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1. Abstract 21 

 We present evidence that Sea Surface Temperatures (SSTs) in the North Pacific, 22 

South Atlantic and Indian Oceans (AO and IO, respectively) during late boreal winter, 23 

offer another important source of predictability for El Niño Southern Oscillation 24 

(ENSO). This new SST predictor may provide accurate prediction of the amplitude of 25 

ENSO events before their onset, for both El Niño and La Niña events which occurred 26 

during recent decades.  27 

2. Introduction 28 

According to many studies, the crucial set of information for ENSO forecasts lies 29 

in the spatial variation of the thermocline depth or heat content (Meinen and 30 

McPhaden, 2000; McPhaden 2003) and the low-frequency wind variability in the 31 

tropical Indo-Pacific region (Clarke and Van Gorder, 2003). An influence from high-32 

frequency wind variability in the western Pacific region has also been suggested, but 33 

so far the most robust leading relationship has been observed with the Madden Julian 34 

Oscillation activity in late boreal spring or early summer, therefore after the ENSO 35 

onset period (Hendon et al., 2007). 36 

Nevertheless, there has been growing evidence in the literature, that other tropical 37 

and extratropical regions may also be playing an important role for ENSO. First, a 38 

number of studies suggested a close link with SST anomalies in the tropical IO or AO, 39 

which may induce modulations of the Walker circulations (Kug et al., 2005; 40 

Dommenget et al., 2006; Rodriguez-Fonseca et al., 2009; Izumo et al., 2010; Frauen 41 

and Dommenget, 2012). Recently, there has also been a rising interest in the 42 

predictability offered by extratropical climate modes of variability. Vimont et al. 43 

(2003) and Wang et al. (2012) have implied a connection between the mid-latitude 44 

and tropical Pacific, whereby the winter atmospheric variability in the North Pacific 45 
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impacts subtropical SST variability and western Pacific equatorial wind anomalies, 46 

which may be responsible for exciting subsequent El Niño events. Several recent 47 

studies also emphasized the role of mid-latitude coupled variability in the South AO 48 

and IO during late boreal winter (Terray and Dominiak, 2005; Terray, 2011). 49 

However, several open questions remain regarding the pertinence or added value 50 

of these new ‘extratropical’ precursors for the forecast of ENSO, compared to the 51 

conventional Pacific wind or heat content predictors, or the other tropical SST 52 

predictors. In this study, we combine the newly proposed sources of ENSO 53 

predictability in the North Pacific, South AO and IO, and evaluate the potential 54 

efficiency of this new SST predictor in predicting ENSO onset and amplitude across 55 

the “spring predictability barrier” (Webster and Yang, 1992). We present evidence, 56 

through statistical analyses of observations and a coupled ocean-atmosphere model 57 

simulation, that this new SST precursor may offer an important source of 58 

predictability for ENSO. 59 

3. Data and Methods 60 

We compare three precursors of ENSO in late boreal winter: the upper-ocean heat 61 

content (Z20 precursor) and low-frequency zonal wind stress variability (USTR 62 

precursor) in the tropical Pacific, and SST variability in the North Pacific, South AO 63 

and IO (new SST precursor). We focus our analysis on the recent period after 1979, 64 

since records of tropical Pacific heat content and SST in the South AO and IO are 65 

either sparse or inexistent before this date.  66 

The depth of the 20°C isotherm (Z20) is used as a proxy of the thermocline depth 67 

or heat content in the tropical Pacific Ocean, and is extracted from the Simple Ocean 68 

Data Assimilation (SODA) reanalysis (Carton and Giese, 2008; SODA version 2.2.4), 69 

available until 2008. We examine atmospheric fields from the ERA-Interim reanalysis 70 
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(Dee et al., 2011) and SST fields from the Hadley Centre Global Sea Ice and Sea 71 

Surface Temperature (HadISST1.1) dataset (Rayner et al., 2003), both available until 72 

2011. For each field, monthly anomalies are calculated by applying the Seasonal-73 

Trend decomposition procedure based on Loess (Cleveland et al., 1990), which filters 74 

out any long-term trends and annual cycle in the initial data. 75 

Our goal is to predict the ENSO peak phase, which is defined by SST anomalies 76 

averaged from October to the following February (ONDJF) over the entire equatorial 77 

Pacific. The precursors are taken either from January to March (JFM) or February to 78 

April (FMA), 9 or 10 months prior to this typical ENSO peak phase. Sensitivity 79 

analyses have been performed with the precursors taken successively in JFM, FMA or 80 

from March to May (MAM), and for each case, we have chosen the season which 81 

offers the best skill for the following ENSO. 82 

In order to compare the Z20, USTR and new SST precursors, we use the Singular 83 

Value Decomposition (SVD) method (Bretherton et al., 1992), which we apply 84 

separately between each precursor field during its peaking season and the following 85 

tropical Pacific SST field during boreal winter. Results are shown for the 1
st
 SVD 86 

mode associated with each precursor in terms of the corresponding Expansion 87 

Coefficient (EC) time series, the ‘homogeneous’ map for the precursor (i.e regression 88 

map between the precursor field and its corresponding EC time series) and 89 

‘heterogeneous’ map for the predicted ENSO field (i.e regression map between the 90 

tropical Pacific SST and the EC time series of the precursor field, indicating how well 91 

the grid point anomalies of the ENSO field can be predicted from the precursor’s EC 92 

time series). The statistics provided by the SVD are also efficient tools for quantifying 93 

the relevance of each ENSO precursor. The Squared Covariance Fraction (SCF) 94 

measures the relative importance of each SVD mode in reconstructing the covariance 95 
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matrix between the precursor field and tropical Pacific SSTs. The correlation 96 

coefficient (r) between the EC time series of the two fields indicate how strongly 97 

related the coupled patterns are. Finally, we computed how much of Pacific SST 98 

variance each SVD mode explains, and the correlations between the SVD modes and 99 

the Niño3.4 SST time series during the following winter. 100 

To test the robustness of our results, we also performed similar SVD analyses on a 101 

110-year control simulation of the SINTEX-F2 global coupled ocean-atmosphere 102 

general (CGCM) model, since it exhibits a realistic ENSO (Masson et al., 2012).  103 

4. Analysis and Results  104 

4.1 Heat content and zonal wind predictors 105 

We here examine the conventional Z20 and USTR predictors and assess their 106 

relationships with the following ENSO event, within our SVD framework (Fig. 1 and 107 

Table 1). During the 1979-2008 period, the 1
st
 SVD mode between the Z20 precursor 108 

and ENSO is consistent with the predicting potential of heat content in the context of 109 

