tolerance angle is set quite large to 22.5 degrees to smooth the
results to the irregular pavage of the 2D space (see section 5 for
more discussion about that specific issue).

4.4. High-level query

With the specific morphological framework defined over
meshes, we are able to define high-level semantic queries over
a mesh representation of objects of interest by combining dif-
ferent operators via t − norm when conjunctions of properties
occur or t − conorm (like the max operator that stands also for
the set operator ∪) when disjunctions of properties occur ([33]).
For example, we can express the query what is the region “near
and left” the region M1by the following operator:

NearLeft(M1) = t(Around f uzDil(M1), oνiso (Leftdil(M1))) (27)

with t a t-norm defined over the mesh lattice (see Eq. 26). Fig.
15 illustrates the result on the biological image.

Figure 15: The left and near region t(AroundFuzDil(M1), oνiso (LeftDil(M1))).

5. Applications and discussion

All these functionalities can be very useful whereby one
needs to reason about spatial entities corresponding to unor-
ganized point sets as in the case of extracted nuclei from medi-
cal images (see [34] for interesting statistical analysis of nuclei
architecture structures embedded in a mesh representation for
breast cancer diagnosis). Seminal works tried to apply similar
structural analysis of tissue images based on Delaunay graphs
representations few years ago [35, 36] but have not been pushed
forward so far. This is what we propose in the following in par-
ticular for digitized histopathology which is a brand new chal-
lenge in the field of bio-imaging as digital mammograms used
to be over the last two decades.

5.1. Spatial relation concepts

As for now, we can answer the two types of questions raised
by spatial reasoning:

• which is the region of space corresponding to a spatial
query about a reference object Mi ? and, if necessary, what
is the fuzzy mesh description of this region ?

• to which degree an object O belongs to that region ?

In comparison to the seminal works in [19], we can answer
these questions with specific tools over a mesh representation
that is on an irregular pavage of the space corresponding to the
informative structural part within the image and not on the clas-
sical regular pavage over radiometric images. We remind the
reader the importance of such a simplified representation in the
case of high content image or large image data like new satel-
lite or microscopic imaging devices provide from now on in a
breakthrough way. These representations should be more ef-
ficient that classical radiometric, redundant by nature, images
and its related processing algorithms not tractable for now over
large amount of data due to computational and storage con-
straints.
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In the previous section, we illustrated with numerous exam-
ples the numerical nature of answers our operators “around”,
“left of”, “between’ can reach to the first type of questions, pos-
sibly with a fuzzy description of these meshed resulting regions.
In this section, we go further in the description of the operator
outcomes from the end-user interaction point of view ending up
with a discussion about the efficiency of such a sparse modeling
of spatial relations. Fig. 16 illustrates the regions correspond-
ing to the fuzzy version of the Between operator β f

α(M1,M2) for
the regions M1 and M2 and then the region between M1 M2 and
M3 can be obtained by combination of such operators such as:

Between(M1,M2,M3) =
⋃

k=1,2,3

β
f
α(β f

γ(Mi,M j),Mk) (28)

as Fig. 16(c)(d) illustrates it for β f
α(β f

γ(M1,M2),M3).

(a) (b)

(c) (d)

Figure 16: (a) Three meshed regions of interest M1,M2 and M3; (b) the region
between M1 and M2 β

f
α(M1,M2); (c) β f

γ (β f
α(M1,M2),M3); (d) with the three

regions superimposed in transparency.

In Fig. 17 we illustrate a level set for the fuzzy operator
“around” for the inner region of interest M3. The topology and
density underlying the biological image is taken into account in
contrast to the mere notion of iso-density distance usually used
for radiometric morphological image operators.

(a) (b)

(c) (d)

(e) (f)

Figure 17: (a) Fuzzy meshed region Ma “around” the central region M3; (b)
the opening of this region o(Ma); (c) in transparency over the biological image;
(d) the binarized Delaunay triangulation Mb = α-bin(Del(S )); (e) M f = Mb ∩

o(Ma); (f) α-bin(ProximityLevelS et ∩ M f ).

