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Abstract—Ambient Assisted Living (AAL) is a field of research
aiming to improve the comfort and the safety of aged or disabled
people living in their own house. Several AAL approaches require
the location of the inhabitant to be tracked or could be improved
by considering the real time location of the inhabitant. In this
paper, it is proposed to use finite automata to build a model of
dynamic tracking of a single person in his house. A method for
systematic generation of such a finite automaton, starting from
a description of the partition of the house in zones and of the
instrumentation of the house, is presented. The evaluation of the
relevance of a given instrumentation, based on the analysis of
the generated finite automaton, is discussed. Finally, an efficient
algorithm for location tracking based on a state estimator is
proposed. For the sake of better understanding, an illustrative
example is used throughout the paper.

Index Terms—Discrete Event Systems, Finite Automata, Am-
bient Assisted Living, Location Tracking.

I. INTRODUCTION

Life expectancy has continuously increased in most coun-
tries over the last decades; in 2050, 33% of people from the
European countries will be at least 60 years old [1]. This leads
to new issues concerning the autonomy and the independence
of elderly or disabled people. Ambient Assisted Living (AAL)
technologies are aiming to help them to live autonomously in
a comfortable and safe environment.

Indoor location tracking is among the most active research
areas of AAL. This consists in finding the location of inhab-
itants based on the information given by the different sensors
of the house. The knowledge of the location of inhabitants in
real time can then be used to improve their comfort or to detect
health problems for instance.

In most approaches, location tracking is performed by using
data mining techniques [2]–[4]. Consequently, a more or less
long learning phase is required before the location tracking
can be performed. Furthermore, this phase has to be performed
again as soon as the instrumentation is modified (i.e. if new
sensors are added or if existing sensors are removed or if
their placement is modified). Last but not least, such learning
techniques lead to the lack of a formal and explicit model
of the location. For these reasons, we are interested in an
approach aiming at the systematic construction of a Discrete
Event System (DES) model for the real-time location of an
inhabitant into his home.

A new approach to systematically generate a finite automa-
ton model is presented in this paper. This model shows better

performances as the one proposed in [5]. A new location track-
ing algorithm, based on the construction of a state estimator,
as well as a procedure to evaluate the relevance of a given
instrumentation for location tracking are also proposed in this
paper.

The problem statement and the description of an illustrative
case study are given in the following section. In the third
section, the approach for systematic generation of a finite
automaton is described. In section IV, the location tracking
algorithm is presented and illustrated using a real scenario of
motion of an inhabitant in his home. The evaluation procedure
of an instrumentation is given in section V. In the last section,
the contributions are summarized and an outlook for future
work is given.

II. PROBLEM STATEMENT AND CASE STUDY

A. Assumptions and problem statement

In this paper, some assumptions are made in order to solve
the location tracking problem.

It is first assumed that there is always at most one inhabitant
in the home.

In order to help the user to accept the observation of his
every movements and to guarantee the respect of his privacy
and the reduction of cost, the instrumentation is considered as
being composed of non-wearable, non intrusive and low-cost
sensors. Such sensors are mostly binary sensors (door barrier
sensors, motion detectors...) or sensors delivering a signal
that can be interpreted as binary using a threshold (electricity
consumption, water flow or pressure sensor for instance).

It is also considered that information given by the sensors
does not depend on the ability or the willingness of the
inhabitant to provide this information. For instance, if a door is
equipped with a door barrier sensor and a door contact sensor,
the inhabitant crossing the door will systematically be detected
by the barrier sensor but will be detected by the contact sensor
only if the inhabitant opens or closes the door in addition
to crossing it. Consequently, in our approach, door contact
sensors will not be used. For similar reasons, switch sensors
are also not considered because while entering a room the
inhabitant may or not switch the light on, depending on the
sun light or his life habits.

Moreover, it is assumed that the inhabitant has a totally
free behavior. Consequently, adopting a DES point of view,



the inhabitant living in an instrumented environment is seen
as a spontaneous event generator. These events are the rising
and falling edges of the signal emitted by each binary sensor
of the house. As a convention, the rising edge and the falling
edge of a sensor si are respectively denoted as si 1 and si 0.