ENSO forecasting (McPhaden, 2003). Indeed, the Z20 pattern in Fig. 1 is marked by 110 

positive Z20 anomalies in the west-central tropical Pacific in spring and appears as a 111 

mixture of the two leading Empirical Orthogonal Functions (EOFs) of Pacific Z20 112 

variability (see Meinen and McPhaden, 2000); while the corresponding SST pattern 113 

(Fig. 1b) illustrates a typical El Niño peak phase during the following winter 114 

(consistent with figure 5 in McPhaden, 2003). This SST pattern also suggests that the 115 

performance of the Z20 precursor is degraded in the far eastern equatorial Pacific. 116 

The statistics of this 1
st
 SVD mode (shown in Table 1) confirm that Z20 anomalies 117 

during late boreal winter are strongly correlated with SST anomalies in the tropical 118 

Pacific (r=0.71), and that this 1
st
 SVD mode accounts for a significant 77.1% of 119 

tropical Pacific SST variance during the following winter. Consistently, the Z20 120 

expansion coefficients are highly correlated with the Niño3.4 SST time series in 121 
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December-January (0.76 correlation, see Table 1), and with the C index defined by 122 

Takahashi et al. (2011) to describe the regime of cold and weak-to-moderate ENSO 123 

events (0.77 correlation, see Table 1). Note, however, that its performance is only 124 

modest for the E index of Takahashi et al. (2011), which accounts for the extreme 125 

warm events in the eastern Pacific. In Fig. 1c, the correspondence between the 126 

standardized Z20 EC and Niño3.4 SST time series illustrates how well this Z20 127 

precursor is able to anticipate many El Niño (4/8) and La Niña (5/6) events during 128 

1979-2008. This predictor is particularly successful in predicting the transition from 129 

El Niño to La Niña phases (e.g  in 1983-84, 1987-88-89, 1998-99), but seems less 130 

skillful in capturing the amplitude of some extreme events, such as the 1982-83 El 131 

Niño, and also those occuring since the early 2000s (see Fig. 1c;  McPhaden, 2012).  132 

The SVD analysis between the USTR precursor over the [110°E-70°W; 10°S-133 

10°N] domain in FMA and ENSO during the 1979-2011 period illustrates that 134 

westerly wind anomalies in the western Pacific during late boreal winter are 135 

associated with a typical El Niño peak phase during the following winter (Kug et al., 136 

2005), similar to the SST pattern in Fig. 1b (not shown). Results (in Table 1) suggest 137 

that this precursor is also an efficient predictor for the ordinary cold and moderately 138 

warm ENSO events. Indeed, the corresponding 1
st 

SVD mode accounts for a 139 

significant 78.4% of winter SST variance, and the highest correlation is once again 140 

obtained with the Niño3.4 and C indices (0.74 and 0.62 correlation, respectively).  141 

4.2 New combined extratropical SST predictor 142 

We now examine the predicting potential for ENSO which stems from 143 

extratropical SSTs. Results from the SVD between the new SST predictor and ENSO 144 

during the 1979-2011 period are shown in Fig. 2 and Table 1. The precursor fields 145 

(Fig. 2a) are characterized by anomalous SST dipoles in the North Pacific, South AO 146 

and IO during late boreal winter, consistent with patterns described by Vimont et al 147 
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(2003), Wang et al (2012) and Terray (2011). These extratropical features are 148 

associated with a typical El Niño peak phase during the following winter (Fig. 2b), 149 

similar although slightly warmer than the SST pattern in Fig. 1b, and with maximum 150 

SST anomalies reaching further east in the Pacific.   151 

In terms of statistics, the results are also very promising for ENSO predictability. 152 

Although this 1
st
 SVD mode explains one of the least variances during JFM in the 153 

precursor region (13.1%), it manages to describe the largest portion of winter SST 154 

variability in the tropical Pacific (79.6%) and reaches a maximum of 0.80 correlation 155 

with the Niño3.4 SST timeseries in winter (Table 1). This new SST predictor is able 156 

to fit both the timing and amplitude of ENSO events, and this not only in the 157 

transition from El Niño to La Niña events, but also when an El Niño develops from a 158 

previous neutral or La Niña state in the tropical Pacific (see Fig. 2c, e.g. in 1982-83, 159 

1995-96). Although its performance seems also degraded since the early 2000s, this 160 

SST predictor is also successful in capturing the amplitude of extreme El Niño events 161 

(both in 1982-83 and 1997-98). These results are consistent with the high correlation 162 

value obtained with the E index (0.48 in Table 1). However, the observed correlations 163 

between the different predictors and the Niño3.4 SST timeseries (or the E and C 164 

indices) given in Table 1 are not significantly different from each other according to a 165 

statistical test based on the Fisher’s Z transformation, due to the shortness of the 166 

observed record (Fisher, 1970, p. 199). 167 

4.3. Robustness and predictive relationships  168 

In view of the short observational record, we performed similar SVD analyses with 169 

the simulated fields from the SINTEX-F2 CGCM (Table 1; Figs. 2d-f). Overall, 170 

results are quite consistent with observations, as this model exhibits a realistic 171 

simulation of the relationships of ENSO with both the Z20 and USTR precursors, and 172 

the new SST precursor. In Fig. 2d, the precursor SST pattern displays similar dipole 173 
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structures as in Fig. 2a (although the simulated SST signal is weaker in the South AO 174 

and shifted westwards in the North Pacific), and is also associated with an El Niño 175 

peak phase during the following winter, with warm SST anomalies mostly confined to 176 

the equatorial central Pacific compared to observations (Fig. 2e). The statistics for the 177 

CGCM also show higher correlation values for the new combined SST precursor 178 

compared to the Z20 and USTR predictors, although they miss the observed 179 

relationship between extratropical SSTs and the E index (see Table 1). Moreover, the 180 

correlation of the Niño3.4 SST timeseries with the SST precursor is now significantly 181 

higher from those derived from the Z20 and USTR precursors at a significance level 182 

of 0.05, thanks to the length of the simulation (Fisher, 1970). 183 

By definition, the high values of the statistics in Table 1 may also partly result 184 

from the optimization problem solved by the SVD. In order to assess reliably the 185 

predictive potential of the new SST precursor, we also performed a cross-validation 186 

experiment of our SVD models. In this experiment, we treated the three precursors in 187 

the same objective manner, and re-computed each SVD analysis based successively 188 

on all years within the 1979-2008 time span, except one ‘forecast’ year. We then 189 

estimated the values of each precursor’s EC time series, by projecting the precursor 190 

field observed before the ‘forecast’ year onto the 1
st
 SVD mode computed without 191 

this year in the cross-validation procedure. The correlation between the cross-192 

validated SVD modes and Niño3.4 SST shows once again a high correlation for the 193 