That simplified representation based on the natural architec-
ture of the image is of major importance with the new imaging
devices providing such high-content, large image data at very
high rate. For the sake of illustration, in our histopathologi-
cal application, Tab. 2 gives an idea of the amount of data to
be processed by either the clinician or the numerical system.
Then, Fig. 18 illustrates the level of details depending of the
acquisition resolution. Note that the images at each of the listed
resolution must be stored for clinical and virtual microscopy
purposes. Note that the sample in Fig. 18(b) is a 1024 x 1280
pixels sample image at a resolution x40 out of over 2000 such
samples tiling the global image slide.

Last, these morphological operators can be applied as it is
to perform structural analyses of different nuclei architecture of
breast cancer. In Fig. 19, the classification of the sketched cases

Table 2: Histopathological images data.
Size (pixels) Size (bytes)

x1 1 018 x 768 3.05 Mo
x10 3 664 x 2 763 39.54 Mo
x20 14 657 x 11 054 632.48 Mo
x40 58 630 x 44 216 7.77 Go

(a)

(b)

Figure 18: (a) Whole Slide Image at resolution x1; (b) Sample image at resolu-
tion x40 out of over 2000 samples tiling the WSI.

of various types of breast cancer architectures can be achieved
by morphological and topological analyses of the underlying
meshes. For the sake of illustration, we present below how
with very basic morphological operators on such kinds of ge-
ometrical architectures we can discriminate at a high-level of
description between various kinds of breast cancer configura-
tions. In Figure 19, a morphological analysis based on both the
α-complex and an opening filtering of the underlying Delau-
nay triangulations Delα of the set of nuclei centroids can lead
to an effective discrimination of these differently graded histo-
pathological breast cancer drawings, by the means of compared
structural features such as the number of connected components
or the Euler characteristics related to the topology of the mesh
and in particular to the number of holes or connected compo-
nents in the structure (see Table 3). For instance, the Euler num-
ber EN of a surface is easily computed from the mesh represen-
tation as EN = F − E + V where F is the number of faces, E
the number of edges and V the number of vertexes. Note that
this number can be related to the number of connected com-
ponents minus the number of holes. In a way, global implicit
spatial relations are processed in this example making it pos-
sible to exhibit a digital encoding of the bio-structure similar
to the DNA or chromosomal representation in evolutionary al-
gorithms paradigm. In the following, beyond these meaningful
topological considerations, we will focus on more explicit spa-
tial relation representations.

Table 3: Geometric criteria to discriminate between various cancer types com-
puted on M1−o2(M1) (see Fig. 19(c)). Median Size of 0 refers to small size and
1 to large size. EN, CC and MS stands respectively for Euler Number, number
of Connected Components and σ2-simplex Median Size whose concatenation
provide a digital structural coding of the observed bio-structure.

Cancer type EN CC MS
Normal cells 1 1 1

Ductal hyperplasia 0 1 0
Atypical ductal 1 1 0

DCIS 0 0 0
DCIS-MI 2 2 0
Invasive 5 5 0
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(a) (b) (c)

Figure 19: The nuclei architecture and on the left (a) Delαopt representation;
(b) in the middle, opening of order 2 o2(Delαopt ) as an opening based mor-
phological filtering; (c) at right, the difference between Delαopt and o2(Delαopt ).
Combining topological and morphological measures such as the number of con-
nected components, the Euler number, the median face size between these vari-
ous representations makes it possible to discriminate between the various levels
of pathological spatial organizations.

