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An invariance principle under the total variation
distance

Ivan Nourdin∗ (Université de Lorraine)
Guillaume Poly (Université du Luxembourg)

Abstract: Let X1,X2, . . . be a sequence of i.i.d. random variables, with mean zero and variance
one. Let Wn = (X1 + . . . +Xn)/

√
n. An old and celebrated result of Prohorov [16] asserts that

Wn converges in total variation to the standard Gaussian distribution if and only if Wn0
has an

absolutely continuous component for some n0. In the present paper, we give yet another proof
and extend Prohorov’s theorem to a situation where, instead of Wn, we consider more generally
a sequence of homogoneous polynomials in the Xi. More precisely, we exhibit conditions for a
recent invariance principle proved by Mossel, O’Donnel and Oleszkiewicz [14] to hold under the
total variation distance. There are many works about CLT under various metrics in the literature,
but the present one seems to be the first attempt to deal with homogeneous polynomials in the
Xi with degree strictly greater than one.

Keywords: Convergence in law; convergence in total variation; absolute continuity; invariance
principle.

1 Introduction and main results

Let X1,X2, . . . be independent copies of a random variable with mean zero and variance one.
According to the central limit theorem, the normalized sums

Wn =
X1 + . . .+Xn√

n
(1.1)

converge in distribution to the standard normal law N ∼ N(0, 1). In fact, using, e.g., the second
Dini’s theorem it is straightforward to prove a much stronger result, namely that Wn converges
to N in the Kolmogorov distance:

lim
n→∞

dKol(Wn, N) = 0, (1.2)

where dKol(U, V ) = supx∈R |P (U 6 x)− P (V 6 x)|.

In (1.2), can we replace the Kolmogorov distance dKol by the total variation distance dTV ,
defined as dTV (U, V ) = supA∈B(R) |P (U ∈ A)− P (V ∈ A)|? In other words, do we also have

lim
n→∞

dTV (Wn, N) = 0 (1.3)

for Wn defined by (1.1)? The right answer is provided by an old and celebrated result of Prohorov
[16]. To formulate it, first let us introduce the Lebesgue decomposition (of the distribution) of a

∗supported in part by the (french) ANR grant ‘Malliavin, Stein and Stochastic Equations with Irregular
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random variable. As is well known, each cumulative distribution function (cdf) F may indeed be
represented in the form:

F (x) = u

∫ x

−∞
g(y)dy + (1− u)G(x), x ∈ R, (1.4)

where u ∈ [0, 1], g : R → [0,∞) satisfies
∫

R
g(y)dy = 1 and G is a singular cdf (corresponding to a

distribution concentrated on a set of zero Lebesgue measure) with G′(x) = 0 for almost all x. The
real number u ∈ [0, 1] is uniquely determined by F ; the density function g is uniquely determined
(up to a set of measure zero) if and only if u > 0.

Definition 1.1 When X is a random variable with cdf F , we say that X is singular if u = 0 in
(1.4). If u > 0, we say that X has an absolutely continuous component with density g.

We can now state Prohorov’s theorem [16]. A proof will be given in Section 2.4, to illustrate
a possible use of our forthcoming results.

Theorem 1.2 (Prohorov) The convergence (1.3) takes place if and only if there exists n0 > 1
such that the random variable Wn0

has an absolutely continuous component.

Prohorov’s theorem has been the starting point of a fruitful line of research around the validity
of the central limit theorem under various metrics and the estimation of their associated rates of
convergence. Let us only give a small sample of references dealing with this rich and well studied
topic. Convergence of densities in L∞ are studied by Gnedenko and Kolmogorov [9]. On their
side, Mamatov and Halikov [11] dealt with the multivariate CLT in total variation. Barron [2]
studied the convergence in relative entropy, whereas Shimizu [17] and Johnson and Barron [10]
studied the convergence in Fisher information. As far as rates of convergence are concerned, one
can quote Mamatov and Sirazdinov [13] for the total variation distance and, very recently, Bobkov,
Chistyakov and Götze for bounds in entropy [3], in Fisher information [4] and for Edgeworth-type
expansions in the entropic central limit theorem [5]. Finally we mention [6, 7] for a variational
approach of these issues with some variance bounds.

All these above-mentioned references have in common to ‘only’ deal with sums of independent
random variables. In the present paper, in contrast, we will consider highly non-linear functionals
of independent random variables. It is arguably a much harder framework to work with, precisely
because all the nice properties enjoyed by sums of independent variables are no longer valid in
this context (in particular, the use of characteristic functions is not appropriate).

Let us now turn to the details of the situation we are considering in the present article. Fix
a degree of multilinearity d > 1 (d = 1 for linear, d = 2 for quadratic, etc.) and, for any n > 1,
consider a homogeneous polynomial Qn : RNn → R of the form

Qn(x) =

Nn
∑

i1,...,id=1

an(i1, . . . , id)xi1 . . . xid , x = (x1, . . . , xNn) ∈ R
Nn . (1.5)

In (1.5), it is implicitely supposed that Nn → ∞ and also that an(i1, . . . , id) are real numbers
vanishing on diagonals and symmetric in the indices. We further assume, in all what follows, that
Qn is properly normalized:

d!