SST precursor (0.75) compared to the Z20 and USTR precursors (0.67 and 0.65 194 

correlation respectively), although these bootstrapped correlations are again not 195 

significantly different at a significance level of 0.05 due to the shortness of the 196 

observed record. Similar results are obtained for the E index, while all the precursors 197 

have about the same skill for the C index.  198 
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In order to provide another test of the usefulness of extratropical SSTs for the 199 

prediction of ENSO, Fig A (in auxiliary material) presents the 1
st
 and 2

nd
 EOF modes 200 

from the same domain used in the SVD, in both observations and the CGCM. Since 201 

results are globally similar in observations and the model (see Fig. A), we will restrict 202 

our discussion to observations. Overall, these two EOFs provide some additional 203 

insight into the nature of the predictability offered by these extratropical SST regions 204 

during the 1979-2011 period. Indeed, although both EOF modes seem useful for 205 

ENSO prediction (0.27 and 0.59 correlation with Niño3.4 SST during the next winter, 206 

see Table A), the predictability offered by the 1
st
 EOF mode is mostly linked to the 207 

biennial component of ENSO itself (-0.85 and 0.60 correlations with the concurrent 208 

Niño3.4 SST and Z20 EC time series, respectively), whereas the 2
nd

 EOF mode 209 

captures a more intrinsic extratropical source of predictability, which is independent 210 

from the previous ENSO state (0.03 correlation with the concurrent Niño3.4 SST) and 211 

moderately linked to the Z20 EC time series (0.5 correlation). Surprisingly, this 2
nd

 212 

EOF has a higher correlation with the winter Niño3.4 SST time series than the 1
st
 213 

EOF, and is also a significant precursor of the E and C indices, as the 1
st
 SVD mode 214 

(Table A). Interestingly, the spatial correlations between these first two EOF modes 215 

(Fig. Aa and b) and the 1
st
 SST SVD mode (in Fig. 2a) are 0.35 and 0.80, 216 

respectively. Consistently, the 1
st
 SVD mode is more correlated with the 2

nd
 EOF time 217 

series (0.82) than with the 1
st
 EOF (0.46). Thus, the source of ENSO predictability 218 

offered by the 1
st
 SVD mode “combines” both the effects of the ENSO cycle itself 219 

and the extratropics, but seems to mainly stem from extratropical variability. 220 

Finally, we developed various regression models for forecasting winter Niño3.4 221 

SST anomalies, using the USTR, Z20 and SST predictors and tested the accuracy of 222 

these models with a cross-validation procedure (Clarke and Van Gorder, 2003). In 223 
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these cross-validation experiments, we selected the EOF modes for each precurory 224 

field which offered the best prediction for the following ENSO: the 1
st
 and 2

nd
 EOF 225 

modes for extratropical SSTs (Fig. Aa-b), the 1
st
 EOF mode for tropical Pacific wind 226 

anomalies and 2
nd

 EOF mode for Z20 anomalies (same mode as shown in Meinen and 227 

McPhaden, 2000). To assess the forecast potential of each model, we then compared 228 

the observed Niño3.4 SST with the values calculated from regression equations based 229 

successively on all years within the common 1979-2008 time span, except the forecast 230 

year. The correlation coeffficient between the observed and forecast Niño3.4 SST and 231 

the Root-Mean-Square-Error (RMSE) for each model are shown in Table 2, and 232 

overall support the proposition that extratropical SSTs are a useful parameter in 233 

ENSO forecasts. Indeed, the regression model with the SST predictor as sole input 234 

achieves a higher correlation score and lower RMSE than the model which uses both 235 

USTR and Z20 predictors (0.64 compared to 0.61 correlation, 0.75 compared to 0.78 236 

RMSE). When combining these 3 predictors, the performance of the multiple 237 

regression model is improved (with 0.71 correlation and 0.69 RMSE). Finally, when 238 

removing the USTR, the performance of the model is not degraded (see Table 2). This 239 

regression exercice thus illustrates how the inclusion of extratropical SSTs may 240 

improve the statistical models currently used to predict ENSO.  241 

3.4 Atmospheric variability associated with the new SST predictor 242 

In order to explore the predicting paths of the SST predictor, we have regressed the 243 

SST and atmospheric anomalies from the previous summer to the following boreal 244 

winter onto the first two leading EOFs of extratropical SSTs in observations. As 245 

expected, the regression of SST, SLP and 850 hPa wind anomalies onto the 1
st
 EOF 246 

mode depicts the rapid transition from La Niña to El Niño (or El Niño to La Niña 247 

since the analysis is linear) and the related changes in teleconnection patterns 248 
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elsewhere (see Fig. B
 
in auxiliary material). Note, however, that the ENSO signal 249 

predicted by this mode is of limited amplitude and only marginally significant. 250 

Fig. 3 displays the maps of SST, SLP and 850 hPa wind anomalies regressed onto 251 

the 2
nd

 EOF of JFM extratropical SSTs. During the previous JAS season, no coherent 252 

SST or SLP patterns are found in the tropics, nor in the extratropics, except in the 253 

South Pacific (Fig. 3a and g). From boreal fall to winter, a significant anomalous SLP 254 

dipole emerges in the central North Pacific (Fig. 3b) consistent with the “Seasonal 255 

Footprinting Mechanism” of Vimont et al. (2003), followed one season later by large 256 

anticyclonic anomalies over the South AO and IO, which reflect the occurrence of 257 

blocking events during late boreal winter or early boreal spring in the Southern 258 

Hemisphere (Fig. 3c). These atmospheric phenomena lead to the emergence of a 259 

boomerang warm SST structure (Fig. 3i-j) in the North Pacific (Vimont et al. 2003) 260 

and to subtropical SST dipoles in the South AO and IO (Hermes and Reason, 2005). 261 

Figs. 3c and i also suggest that the extratropical cold SST anomalies over the eastern 262 

IO and western North Pacific promote persistent westerly wind anomalies over the 263 

western equatorial Pacific from boreal winter to spring (Xu and Chan, 2001; Wang et 264 

al., 2012). This westerly equatorial wind signal is a possible trigger of El Niño onset, 265 

as it can induce eastward-propagating downwelling Kelvin waves along the 266 

thermocline, leading to an El Niño warming several months later. 267 

However, there are also suggestions of additional predicting paths, not restricted to 268 

surface wind variability over the western equatorial Pacific. Indeed, from the 269 