In particular, the Ductal Carcinoma In Situ, rather difficult
to discriminate automatically by statistical means because it is
a highly versatile structure in shape and size, is characterized
by a certain topological and morphological stability to open-
ing filtering (compare column 1 and 2) in comparison to other
type of architectures. Also, the invasive and the micro-invasive
cases can be discriminated by a thorough analysis of the third
column exhibiting more connected components for the invasive
case. Of course, experiments on real images have been car-
ried and showed that more structural and morphological crite-
ria involved in automatic procedures provide efficient way to
discriminate such spatial configurations and all the more from
an human-computer interface point of view. For instance, Fig.
20 illustrates how to use the morphological operators interac-
tively by the end-user (physician or automatic microscope) to
focus on region of interests for breast cancer analysis: diagno-
sis or acquisition process. The resulting mesh is obtained as
o2(Delα(S )) ∩ Delα(S ). The point sites are obtained by a basic
image analysis procedure combining wavelet analysis, binariza-
tion and sampling on a 3072 x 3072 pixels sub-image taken out
of the Whole Slide Image at resolution x40 whose global size
is over 200 times bigger.

(a)

(b)

(c)

(d)

Figure 20: (a) 3072x3072 pixels size sub-image of a Whole Slide Histopatho-
logical Image; (b) The corresponding site points S ; (c) Delα(S ); (d) Focusing
on regions of interest o2(Delα(S )) ∩ Delα(S ).

5.2. Semantic concepts

Last, by setting the parameter φT to a measure of the size of
triangles rather than a measure of the shape as the circumsphere
characterizes, Fig. 21 illustrates how, with minimal interac-
tions, it is possible to decompose the biological images of size

1024 x 1024 (top right quadrant of the previous image in Fig.
20) into meaningful biological elements like Ductal Carcinoma
In Situ alike or normal cells by the means of morphological op-
erators.

(a)

(b)

(c)

(d)

Figure 21: (a) 1024x1024 pixels size sub-image of a Histopathological WSI; (b)
Delα(S ); (c) Focusing on DCIS alike areas with the o2(Delα(S )) mesh filtering;
(d) Focusing on normal cells areas with the Delα(S )∩(o2(Delα(S ))∩Delα(S ))c

mesh filtering operator.

In Fig. 22, we discriminate between real tubule formation
and DCIS configuration images based on the structural analysis
described in Fig. 19. The tubule formation corresponds to the
normal cell configuration except that it does not correspond to
a real duct, rather to a natural organization of cells in the tissue.
Basically, a high representation of such spatial configuration is
a clue of healthy breast tissue in histopathology.

(a) (b) (c)

(d) (e) (f)

Figure 22: On the left (a) Delαopt representation of a tubular bio-structure; (d)
of a DCIS bio-structure. In the middle, opening of order two o2(Delαopt ) as
an opening based morphological filtering of (b) the tubular formation; (e) the
DCIS formation. At right, the difference between Delαopt and o2(Delαopt ) for
the (c) tubular formation and (d) the DCIS formation.

Furthermore, by nature, this set of techniques is quite re-
silient to low-level image extraction artifacts as illustrated in
Fig. 23. In this experiment, only the epithelial cells are de-
tected in Fig. 23(a) and some cell artifacts are detected in Fig.
23(d). The morphological analysis of the point set is robust to
this shape noise for the detection of In Situ cases.

(a) (b)

(c) (d)

(e) (f)

Figure 23: (a) Point set extracted without artifact, M; (b) and with artifacts,
Mnoise; (c) Binarization of M; (d) Binarization of Mnoise; (e) Opening of M (f)
Opening of Mnoise.

6. Conclusion

To sum up, based on original mathematical morphological
filters dedicated to unorganized point sets, we developed new
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generic operators to perform structural analysis of images via
an architectural representation as mesh of interest points for in-
stance. In particular, a new way for handling spatial relation
queries has been proposed and illustrations over histopatholog-
ical images proved the usefulness of this new framework to in-
teractively explore huge images. Beyond the applicative aspect,
these operators have been proved to be theoretically sound from
the mathematical lattice framework side. Accordingly, these
tools open new ways to anchor high-level semantic and spatial
relation concepts in the field of image analysis. In perspective,
a thorough analysis of topological aspects about the extension
to a lattice of simplicial complexes including the edges and the
vertices in the morphological process as attempted in [37, 38]
should raise interesting new theoretical issues for mathematical
modeling and powerful computerized representations for topo-
logical study and understanding of biological processes.
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