Nn
∑

i1,...,id=1

an(i1, . . . , id)
2 = 1, n > 1, (1.6)
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and that all the terms of Qn are asymptotically negligible, meaning in our context that

lim
n→∞

max
16i16n

Nn
∑

i2,...,id=1

an(i1, . . . , id)
2 = 0. (1.7)

As anticipated, property (1.7) will play a crucial role in the sequel. It is also the key to obtain
the following invariance principle, due to Mossel, O’Donnel and Oleszkiewicz [14].

Theorem 1.3 (Mossel, O’Donnel, Oleszkiewicz) Fix an integer d > 1, and let Qn be a se-
quence of homogeneous polynomials satisfying both (1.5), (1.6) and (1.7). Let X = (X1,X2, . . .)
be a sequence of independent random variables with mean zero and variance one, belonging to
L2+ǫ(Ω) for some ǫ > 0 (the same ǫ for each Xi). Assume the same for Y = (Y1, Y2, . . .). Then

lim
n→∞

dKol(Qn(X), Qn(Y)) = 0. (1.8)

Observe that one recovers (1.2) by considering, in (1.8), d = 1, an(i) =
1√
n
, 1 6 i 6 n (which

satisfies (1.7)) and Y1 ∼ N(0, 1) (which leads to Qn(Y) ∼ N(0, 1) for any n).

In the light of the aforementioned results, it seemed natural to us to ask under which assump-
tion the convergence (1.8) may be strenghtened to the total variation distance as follows:

lim
n→∞

dTV (Qn(X), Qn(Y)) = 0. (1.9)

Before detailing our answer, let us first do a quick digression. As anticipated, a main aspect
of our approach will consist in introducing the following class of random variables.

Definition 1.4 For any p ∈]0, 1] and α > 0, the class C(p, α) is the set of real random variables
X satisfying

X
law
= ε(αU + x0) + (1− ε)V, (1.10)

where x0 ∈ R is a real number, and U ∼ U[−1,1], ε ∼ B(p) and V (with no specified distribution)
are three independent random variables.

Since it will play a crucial role in the sequel, let us first try to catch the meaning of (1.10).
To this aim, we introduce yet another class of random variables.

Definition 1.5 For any c, α > 0, the class G(c, α) is the set of real random variables X having
an absolutely continuous component and whose density g, see (1.4), satisfies g(x) > c for all
x ∈ [x0 − α, x0 + α] for some x0 ∈ R.

The following result compares the two classes C(p, α) and G(c, α). Roughly speaking, it asserts
that the class of random variables with an absolutely continous component (that is, exactly the
kind of random variables appearing in Prohorov’s Theorem 1.2) coincides with ∪p∈]0,1],α>0 Cp,α.
Observe also that G(c, α) is not empty if and only if 2cα 6 1.

Proposition 1.6 Fix c, α > 0 and p ∈]0, 1]. One has G(c, α) ⊂ C(2cα, α). Moreover, any random
variable belonging to C(p, α) has an absolutely continuous part.
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In Lemma 2.2 below, we state two further important properties of C(p, α). Firstly, the
sum of two independent random variables having an absolutely continuous component belong
to ∪c,α>0 G(c, α) ⊂ ∪p∈]0,1],α>0 C(p, α). Secondly, if 0 < q 6 p 6 1 and 0 < β 6 α, then
C(p, α) ⊂ C(qβ/α, β).

Now C(p, α) has been introduced and is arguably well-understood, let us give a name to the
set of sequences of independent and normalized random variables we will deal with throughout
the sequel.

Definition 1.7 Let α > 0, p ∈]0, 1] and ǫ > 0. A sequence X = (X1,X2, . . .) of random variables
belongs to D(α, p, 2 + ǫ) if the Xi are independent, satisfy supiE|Xi|2+ǫ < ∞ and if, for each i,
E[Xi] = 0, E[X2

i ] = 1 and Xi ∈ C(p, α).

We are now in a position to state the main result of the present paper.

Theorem 1.8 Fix an integer d > 1, and let Qn be a sequence of homogeneous polynomials sat-
isfying both (1.5), (1.6 and (1.7). Let X and Y belong to D(α, p, 2 + ǫ) for some ǫ, α > 0 and
p ∈]0, 1]. Then (1.9) holds true.

A noticeable corollary of Theorem 1.8 is a new proof of Prohorov’s Theorem 1.2, see Section
2.4. Another one is the following result.