JFM/AMJ season (Fig. 3c), a significant pattern emerges over the South Pacific, 270 

characterized by a weakening of the southeast trade winds and the development of an 271 

expanded trough. This slowdown of the Walker circulation induced by South Pacific 272 

atmospheric variability may be involved in El Niño onset (Van Loon, 1984; Clement 273 
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et al., 2011). South AO and IO anomalies could also be involved in this by remotly 274 

impacting the southwest Pacific through a modulation of the regional Hadley cell in 275 

boreal spring (Terray and Dominiak, 2005; Terray, 2011). By exciting Rossby waves, 276 

these modulations can induce a displacement of the westerly jet stream and low-level 277 

circulation in the South Pacific (Trenberth et al., 1998) and lead to the development of 278 

the southern branch of the traditional ‘horseshoe’ El Niño pattern (Fig. 3k-l). 279 

  5. Conclusions and future work 280 

In this work, we demonstrate that, in addition to well-recognized precursors of El 281 

Niño onsets, extratropical SSTs in the North Pacific, South AO and IO during late 282 

boreal winter may provide some important information for the forecast of ENSO 283 

events. This new ‘combined’ SST precursor is most significantly correlated with the 284 

Niño3.4 SST time series during the post-1979 period, and offers some potential added 285 

value in the prediction of the amplitude of these ENSO events. We have further tested 286 

the performance of these predictors through various cross-validation experiments and 287 

shown that these promising predictive relationships are also quite well reproduced in a 288 

comprehensive CGCM.  289 

Our regression analyses confirm that extratropical SST variability may be impacting 290 

ENSO through a modulation of wind variability in the western equatorial Pacific 291 

during boreal spring (Vimont et al., 2003; Terray, 2011; Wang et al., 2012), but not 292 

only. Our results also suggest that the extratropical atmospheric variability may play a 293 

significant role in ENSO development by modulating the southeast trades in the South 294 

Pacific during boreal spring, particularly for the extraordinary warm events, consistent 295 

with several recent studies (Chang et al., 2007; Clement et al., 2011). 296 

Given the suspected importance of this extratropical forcing on ENSO, it now seems 297 

essential to gain a better understanding of the physical processes operating between 298 



 

 13 

extratropical and tropical latitudes before the onset of ENSO events, as well as the 299 

relative contribution of each hemisphere in this prediction. Do each of these 300 

extratropical sectors play independently? Or does this important source of 301 

predictability for ENSO result from an interaction between the different basins? 302 

Another important question raised by this work is whether the observed relationship 303 

between extreme warm events and extratropical SSTs during recent decades is a 304 

future characteristic of a global warming climate. 305 
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Table 1: Statistics associated with the 1
st
 SVD modes between Z20, USTR or the new 373 

‘combined’ SST precursor during late boreal winter and ENSO SST anomalies in the 374 

tropical Pacific during the following winter. The last 3 columns give the correlation 375 

between each
 
SVD mode and various ENSO indices during the next December-376 

January season: the Niño3.4 SST index, the C and E indices used in Takahashi et al. 377 

(2011). Results are given for observations (in red) and for the model (in blue). The 378 

correlation coefficients exceeding the 10%, 5% and 1% confidence levels according 379 

to the phase-scrambling bootstrap test of Ebisuzaki (1997) are followed by one 380 

asterisk (*), two asterisks (**) and three asterisks (***), respectively. 381 

 

 SCF  

(%) 
r 

Precursor 

var (%)  
ENSO var 

(%) 
Cor Niño3.4 Cor C index Cor E index 

Z20 84.5 87 0.71 0.56 12.9 24.3 77.1 63.3 0.76*** 0.55*** 0.77*** 0.52*** 0.35 0.22** 

Ustr 89.3 84.9 0.64 0.53 21.1 21.5 78.4 67.1 0.74*** 0.54*** 0.62*** 0.54*** 0.32 0.21* 

‘combined’ SST 90.8 83.1 0.78 0.71 13.1 8.1 79.6 69 0.80*** 0.71*** 0.67*** 0.70*** 0.48** 0.11 

* P<0.1, **P<0.05, ***P<0.01 
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Table 2: Forecast skill of simple linear regression models using two (A and B), three 394 

(D) or four (C) predictors in JFM as inputs for the prediction of the Niño3.4 time 395 

series during the following December-January. As input for each model, we select the 396 

EOF modes associated with the Z20, USTR and SST precursors, which offer the best 397 

prediction for the following ENSO. The forecast skill of each model is assessed by the 398 

cross-validated correlation and root-mean-square-error (RMSE) calculated between 399 

the observed and forecast Niño3.4 time series, without involving the forecast year. 400 

 401 

Regression models Selected EOF mode Correlation RMSE 

A) with SST predictors 
    SST (eof m1) 

+  SST (eof m2) 
0.64 0.75 

B) with Z20 and USTR 

predictors 

    Z20 (eof m2) 

+  USTR (eof m1) 
0.61 0.78 

C) with SST, Z20 and 

USTR predictors 

     SST (eof m1) 

+  SST (eof m2) 

+  Z20 (eof m2) 

+  USTR (eof m1) 

0.71 0.69 

D) with SST and Z20 

predictors 

    SST (eof m1) 

+  SST (eof m2) 

+  Z20 (eof m2) 

0.72 0.68 
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1. Abstract 22 

 We present evidence that Sea Surface Temperatures (SSTs) in the North Pacific, 23 

South Atlantic and Indian Oceans (AO and IO, respectively) during late boreal winter, 24 

offer another important source of predictability for El Niño Southern Oscillation 25 

(ENSO). This new SST predictor may provide accurate prediction of the amplitude of 26 

ENSO events before their onset, for both El Niño and La Niña events, and especially 27 

for the extreme warm events, which occurred during recent decades.  28 

2. Introduction 29 

According to many studies, the crucial set of information for ENSO forecasts lies 30 

in the spatial variation of the thermocline depth or heat content (Meinen and 31 

McPhaden, 2000; McPhaden 2003) and the low-frequency wind variability in the 32 

tropical Indo-Pacific region (Clarke and Van Gorder, 2003). An influence from high-33 

frequency wind variability in the western Pacific region has also been suggested, but 34 

so far the most robust leading relationship has been observed with the Madden Julian 35 

Oscillation activity in late boreal spring or early summer, therefore after the ENSO 36 

onset period (Hendon et al., 2007). 37 

Nevertheless, there has been growing evidence in the literature, that other tropical 38 

and extratropical regions may also be playing an important role for ENSO. First, a 39 

number of studies suggested a close link with SST anomalies in the tropical IO or AO, 40 

which may induce modulations of the Walker circulations (Kug et al., 2005; 41 

Dommenget et al., 2006; Jansen et al., 2009; Rodriguez-Fonseca et al., 2009; Izumo et 42 

al., 2010; Frauen and Dommenget, 2012). Recently, there has also been a rising 43 

interest in the predictability offered by extratropical climate modes of variability. 44 

Vimont et al. (2003) and Wang et al. (2012) have implied a connection between the 45 
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mid-latitude and tropical Pacific, whereby the winter atmospheric variability in the 46 

North Pacific impacts subtropical SST variability and western Pacific equatorial wind 47 

anomalies, which may be responsible for exciting subsequent El Niño events. Several 48 

recent studies also emphasized the role of mid-latitude coupled variability in the 49 

South AO and IO during late boreal winter (Terray and Dominiak, 2005; Terray, 50 

2011). 51 

However, several open questions remain regarding the pertinence or added value 52 

of these new ‘extratropical’ precursors for the forecast of ENSO, compared to the 53 

conventional Pacific wind or heat content predictors, or the other tropical SST 54 

predictors. In this study, we combine the newly proposed sources of ENSO 55 

predictability in the North Pacific, South AO and IO, and evaluate the potential 56 

efficiency of this new SST predictor in predicting ENSO onset and amplitude across 57 

the “spring predictability barrier” (Webster and Yang, 1992). We present evidence, 58 

through statistical analyses of observations and a coupled ocean-atmosphere model 59 

simulation, that this new SST precursor may offer an important source of 60 

predictability for ENSO, by adding pertinent information regarding the amplitude of 61 

events, especially for the extreme warm events (Takahashi et al., 2011). . 62 

3. Data and Methods 63 

We compare three precursors of ENSO in late boreal winter: the upper-ocean heat 64 

content (Z20 precursor) and low-frequency zonal wind stress variability (USTR 65 

precursor) in the tropical Pacific, and SST variability in the North Pacific, South AO 66 

and IO (new SST precursor). We focus our analysis on the recent period after 1979, 67 

since records of tropical Pacific heat content and SST in the South AO and IO are 68 

either sparse or inexistent before this date.  69 
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The depth of the 20°C isotherm (Z20) is used as a proxy of the thermocline depth 70 

or heat content in the tropical Pacific Ocean, and is extracted from the Simple Ocean 71 

Data Assimilation (SODA) reanalysis (Carton and Giese, 2008; SODA version 2.2.4), 72 

available until 2008. We examine atmospheric fields (zonal wind stress (USTR), sea 73 

level pressure (SLP), and 850hPa winds) from the ERA-Interim reanalysis (Dee et al., 74 

2011) and SST fields from the Hadley Centre Global Sea Ice and Sea Surface 75 

Temperature (HadISST1.1) dataset (Rayner et al.., 2003), both available until 2011. 76 

For each field, monthly anomalies are calculated by applying the Seasonal-Trend 77 

decomposition procedure based on Loess (Cleveland et al., 1990), which filters out 78 

any long-term trends and annual cycle in the initial data. 79 

Our goal is to predict the ENSO peak phase, which is defined by SST anomalies 80 

averaged from October to the following February (ONDJF) over the entire equatorial 81 

Pacific. The precursors are taken either from January to March (JFM) or February to 82 

April (FMA), 9 or 10 months prior to this typical ENSO peak phase. Sensitivity 83 

analyses have been performed with the precursors taken successively in JFM, FMA or 84 

from March to May (MAM), and for each case, we have chosen the season which 85 

offers the best skill for the following ENSO. 86 

In order to compare the Z20, USTR and new SST precursors, we use the Singular 87 

Value Decomposition (SVD) method (Bretherton et al., 1992), which we apply 88 

separately between each precursor field during its peaking season and the following 89 

tropical Pacific SST field during boreal winter. Results are shown for the 1
st
 SVD 90 

mode associated with each precursor in terms of the corresponding Expansion 91 

Coefficient (EC) time series, the ‘homogeneous’ map for the precursor (i.e regression 92 

map between the precursor field and its corresponding EC time series) and 93 

‘heterogeneous’ map for the predicted ENSO field (i.e regression map between the 94 
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tropical Pacific SST and the EC time series of the precursor field, indicating how well 95 

the grid point anomalies of the ENSO field can be predicted from the precursor’s EC 96 

time series). The statistics provided by the SVD are also efficient tools for quantifying 97 

the relevance of each ENSO precursor. The Squared Covariance Fraction (SCF) 98 

measures the relative importance of each SVD mode in reconstructing the covariance 99 

matrix between the precursor field and tropical Pacific SSTs. The correlation 100 

coefficient (r) between the EC time series of the two fields indicate how strongly 101 

related the coupled patterns are. Finally, we computed how much of Pacific SST 102 

variance each SVD mode explains, and the correlations between the SVD modes and 103 

the Niño3.4 SST time series during the following winter. 104 

To test the robustness of our results, we also performed similar SVD analyses on a 105 

110-year control simulation of the SINTEX-F2 global coupled ocean-atmosphere 106 

general (CGCM) model, since it exhibits a realistic ENSO (Masson et al., 2012).  107 

4. Analysis and Results  108 

4.1 Heat content and zonal wind predictors 109 

We here examine the conventional Z20 and USTR predictors and assess their 110 

relationships with the following ENSO event, within our SVD framework (Fig. 1 and 111 

Table 1). During the 1979-2008 period, the 1
st
 SVD mode between the Z20 precursor 112 

and ENSO is consistent with the predicting potential of heat content in the context of 113 

ENSO forecasting (McPhaden, 2003). Indeed, the Z20 pattern in Fig. 1 is marked by 114 

positive Z20 anomalies in the west-central tropical Pacific in spring and appears as a 115 

mixture of the two leading Empirical Orthogonal Functions (EOFs) of Pacific Z20 116 

variability (see Meinen and McPhaden, 2000); while the corresponding SST pattern 117 

(Fig. 1b) illustrates a typical El Niño peak phase during the following winter 118 

(consistent with figure 5 in McPhaden, 2003). This SST pattern also suggests that the 119 

performance of the Z20 precursor is degraded in the far eastern equatorial Pacific. 120 
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The statistics of this 1
st
 SVD mode (shown in Table 1) confirm that Z20 anomalies 121 

during late boreal winter are strongly correlated with SST anomalies in the tropical 122 

Pacific (r=0.71), and that this 1
st
 SVD mode accounts for a significant 77.1% of 123 

tropical Pacific SST variance during the following winter. Consistently, the Z20 124 

expansion coefficients are highly correlated with the Niño3.4 SST time series in 125 