Corollary 1.9 Fix an integer d > 2, and let Qn be a sequence of homogeneous polynomials
satisfying (1.5)-(1.6)-(1.7). Let X belong to D(α, p, 2 + ǫ) for some ǫ, α > 0 and p ∈]0, 1]. If
Qn(X) converges in law to W , then W has a density and Qn(X) converges to W in total variation.

The statement of Corollary 1.9 would be clearly wrong without assuming (1.7). Consider, e.g.,
Qn(x) = x1, n > 1 with X1 singular. Another interesting consequence of Theorem 1.8 is provided
by the next theorem.

Theorem 1.10 Let {an(i1, . . . , id)}16i1,...,id6Nn be an array of real numbers vanishing on di-
agonals, symmetric in the indices and satisfying (1.6). (We do not suppose (1.7).) Let G =
(G1, G2, . . .) be a sequence of independent N(0, 1) random variables, and let N ∼ N(0, 1). Then,
the following four assertions are equivalent as n → ∞.

(a)
Nn
∑

i1,i2,··· ,id=1

an(i1, i2, · · · , id)Gi1Gi2 · · ·Gid
law→ N .

(b) dTV



N,

Nn
∑

i1,i2,··· ,id=1

an(i1, i2, · · · , id)Gi1Gi2 · · ·Gid



→ 0.

(c) For all X = (X1,X2, . . .) belonging to D(α, p, 2+ ǫ) for some ǫ, α > 0 and p ∈]0, 1], we have

Nn
∑

i1,i2,··· ,id=1

an(i1, i2, · · · , id)Xi1Xi2 · · ·Xid

law→ N.
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(d) For all X = (X1,X2, . . .) belonging to D(α, p, 2+ ǫ) for some ǫ, α > 0 and p ∈]0, 1], we have

dTV



N,
Nn
∑

i1,i2,··· ,id=1

an(i1, i2, · · · , id)Xi1Xi2 · · ·Xid



→ 0.

The rest of our paper is organised as follows. In Section 2 we prove all the results that are
stated in this Introduction, except Theorem 1.8; in particular, we give a new proof of Prohorov’s
Theorem 1.2 in Section 2.4. Finally, the proof of our main result, namely Theorem 1.8, is provided
in Section 3.

2 Proofs of all stated results except Theorem 1.8

2.1 Some useful lemmas

The following lemma will be used several times in the sequel.

Lemma 2.1 Fix q ∈ [0, 1], and let Y,Z be two random variables satisfying E[f(Y )] > qE[f(Z)]
for all positive bounded function f . Then there exists two independent random variable W and
ζ ∼ B(q), independent from Z, such that

Y
law
= ζZ + (1− ζ)W. (2.11)

Proof of Lemma 2.1. Our assumption ensures that the linear form f 7→ E[f(Y )] − qE[f(Z)] is
positive. From the Riesz representation theorem, one deduces the existence of a positive finite
Radon measure ν such that

E[f(Y )] = qE[f(Z)] +

∫

R

f(x)dν(x). (2.12)

Choosing f ≡ 1 in (2.12) gives ν(R) = 1 − q. If ν(R) = 0 then q = 1 and the proof of (2.11) is
established. Otherwise, ν(R) > 0 and one can consider W ∼ 1

ν(R)dν(x), implying in turn (2.11).
2

In the following lemma, we gather useful properties of the classes C(p, α) and G(c, α).

Lemma 2.2 The following properties take place.

1. If 0 < q 6 p 6 1 and if 0 < β 6 α, then C(p, α) ⊂ C(qβ/α, β). In particular, C(p, α) ⊂
C(q, α).

2. If X and Y both have an absolutely continuous component and if X is independent from Y ,
then there exists c, α > 0 such that X + Y ∈ G(c, α).

3. If X belongs to C(p, α) with α > 0 and p ∈]0, 1] and if Y is any random variable independent
from X, then X + Y belongs to C(q, β) for some β > 0 and q ∈]0, 1].

4. If a 6= 0 and b are two real numbers and if X belongs to C(p, α) with α > 0 and p ∈]0, 1],
then aX + b ∈ C(p, |a|α).
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Proof. 1. Fix 0 < q 6 p 6 1 and 0 < β 6 α, and consider X ∈ C(p, α). According to (1.10), we
have, for any positive f ,

E[f(X)] = p

∫

R

f(x)
1

2α
1[x0−α,x0+α](x)dx+ (1− p)E[f(V )]

>
qβ

α

∫

R

f(x)
1

2β
1[x0−β,x0+β](x)dx.

The conclusion follows from Lemma 2.1.
2. Consider the decomposition (1.4) of the cdf F of X. This settles u ∈]0, 1] and g : R+ → R

in a unique way. Settle similarly v ∈]0, 1] and h : R+ → R for Y . For any Borel set A, one has
P (X ∈ A) > u

∫

A
g(x)dx and the same for Y . We deduce

P (X + Y ∈ A) > uv

∫

A

(g ⋆ h)(x)dx,

with ⋆ denoting the usual convolution. Besides, g ⋆ h = limM→∞ g ⋆ inf(h,M) and the limit
is increasing by positivity of g. Finally, we note that, since g ∈ L1 and inf(h,M) ∈ L∞, the
convolution g⋆inf(h,M) is continuous. Let x0 ∈ R and M > 0 be such that (g⋆inf(h,M))(x0) > 0.
(Such a pair (x0,M) necessarily exists, otherwise we would have g ⋆ h ≡ 0 by taking the large
M limit.) By continuity, there exists c > 0 and α > 0 such that, for any x ∈]x0 − α, x0 + α[,
(g ⋆ h)(x) > (g ⋆ inf(h,M))(x) ≥ c. That is, X + Y belongs to G(c, α).
3. We have X

law
= ε(αU + x0) + (1 − ε)V , with x0 ∈ R a real number, and U ∼ U[−1,1], ε ∼ B(p)

and V (with no specified distribution) three independent random variables. On the other hand,

one can write Y
law
= εY + (1 − ε)Z, with Z having the same law than Y and independent from

Y,U, ε, V . Thus,

X + Y
law
= ε(αU + x0 + Y ) + (1− ε)(V + Z).

The random variable αU + x0 + Y has a density g given by

g(v) =

∫

R

1

2α
1[x0−α,x0+α](v − y)dPY (y) =

1

2α
P (Y ∈ [v − x0 − α, v − x0 + α]).

As a matter of fact, g is a regulated function, since it is the difference of two increasing functions.
In particular, the set E of its discontinuous points is countable. As a consequence, Leb(E) = 0,
implying in turn 1 =

∫

R
g(v)dv =

∫

R\E g(v)dv, so that there exists x1 6∈ E satisfying g(x1) > 0.

Since g is continuous at x1, there exists r > 0 such that g(v) > 1
2g(x1) for all v ∈ [x1 − r, x1 + r].

By Lemma 2.1, it comes that

αU + x0 + Y
law
= η(rU + x1) + (1− η)T,

where η ∼ B(p′) for some p′ ∈]0, 1], U ∼ U[−1,1] and T are independent. Hence

X + Y
law
= εη(rU + x1) + ε(1 − η)T + (1− ε)(V + Z).

As a result, for any bounded positive function,

E[f(X + Y )] = pp′E[f(rU + x1)] + p(1− p′)E[f(T )] + (1− p)E[f(V + Z)]

> pp′E[f(rU + x1)].

Finally, one deduces that X + Y belongs to C(pp′, r) by Lemma 2.1.
4. Obvious. 2
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2.2 Proof of Proposition 1.6

Let X be an element of G(c, α). Let F denote its cdf, and consider g, G and u as in (1.4).
Let Y ∼ g(x)dx, Z ∼ dG(x) and η ∼ B(u) be three independent random variables. Then

X
law
= ηY + (1− η)Z. Using the assumption made on g, one obtains, for any positive function f ,

E[f(Y )] > 2cαE [f (αU + x0)] .

Observe that 0 < 2cα 6 1 necessarily. We then deduce that X ∈ C(2cα, α) from Lemma 2.1.
Consider now a random variable X belonging to C(p, α). We have, for any positive function

f and according to the decomposition (1.10),

E[f(X)] = pE[f(αU + x0)] + (1− p)E[f(V )]. (2.13)

Let us consider the Lebesgue decomposition (u, g,G) of V , see (1.4):

E[f(V )] = u

∫

R

f(x)g(x)dx + (1− u)

∫

R

f(x)dG(x).

Plugging into (2.13) yields

E[f(X)] =

∫

R

f(x)
{ p

2α
1[x0−α,x0+α](x) + (1− p)u g(x)

}

dx+ (1− p)(1− u)

∫

R

f(x)dG(x),

from which we deduce that X has an absolutely continuous component.
2

2.3 Proof of Corollary 1.9

Let the assumption of Corollary 1.9 prevail and consider a sequence G = (G1, G2, . . .) com-
posed of independent copies of a standard Gaussian random variable. By the Mossel, O’Donnel,
Oleszkiewicz’s invariance principle (1.8), one has that Qn(G) converges in law to W . It implies,
by [15, Theorem 3.1] (see also [15, Lemma 2.4]), that W has a density and dTV (Qn(G),W ) → 0
as n → ∞. But dTV (Qn(X), Qn(G)) → 0 by our Theorem 1.8, so

dTV (Qn(X),W ) 6 dTV (Qn(X), Qn(G)) + dTV (Qn(G),W ) → 0 as n → ∞.

This concludes the proof of Corollary 1.9.
2

2.4 Proof of Theorem 1.2

We want to use Corollary 1.9 but the problem is that X is not assumed to belong to D in the
statement of Theorem 1.2. To overcome this issue we shall need Lemma 2.2.