December-January (0.76 correlation, see Table 1), and with the C index defined by 126 

Takahashi et al. (2011) to describe the regime of cold and weak-to-moderate ENSO 127 

events (0.77 correlation, see Table 1). Note, however, that its performance is only 128 

modest for the E index of Takahashi et al. (2011), which accounts for the extreme 129 

warm events in the eastern Pacific (e.g. the 1982-83 El Niño event).. In Fig. 1c, the 130 

correspondence between the standardized Z20 EC and Niño3.4 SST time series 131 

illustrates how well this Z20 precursor is able to anticipate many El Niño (4 out of /8) 132 

and La Niña (5 out of /6) events during 1979-2008. This predictor is particularly 133 

successful in predicting the transition from El Niño to La Niña phases (e.g  in 1983-134 

84, 1987-88-89, 1998-99), but seems less skillful in capturing the amplitude of some 135 

extreme events, such as the 1982-83 El Niño, and also those occuring since the early 136 

2000s (see Fig. 1c and;  McPhaden, 2012).  137 

The SVD analysis between the USTR precursor over the [110°E-70°W; 10°S-138 

10°N] domain in FMA and ENSO during the 1979-2011 period illustrates that 139 

westerly wind anomalies in the western Pacific during late boreal winter are 140 

associated with a typical El Niño peak phase during the following winter (Kug et al., 141 

2005), similar to the SST pattern in Fig. 1b (not shown). Results (in Table 1) suggest 142 

that this precursor is also an efficient predictor for the ordinary cold and moderately 143 

warm ENSO events. Indeed, the corresponding 1
st 

SVD mode accounts for a 144 
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significant 78.4% of winter SST variance, and the highest correlation is once again 145 

obtained with the Niño3.4 and C indices (0.74 and 0.62 correlation, respectively).  146 

4.2 New combined extratropical SST predictor 147 

We now examine the predicting potential for ENSO which stems from 148 

extratropical SSTs. Results from the SVD between the new SST predictor and ENSO 149 

during the 1979-2011 period are shown in Fig. 2 and Table 1. The precursor fields 150 

(Fig. 2a) are characterized by anomalous SST dipoles in the North Pacific, South AO 151 

and IO during late boreal winter, consistent with patterns described by Vimont et al 152 

(2003), Wang et al (2012) and Terray (2011). These extratropical features are 153 

associated with a typical El Niño peak phase during the following winter (Fig. 2b), 154 

similar although slightly warmer than the SST pattern in Fig. 1b, and with maximum 155 

SST anomalies reaching further east in the Pacific.   156 

In terms of statistics, the results are also very promising for ENSO predictability. 157 

Although this 1
st
 SVD mode explains one of the least variances during JFM in the 158 

precursor region (13.1%), it manages to describe the largest portion of winter SST 159 

variability in the tropical Pacific (79.6%) and reaches a maximum of 0.80 correlation 160 

with the Niño3.4 SST timeseries in winter (Table 1). Compared to the Z20 predictor, 161 

thisThis new SST predictor is able to fit both the timing and amplitude of ENSO 162 

events, and this not only in the transition from El Niño to La Niña events, but also 163 

when an El Niño develops from a previous neutral or La Niña state in the tropical 164 

Pacific (see Fig. 2c, e.g. in 1982-83, 1995-96). Although its performance seems also 165 

degraded since the early 2000s, this SST predictor is particularlyalso successful in 166 

capturing the amplitude of extreme El Niño events (both in 1982-83 and 1997-98). 167 

These results are consistent with the higher and significant correlation value obtained 168 

with the E index (0.48 in Table 1), and thus reflect the potential added value of 169 

extratropical SSTs for the predictability of extreme warm ENSO regimes (Takahashi 170 
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et al., 2011). ). However, the observed correlations between the different predictors 171 

and the Niño3.4 SST timeseries (or the E and C indices) given in Table 1 are not 172 

significantly different from each other according to a statistical test based on the 173 

Fisher’s Z transformation, due to the shortness of the observed record (Fisher, 1970, 174 

p. 199). 175 

4.3. Robustness and predictive relationships  176 

In view of the short observational record, we performed similar SVD analyses with 177 

the simulated fields from the SINTEX-F2 CGCM (Table 1; Figs. 2d-f). Overall, 178 

results are quite consistent with observations, as this model exhibits a realistic 179 

simulation of the relationships of ENSO with both the Z20 and USTR precursors, and 180 

the new SST precursor. In Fig. 2d, the precursor SST pattern displays similar dipole 181 

structures as in Fig. 2a (although the simulated SST signal is weaker in the South AO 182 

and shifted westwards in the North Pacific), and is also associated with an El Niño 183 

peak phase during the following winter, with warm SST anomalies mostly confined to 184 

the equatorial central Pacific compared to observations (Fig. 2e). The statistics for the 185 

CGCM also show higher correlation values for the new combined SST precursor 186 

compared to the Z20 and USTR predictors, although they miss the observed 187 

relationship between extratropical SSTs and the E index (see Table 1). Moreover, the 188 

correlation of the Niño3.4 SST timeseries with the SST precursor is now significantly 189 

higher from those derived from the Z20 and USTR precursors at a significance level 190 

of 0.05, thanks to the length of the simulation (Fisher, 1970). 191 

By definition, the high values of the statistics in Table 1 may also partly result 192 

from the optimization problem solved by the SVD. In order to assess reliably the 193 

predictive potential of the new SST precursor, we also performed a cross-validation 194 

experiment of our SVD models. In this experiment, we treated the three precursors in 195 

the same objective manner, and re-computed each SVD analysis based successively 196 
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on all years within the 1979-2008 time span, except one ‘forecast’ year. We then 197 

estimated the values of each precursor’s EC time series, by projecting the precursor 198 

field observed before the ‘forecast’ year onto the 1
st
 SVD mode computed without 199 

this year in the cross-validation procedure. The correlation between the cross-200 

validated SVD modes and Niño3.4 SST shows once again a higher high correlation 201 

for the SST precursor (0.75) compared to the Z20 and USTR precursors (0.67 and 202 

0.65 correlation respectively).), although these bootstrapped correlations are again not 203 

significantly different at a significance level of 0.05 due to the shortness of the 204 

observed record. Similar results are obtained for the E index (with a higher 0.42 205 

correlation for the SST precursor, compared to 0.26 and 0.32 correlation for the Z20 206 

and USTR precursors, respectively), while all the precursors have about the same skill 207 

for the C index (correlation between 0.65 and 0.67 for each precursor)..  208 

In order to provide another test of the usefulness of extratropical SSTs for the 209 

prediction of ENSO, Fig A (in auxiliary material) presents the 1
st
 and 2

nd
 EOF modes 210 

from the same domain used in the SVD, in both observations and the CGCM. Since 211 

the results of this EOF analysis are globally similar in observations and the model (see 212 