Let the assumptions and notation of Theorem 1.2 prevail.
First, when Wn is singular, then there exists a Borel set A such that P (N ∈ A) = 0 and

P (Wn ∈ A) = 1; in particular, dTV (Wn, N) = 1. Hence, if Wn is singular for all n, then (1.3)
cannot hold.

7



Now, assume that Wn0
has an absolutely continuous component for some n0. To prove (1.3)

is obviously equivalent to prove that, for all k ∈ {0, . . . , 2n0 − 1},

lim
n→∞

dTV (W2n0n+k, N) = 0. (2.14)

So, fix k ∈ {0, . . . , 2n0 − 1} and consider a sequence (Y2, Y3, . . .) of independent copies of W2n0
.

By Lemma 2.2 (points 2 and 4), observe that each Yi belongs to C(p, α), for some p ∈]0, 1] and
α > 0 (the same p and the same α for all i > 2); also, we have E[Yi] = 0 and E[Y 2

i ] = 1. On the
other hand, let Y1 be independent of Y2, Y3, . . . and have the same law than W2n0+k. By Lemma
2.2 (points 3 and 4), Y1 belongs to C(q, β) for some q ∈]0, 1] and β > 0; also, we have E[Y1] = 0
and E[Y 2

1 ] = 1. In fact, thanks to Lemma 2.2 (point 1), one may and will choose the same p and
the same α for each Yi, without making a difference between i = 1 and i > 2.

Bearing all the previous notation in mind, we can write

Wn
law
=

√

2n0 + k

n
Y1 +

√

2n0

n

n
∑

k=2

Yk.

The convergence (2.14) is now a direct consequence of Theorem 1.8 applied to d = 1, a sequence

X = G = (G1, G2, . . .) of independent N(0, 1) variables, an(1) =
√

2n0+k
n

and an(i) =
√

2n0

n
,

i = 2, . . . , n. Note that

dFM (Wn, N) = dFM (Qn(Y), Qn(X)) → 0 as n → ∞

by the usual CLT, so that it is not necessary to rely on Theorem 1.3 to conclude the proof of
Theorem 1.8 (see Step 7 of Section 3) and so to assume the existence of an absolute qth moment
for X1 with q strictly greater than 2.

2

2.5 Proof of Theorem 1.10

Implication (a) ⇒ (b) is a reformulation of [12, Corollary 5.2.8]. Implications (b) ⇒ (a) and (d) ⇒
(c) are obvious. Implication (c) ⇒ (a) is because G belongs to D(α, p, 2+ε) for some α, ε > 0 and
p ∈]0, 1[ (use Proposition 1.6). Finally, implication (a) ⇒ (d) is a consequence of the following
two facts. Firstly, if (a) takes place then, by a usual hypercontractivity argument, the sequence
Fn :=

∑Nn

i1,i2,··· ,id=1 an(i1, i2, · · · , id)Gi1Gi2 · · ·Gid (which is normalized so that E[F 2
n ] = 1, see

indeed (1.6)) satisfies E[F 4
n ] → 3. Secondly, one has, according to [12, (11.4.7) and (11.4.8) pp.

192-193]:

max
16i16n

Nn
∑

i2,...,id=1

an(i1, . . . , id)
2
6

1

dd!

√

E[F 4
n ]− 3.

These two facts together imply that, if (a) holds, then (1.7) is automatically satisfied. Thus,
Theorem 1.8 implies the validity of assertion (d).

2

8



3 Proof of Theorem 1.8

Let the assumptions and notation of Theorem 1.8. Without loss of generality, for simplicity we
assume that Nn = n.

The proof is divided into several steps.

Step 1. In the definition of Qn(X) one may and will replace each Xi by εi(αUi+xi)+(1−εi)Vi,
where e = (ε1, ε2, . . .) is a sequence of independent Bernoulli random variables (εi ∼ B(pi)),
U = (U1, U2, . . .) is a sequence of independent [−1, 1]-uniformly distributed random variables
and V = (V1, V2, . . .) is a sequence of independent random variables; moreover, e, U and V are
independent. That is,

Qn(X) =

n
∑

i1,...,id=1

an(i1, . . . , id){εi1(αi1Ui1+xi1)+(1−εi1)Vi1} . . . {εid(αidUid+xid)+(1−εid )Vid}.

Now, let us expand everything, and then rewrite Qn(X) as a polynomial in the Ui. We obtain

Qn(X) = An +Bn + Cn,

where

An =

n
∑

i1,...,id=1

an(i1, . . . , id)αi1 . . . αidεi1 . . . εidUi1 . . . Uid

Bn = Qn(X)−An − Cn

Cn =
n
∑

i1,...,id=1

, an(i1, . . . , id){εi1xi1 + (1− εi1)Vi1} . . . {εidxid + (1− εid)Vid}

satisfying

E[AnBn|e,V] = E[AnCn|e,V] = E[BnCn|e,V] = E[An|e,V] = E[Bn|e,V] = 0.