Fig. A), we will restrict our discussion to observations. Overall, these two EOFs 213 

provide some additional insight into the nature of the predictability offered by these 214 

extratropical SST regions during the 1979-2011 period. Indeed, although both EOF 215 

modes seem useful for ENSO prediction (0.27 and 0.59 correlation with the Niño3.4 216 

SST index during the next winter, see Table A), the predictability offered by the 1
st
 217 

EOF mode is mostly linked to the biennial component of ENSO itself (-0.85 and 0.60 218 

correlations with the concurrent Niño3.4 SST and Z20 EC time series, respectively), 219 

whereas the 2
nd

 EOF mode captures a more intrinsic extratropical source of 220 

predictability, which is independent from the previous ENSO state (0.03 correlation 221 
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with the concurrent Niño3.4 SST) and moderately linked to the Z20 EC time series 222 

(0.5 correlation). Surprisingly, this 2
nd

 EOF has a higher correlation with the winter 223 

Niño3.4 SST time series  than the 1
st
 EOF, and is also a significant precursor of the E 224 

and C indices, as the 1
st
 SVD mode (Table A). Interestingly, the spatial correlations 225 

between these first two EOF modes (Fig. Aa and b) and the 1
st
 SST SVD mode (in 226 

Fig. 2a) are 0.35 and 0.80, respectively. Consistently, the 1
st
 SVD mode is more 227 

correlated with the 2
nd

 EOF time series (0.82) than with the 1
st
 EOF (0.46). Thus, the 228 

source of ENSO predictability offered by the 1
st
 SVD mode “combines” both the 229 

effects of the ENSO cycle itself and the extratropics, but seems to mainly stem from 230 

extratropical variability. 231 

Finally, we developed various regression models for forecasting winter Niño3.4 232 

SST anomalies, using the USTR, Z20 and SST predictors and tested the accuracy of 233 

these models with a cross-validation procedure (Clarke and Van Gorder, 2003). In 234 

these cross-validation experiments, we selected the EOF modes for each precurory 235 

field which offered the best prediction for the following ENSO: the 1
st
 and 2

nd
 EOF 236 

modes for extratropical SSTs (Fig. Aa-b), the 1
st
 EOF mode for tropical Pacific wind 237 

anomalies and 2
nd

 EOF mode for Z20 anomalies (same mode as shown in Meinen and 238 

McPhaden, 2000). To assess the forecast potential of each model, we then compared 239 

the observed Niño3.4 SST with the values calculated from regression equations based 240 

successively on all years within the common 1979-2008 time span, except the forecast 241 

year. The correlation coeffficient between the observed and forecast Niño3.4 SST and 242 

the Root-Mean-Square-Error (RMSE) for each model are shown in Table 2, and 243 

overall support the proposition that extratropical SSTs may be a crucialare a useful 244 

parameter in ENSO forecasts. Indeed, the regression model with the SST predictor as 245 

sole input achieves a higher correlation score and lower RMSE than the model which 246 
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uses both USTR and Z20 predictors (0.64 compared to 0.61 correlation, 0.75 247 

compared to 0.78 RMSE). When combining these 3 predictors, the performance of the 248 

multiple regression model is significantly improved (with 0.71 correlation and 0.69 249 

RMSE). Finally, when removing the USTR, the performance of the model is not 250 

degraded (see Table 2). This regression exercice thus illustrates how the inclusion of 251 

extratropical SSTs may improve the statistical models currently used to predict 252 

ENSO.  253 

3.4 Atmospheric variability associated with the new SST predictor 254 

In order to explore the predicting paths of the SST predictor, we have regressed the 255 

SST and atmospheric anomalies from the previous summer to the following boreal 256 

winter onto the first two leading EOFs of extratropical SSTs in observations. As 257 

expected, the regression of SST, SLP and 850 hPa wind anomalies onto the 1
st
 EOF 258 

mode depicts the rapid transition from La Niña to El Niño (or El Niño to La Niña 259 

since the analysis is linear) and the related changes in teleconnection patterns 260 

elsewhere (see Fig. B
 
in auxiliary material). Note, however, that the ENSO signal 261 

predicted by this mode is of limited amplitude and only marginally significant. 262 

Fig. 3 displays the maps of SST, SLP and 850 hPa wind anomalies regressed onto 263 

the 2
nd

 EOF of JFM extratropical SSTs. During the previous JAS season, no coherent 264 

SST or SLP patterns are found in the tropics, nor in the extratropics, except in the 265 

South Pacific (Fig. 3a and g). From boreal fall to winter, a significant anomalous SLP 266 

dipole emerges in the central North Pacific (Fig. 3b) consistent with the “Seasonal 267 

Footprinting Mechanism” of Vimont et al. (2003), followed one season later by large 268 

anticyclonic anomalies over the South AO and IO, which reflect the occurrence of 269 

blocking events during late boreal winter or early boreal spring in the Southern 270 

Hemisphere (Fig. 3c). These atmospheric phenomena lead to the emergence of a 271 

boomerang warm SST structure (Fig. 3i-j) in the North Pacific (Vimont et al. 2003) 272 
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and to subtropical SST dipoles in the South AO and IO (Hermes and Reason, 2005). 273 

Figs. 3c and i also suggest that the extratropical cold SST anomalies over the eastern 274 

IO and western North Pacific promote persistent westerly wind anomalies over the 275 

western equatorial Pacific from boreal winter to spring (Xu and Chan, 2001; Wang et 276 

al., 2012). This westerly equatorial wind signal is a possible trigger of El Niño onset, 277 

as it can induce eastward-propagating downwelling Kelvin waves along the 278 

thermocline, leading to an El Niño warming several months later. 279 

However, there are also suggestions of additional predicting paths, not restricted to 280 

surface wind variability over the western equatorial Pacific. Indeed, from the 281 

JFM/AMJ season (Fig. 3c), a significant pattern emerges over the South Pacific, 282 

characterized by a weakening of the southeast trade winds and the development of an 283 

expanded trough. This slowdown of the Walker circulation induced by South Pacific 284 

atmospheric variability may be involved in El Niño onset (Van Loon, 1984; Clement 285 

et al., 2011). South AO and IO anomalies could also be involved in this by remotly 286 

impacting the southwest Pacific through a modulation of the regional Hadley cell 287 

during in boreal spring (Terray and Dominiak, 2005; Terray, 2011). By exciting 288 