As a result,

Var[Qn(X)|e,V] = E[A2
n|e,V] + E[B2

n|e,V] + Var[Cn|e,V]

> E[A2
n|e,V]

> α2d3−dd!

n
∑

i1,...,id=1

an(i1, . . . , id)
2εi1 . . . εid .

To go one step further, let us decompose εi into (εi − p) + p and use (1.6), so to obtain

Var[Qn(X)|e,V]

> d!

(

α2p

3

)d

+ α2d3−dd!

d
∑

k=1

(

d
k

)

pk

n
∑

i1,...,id=1

an(i1, . . . , id)
2(εi1 − p) . . . (εik − p).
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Using the assumptions (1.6) and (1.7), we can write, for any fixed k ∈ {1, . . . , d},

E









n
∑

i1,...,id=1

an(i1, . . . , id)
2(εi1 − p) . . . (εik − p)





2



= pk(1− p)k
n
∑

i1,...,ik=1





n
∑

ik+1,...,id=1

an(i1, . . . , id)
2





2

6

n
∑

i1=1





n
∑

i2,...,id=1

an(i1, . . . , id)
2





2

6 max
16j16n

n
∑

j2,...,jd=1

an(j1, . . . , jd)
2 ×

n
∑

i1,...,id=1

an(i1, . . . , id)
2

=
1

d!
max

16j16n

n
∑

j2,...,jd=1

an(j1, . . . , jd)
2 → 0 as n → ∞.

We deduce that, in probability,

lim inf
n→∞

Var[Qn(X)|e,V] > d!

(

α2p

3

)d

. (3.15)

Convention. From now on, and since all the quantities we are dealing with are measurable
with respect to e, U and V, we shall write EU (resp. Ee,V) to indicate the mathematical expec-
tation with respect to U (resp. e and V) Note that EU coincides with the conditional expectation
E[·|e,V].

Step 2. Set pα(x) =
1

α
√
2π
e−

x2

2α2 , x ∈ R, 0 < α 6 1, and let φ ∈ C∞
c be bounded by 1. It is

immediately checked that

‖φ ⋆ pα‖∞ 6 1 6
1

α
and ‖(φ ⋆ pα)

′‖∞ 6
1

α
. (3.16)

We can write

|E[φ(Qn(X)]− E[φ(Qn(Y)]|

6 |E[(φ− φ ⋆ pα)(Qn(X))]| + |E[(φ− φ ⋆ pα)(Qn(Y))]|+ 1

α
dFM(Qn(X), Qn(Y)),

where dFM stands for the Fortet-Mourier distance, which is known to metrize the convergence in
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law. Let us concentrate on the first two terms. We have, e.g., for the first term:

|E[(φ− φ ⋆ pα)(Qn(X))]|

6

∣

∣

∣

∣

∣

E[(φ− φ ⋆ pα)(Qn(X))1
{Var[Qn(X)|e,V]< d!

2

(

α2p

3

)d

}
]

∣

∣

∣

∣

∣

+
∣

∣E[(φ− φ ⋆ pα)(Qn(X))1{E[Qn(X)2|e,V]>M}]
∣

∣

+

∣

∣

∣

∣

∣

E[(φ− φ ⋆ pα)(Qn(X))1
{Var[Qn(X)|e,V]> d!

2

(

α2p

3

)d

, E[Qn(X)2|e,V]6M}
]

∣

∣

∣

∣

∣

6 2P

(

Var[Qn(X)|e,V] <
d!

2

(

α2p

3

)d
)

+ 2P
(

E[Qn(X)2|e,V] > M
)

+

∣

∣

∣

∣

∣

E[(φ− φ ⋆ pα)(Qn(X))1
{Var[Qn(X)|e,V]> d!

2

(

α2p

3

)d

, E[Qn(X)2|e,V]6M}
]

∣

∣

∣

∣

∣

.

We have, using the Markov inequality,

P
(

E[Qn(X)2|e,V] > M
)

6
1

M
E[E[Qn(X)2|e,V]] =

1

M
.

On the other hand,
∣

∣

∣

∣

∣

E

[

(φ− φ ⋆ pα)(Qn(X))1
{Var[Qn(X)|e,V]> d!

2

(

α2p

3

)d

, E[Qn(X)2|e,V]6M}

]∣

∣

∣

∣

∣

6 Ee,V

[

∣

∣EU[(φ− φ ⋆ pα)(Qn(X))]
∣

∣1
{Var[Qn(X)|e,V]> d!

2

(

α2p

3

)d

, E[Qn(X)2|e,V]6M}

]

.

Step 3. In this step, we shall introduce the framework we are going to use for the rest of the
proof. We refer the reader to [1] for the details and missing proofs. Fix an integer m and let µ
denote the distribution of the random vector (X1, . . . ,Xm), with X1, . . . ,Xm independent copies
of U ∼ U[−1,1], There exists a reversible Markov process on R

m, with semigroup Pt, equilibrium
measure µ and generator L given by

Lf(x) =
m
∑

i=1

(

(1− x2i )∂iif − 2xi ∂if
)

, x ∈ R
m. (3.17)

The operator L is selfadjoint and negative semidefinite. We define the carré du champ operator
Γ as

Γ(f, g)(x) =
1

2

(

L(fg)(x)− f(x)Lg(x)− g(x)Lf(x)
)

=
m
∑

i=1

(1− x2i )∂if(x)∂ig(x). (3.18)

When f = g we simply write Γ(f) instead of Γ(f, f). An important property satisfied by Γ is
that it is diffusive in the following sense:

Γ(φ(f), g) = φ′(f)Γ(f, g). (3.19)
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Besides, the eigenvalues of −L are given by

Sp(−L) = {i1(i1 − 1) + · · ·+ im(im − 1) | i1, . . . , im ∈ N}.

It may be ordered as a countable sequence like 0 = λ0 < λ1 < λ2 < · · · , with a corresponding
sequence of orthonormal eigenfunctions u0, u1, u2, · · · where u0 = 1; in addition, this sequence
of eigenfunctions forms a complete orthogonal basis of L2(µ). Also, note that the first nonzero
element of Sp(−L) is λ1 = 1 > 0. Also, one can compute that, when λ ∈ Sp(−L), then Ker(L+λ I)
is composed of those polynomial functions R(x1, . . . , xm) having the form

R(x1, . . . , xm) =
∑

i1(i1+1)+···+im(im+1)=λ

α(i1, · · · , inm)Ji1(x1) · · · Jim(xm).

Here Ji(X) is the ith Jacobi polynomial, defined as

Ji(x) =
(−1)i

2ii!

di

dxi
{

(1− x2)i
}

, x ∈ R.

To end up with this quick summary, we recal the following Poincaré inequality, that is immediate
to prove by using the previous facts together with the decomposition L2(µ) =

⊕

λ∈Sp(−L) Ker(L+
λ I):

Varµ(f) 6

∫

Γ(f)dµ. (3.20)

Step 4. We shall prove the existence of a constant κ > 0, depending on p, α and d but not
on n, such that, for any δ > 0,

sup
n>1

EU

[

δ

Γ(Qn)(X) + δ

]

1
{Var[Qn(X)|e,V]> d!

2

(

α2p

3

)d

}
6 κ δ

1
2d+1 . (3.21)

The proof of (3.21) will rely on the Poincaré inequality (3.20) which, here, takes the following
form:

Var[Qn(X)|e,V] = VarU[Qn(X)] 6 EU[Γ(Qn)(X)]. (3.22)

Another ingredient is the Carbery-Wright inequality, that we recall for sake of completeness.

Theorem 3.1 (see [8, Theorem 8]) There exists an absolute constant c > 0 such that, if Q :
R
m → R is a polynomial of degree at most k and µ is a log-concave probability measure on R

m,
then, for all α > 0,

(
∫

Q2dµ

) 1
2k

× µ{x ∈ R
m : |Q(x)| 6 α} 6 c k α

1
k . (3.23)

Observe that the density of U is log-concave, as an indicator function of a convex set. Let us
now proceed with the proof of (3.21). For any strictly positive u, and provided Var[Qn(X)|e,V] >

d!
2

(

α2p
3

)d

, one has

E

[

δ

Γ(Qn)(X) + δ

]

6
δ

u
+ P (Γ(Qn)(X) 6 u) 6

δ

u
+ c u

1
2d , (3.24)
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where c > 0 denotes a constant only depending on d, α and p and where the last inequality
follows from the Carbery-Wright inequality (3.23), the inequality (3.22) and the fact that Γ(Qn)

is a polynomial of order 2d, see (3.18). Finally, choosing u = δ
2d

2d+1 in (3.24) leads to the desired
conclusion (3.21).

Step 5. We shall prove that

sup
n>1

(

EU[Γ(Γ(Qn))(X)] +EU

∣

∣(LQn)(X)
∣

∣

)

1{E[Qn(X)2|e,V]6M} 6 c(M) (3.25)

where c(M) is a constant only depending on M (whose value may change from one line to another
within this step). First, relying on the results of Step 3 we have that, for any n,

Qn ∈
⊕

α6λ2d

Ker(L + αI).

Since L is a bounded operator on the space
⊕

α6λ2d
Ker(L + αI), we deduce immediately that

supn>1EU[(LQn)(X)2]1{EU[Q2
n(X)]6M} 6 c(M). Besides, one has Γ = 1

2(L+2λI) on Ker(L+λI)
and one deduces for the same reason as above that

sup
n>1

EU[Γ(Γ(Qn))(X)]1{EU [Q2
n(X)]6M} 6 c(M).

The proof of (3.25) is complete.