Rossby waves, these modulations can induce a displacement of the westerly jet stream 289 

and low-level circulation in the South Pacific (Trenberth et al., 1998) and lead to the 290 

development of the southern branch of the traditional ‘horseshoe’ El Niño pattern 291 

(Fig. 3k-l). 292 

  5. Conclusions and future work 293 

In this work, we demonstrate that, in addition to well-recognized precursors of El 294 

Niño onsets, extratropical SSTs in the North Pacific, South AO and IO during late 295 

boreal winter may provide some important information for the forecast of ENSO 296 

events. This new ‘combined’ SST precursor is most significantly correlated with the 297 
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Niño3.4 SST time series during the post-1979 period, and offers some potential added 298 

value in the prediction of the amplitude of these ENSO events. We have further tested 299 

the performance of these predictors through various cross-validation experiments and 300 

shown that these promising predictive relationships are also quite well reproduced in a 301 

comprehensive CGCM.  302 

Our regression analyses confirm that extratropical SST variability may be impacting 303 

ENSO through a modulation of wind variability in the western equatorial Pacific 304 

during boreal spring (Vimont et al., 2003; Terray, 2011; Wang et al., 2012), but not 305 

only. Our results also suggest that the extratropical atmospheric variability may play a 306 

significant role in ENSO development by modulating the southeast trades in the South 307 

Pacific during boreal spring, particularly for the extraordinary warm events, consistent 308 

with several recent studies (Chang et al., 2007; Clement et al., 2011). 309 

Given the suspected importance of this extratropical forcing on ENSO, it now seems 310 

essential to gain a better understanding of the physical processes operating between 311 

extratropical and tropical latitudes before the onset of ENSO events, as well as the 312 

relative contribution of each hemisphere in this prediction. Do each of these 313 

extratropical sectors play separately, and independently? Or does this important 314 

source of predictability for ENSO result from an interaction between the different 315 

basins? Another important question raised by this work is whether the observed 316 

relationship between extreme warm events and extratropical SSTs during recent 317 

decades is a future characteristic of a global warming climate. 318 
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Table 1: Statistics associated with the 1
st
 SVD modes between Z20, USTR or the new 388 

‘combined’ SST precursor during late boreal winter and ENSO SST anomalies in the 389 

tropical Pacific during the following winter. The last 3 columns give the correlation 390 

between each
 
SVD mode and various ENSO indices during the next December-391 

January season: the Niño3.4 SST index, the C and E indices used in Takahashi et al. 392 

(2011). Results are given for observations (in red) and for the model (in blue). The 393 

correlation coefficients exceeding the 10%, 5% and 1% confidence levels according 394 

to the phase-scrambling bootstrap test of Ebisuzaki (1997) are followed by one 395 

asterisk (*), two asterisks (**) and three asterisks (***), respectively. 396 

 

 SCF  

(%) 
r 

Precursor 

var (%)  
ENSO var 

(%) 
Cor Niño3.4 Cor C index Cor E index 

Z20 84.5 87 0.71 0.56 12.9 24.3 77.1 63.3 0.76*** 0.55*** 0.77*** 0.52*** 0.35 0.22** 

Ustr 89.3 84.9 0.64 0.53 21.1 21.5 78.4 67.1 0.74*** 0.54*** 0.62*** 0.54*** 0.32 0.21* 

‘combined’ SST 90.8 83.1 0.78 0.71 13.1 8.1 79.6 69 0.80*** 0.71*** 0.67*** 0.70*** 0.48** 0.11 

* P<0.1, **P<0.05, ***P<0.01 

 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

SVD results 
pre 
Precursor 
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Table 2: Forecast skill of simple linear regression models using two (A and B), three 409 

(D) or four (C) predictors in JFM as inputs for the prediction of the Niño3.4 time 410 

series during the following December-January. As input for each model, we select the 411 

EOF modes associated with the Z20, USTR and SST precursors, which offer the best 412 

prediction for the following ENSO. The forecast skill of each model is assessed by the 413 

cross-validated correlation and root-mean-square-error (RMSE) calculated between 414 

the observed and forecast Niño3.4 time series, without involving the forecast year. 415 

 416 

Regression models Selected EOF mode Correlation RMSE 

A) with SST predictors 
    SST (eof m1) 

+  SST (eof m2) 
0.64 0.75 

B) with Z20 and USTR 

predictors 

    Z20 (eof m2) 

+  USTR (eof m1) 
0.61 0.78 

C) with SST, Z20 and 

USTR predictors 

     SST (eof m1) 

+  SST (eof m2) 

+  Z20 (eof m2) 

+  USTR (eof m1) 

0.71 0.69 

D) with SST and Z20 

predictors 

    SST (eof m1) 

+  SST (eof m2) 

+  Z20 (eof m2) 

0.72 0.68 



Figure  1 : Observed 1st SVD mode between Z20 precursor over [110°E-70°W; 20°S-20°N] and tropical Pacific 

SST over [120°E-80°W; 15°S-15°N] during 1979-2008: (a) Z20 homogeneous map in JFM, (b) Pacific SST 

heterogeneous map in ONDJF, and (c) standardized Z20 EC time series in JFM (black curve) superimposed with 

the standardized Niño3.4 SST time series in the following December-January season (red curve). The blue (green) 

crosses indicate the number of predicted El Niño (La Niña) events (e.g. when both time series exceed a 0.75 

standard deviation threshold).  
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Figure  2 : As in Figure 1, but for the observed 1st SVD mode between the JFM extratropical SST precursor 

(over the North Pacific [110°E-90°W; 10°N-50°N], South Indian [25°E-150°E; 10°S-50°S] and South Atlantic 

[50°W-25°E; 10°S-50°S] Oceans) and winter tropical Pacific SST during the 1979-2011 period (panels a,b,c) 

and the SINTEX-F2 simulation (panels d,e,f). The SST EC time series manages to predict 12 out of the 20 El 

Niño events, and 14 out of the 24 La Niña events in this control simulation. 
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Figure  3 : Sea Level Pressure (SLP, shading) and 850hPa wind (vectors) anomalies (a to f) and SST anomalies (g to l) 

regressed onto the 2nd EOF time series of extratropical SST in JFM (over the 1979-2011 period). Maps are shown from the 

previous boreal summer to the following boreal winter. The black contours and the wind vectors denote that the corresponding 

correlation coefficients are above the 90% confidence level following a phase-scrambling procedure with 999 samples 
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