Step 6. We shall prove that, for any n > 1, any 0 < α 6 1, any δ > 0 and any M > 0,

|EU[(φ− φ ⋆ pα)(Qn(X))]| 1
{Var[Qn(X)|e,V]> d!

2

(

α2p

3

)d

,E[Qn(X)2|e,V]6M}
6 2κ δ

1
2d+1 +

√

2

π

α

δ
c(M).

(3.26)

Using Step 4, one has
∣

∣

∣

∣

EU

[

(φ− φ ⋆ pα)(Qn(X))
Γ(Qn)(X) + δ

Γ(Qn)(X) + δ

]∣

∣

∣

∣

1
{Var[Qn(X)|e,V]> d!

2

(

α2p

3

)d

,E[Qn(X)2|e,V]6M}

6 2EU

[

δ

Γ(Qn)(X) + δ

]

1
{Var[Qn(X)|e,V]> d!

2

(

α2p

3

)d

}

+

∣

∣

∣

∣

EU

[

(φ− φ ⋆ pα)(Qn(X))
Γ(Qn)(X)

Γ(Qn)(X) + δ

]∣

∣

∣

∣

1{E[Qn(X)2|e,V]6M}

6 2κ δ
1

2d+1 +

∣

∣

∣

∣

EU

[

(φ− φ ⋆ pα)(Qn(X))
Γ(Qn)(X)

Γ(Qn)(X) + δ

]∣

∣

∣

∣

1{E[Qn(X)2|e,V]6M}. (3.27)
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Now, set Ψ(x) =
∫ x

−∞ φ(s)ds and let us apply (3.19). We obtain

∣

∣

∣

∣

EU

[

(φ− φ ⋆ pα)(Qn(X))
Γ(Qn)(X)

Γ(Qn)(X) + δ

]∣

∣

∣

∣

=

∣

∣

∣

∣

EU

[

1

Γ(Qn)(X) + δ
Γ
(

(Ψ −Ψ ⋆ pα) ◦Qn, Qn

)

(X)

]∣

∣

∣

∣

=

∣

∣

∣

∣

EU

[

((Ψ−Ψ ⋆ pα) ◦Qn)(X)

(

Γ
(

Qn,
1

Γ(Qn) + δ

)

(X) +
(LQn)(X)

Γ(Qn)(X) + δ

)]∣

∣

∣

∣

=

∣

∣

∣

∣

EU

[

((Ψ−Ψ ⋆ pα) ◦Qn)(X)

(

−Γ(Qn,Γ(Qn))(X)

(Γ(Qn)(X) + δ)2
+

(LQn)(X)

Γ(Qn)(X) + δ

)]∣

∣

∣

∣

6
1

δ
EU

{

|((Ψ −Ψ ⋆ pα) ◦Qn)(X)| ×
[

Γ(Γ(Qn))(X) +
∣

∣(LQn)(X)
∣

∣

]}

. (3.28)

On the other hand, we have

|Ψ(x)−Ψ ⋆ pα(x)| =

∣

∣

∣

∣

∫

R

pα(y)

(∫ x

−∞
(φ(u)− φ(u− y)) du

)

dy

∣

∣

∣

∣

6

∫

R

pα(y)

∣

∣

∣

∣

∫ x

−∞
φ(u)du −

∫ x

−∞
φ(u− y)du

∣

∣

∣

∣

dy

6

∫

R

pα(y)

∣

∣

∣

∣

∫ x

x−y

φ(u)du

∣

∣

∣

∣

dy 6

∫

R

pα(y) |y| dy 6

√

2

π
α. (3.29)

The desired conclusion (3.26) now follows easily from (3.25), (3.27), (3.28) and (3.29).

Step 7: Concluding the proof. Combining the results of all the previous steps, we obtain,
for any n > 1, any 0 < α 6 1, any δ > 0 and any M > 0,

sup
φ∈C∞

c : ‖φ‖∞61
|E[φ(Qn(X)]− E[φ(Qn(Y)]|

6
1

α
dFM (Qn(X), Qn(Y)) +

4

M
+ 2P

(

Var[Qn(X)|e,V] <
d!

2

(

α2p

3

)d
)

(3.30)

+2P

(

Var[Qn(Y)|e,V] <
d!

2

(

α2p

3

)d
)

+ 4κ δ
1

2d+1 + 2

√

2

π

α

δ
c(M). (3.31)

In (3.30)-(3.31), take the limit n → ∞. Due to (3.15) on one hand and Theorem 1.3 on the
other hand (plus the fact that the Fortet-Mourier distance dFM metrizes the convergence in
distribution), one obtains

lim sup
n→∞

sup
φ∈C∞

c : ‖φ‖∞61
|E[φ(Qn(X)]− E[φ(Qn(Y)]| 6 4

M
+ 4κ δ

1

2d+1 + 2

√

2

π

α

δ
c(M).

The desired conclusion (1.9) then follows by letting (in this order) α → 0, δ → 0 and M → ∞.
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