Finally, considering the topology of an apartment and a
potential lack of instrumentation in some areas, we have also
to make the assumption of partial observation of the motion
of the inhabitant.

Based on these considerations, the problem of online loca-
tion tracking can be reformulated in terms of a DES problem:
how to estimate in real time the current location of the inhab-
itant, considered as a spontaneous event generator, based on a
potentially incomplete observed sequence of sensor events?

B. Case study

Throughout the paper, the application of our approach
will be illustrated on a case study. Several apartments in
Kaiserslautern (Germany) have been instrumented with binary
sensors. One of them has been described in detail in [6]. Our
case study is inspired by this instrumented apartment. Its plan
is depicted in Fig. 1. It is composed of five rooms: a vestibule,
an open space for the kitchen and the living room, a closet, a
bathroom and a bedroom.

Concerning the instrumentation, we consider only four mo-
tion detectors (MD1 in the bedroom, MD2 in the bathroom,
MD3 in the open space of the living room and the kitchen,
MD4 in the vestibule) and one door barrier sensor (DB placed
on the door between the kitchen and the bedroom).
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Fig. 1. Topology and instrumentation of the case study

III. SYSTEMATIC GENERATION OF A DES MODEL FOR
LOCATION TRACKING

A. Formalization of a zone partition and of an instrumentation

The first step of our approach consists in formalizing both
the partition of the apartment in zones and its instrumenta-
tion. This is performed offline and requires not much expert
knowledge.

A zone partition is denoted as P l = (Zl, T opl) with
l ∈ N for the lth partition. Zl is a vector of |Zl| elements
(each element is a zone) and Topl is a |Zl| × |Zl|-matrix

(representing the topology of the apartment). Different choices
of zone partition can be made, thus different P l can be
defined. To save space, in this paper we propose only one
partition of the apartment of Fig. 1 in 7 zones (6 zones are
representing inside the house and 1 is representing outside).
This partition, represented by dotted lines in Fig. 1, is defined
by P = (Z, T op) described below. The only 2 rules that
are needed to define the zone partition are that the whole
house should be covered by zones and that there can not be
overlapping zones. This means that the inhabitant is always
in exactly one zone: location tracking consists in estimating
this zone. Based on this zone partition, the topology has to be
described using the matrix Top where Top(i,j) = 1 if there
exists a direct path between zone Zi and zone Zj . For instance,
there exists a direct path between the zone Z1 = A and the
zone Z4 = D and this can be seen in the matrix Top because
Top(1,4) = 1. On the contrary, there is no direct path between
the zone Z1 = A and the zone Z2 = B and this can be seen
in the matrix Top because Top(1,2) = 0. It can be noticed
that Top is always a symmetrical matrix although this is not
mandatory from a formal point of view.

Z =



A
B
C
D
E
F
Out


Top =



1 0 0 1 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
1 1 1 1 1 1 0
0 0 0 1 1 1 0
0 0 0 1 1 1 1
0 0 0 0 0 1 1


The ability of an instrumentation to detect motion in

the zones of a partition P l is defined as I(m,l) =
(Sm,Zl, Obs(m,l)) where Sm is a vector of |Sm| elements
(each element is a sensor) and Obs(m,l) is a |Sm| × |Zl|-
matrix (representing the zones observed by each sensor). In
this paper, we define only one instrumentation and its ability
to detect motion in zones of P , denoted as I = (Z,S, Obs).
Z is described above, S and Obs are described below for the
case study. There are 4 motion detectors and one door barrier
sensor composing the vector S. The observed zones of each
sensor are represented by the matrix Obs where Obs(i,j) = 1
if the sensor Si can observe motion in zone Zj . For instance,
the sensor MD2 can observe motion or presence in the zone
Z2 = B and this can be seen in the matrix Obs because
Obs(2,2) = 1. A sensor can also observe several zones, for
instance the sensor MD3 allow to observe motion in zones
Z4 = D and Z5 = E and this can be seen in the matrix Obs
because Obs(3,4) = Obs(3,5) = 1.

S =


MD1

MD2

MD3

MD4

DB

 Obs =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0
1 0 0 1 0 0 0





B. Algorithm for systematic generation of a DES model

Once a zone partition and the instrumentation have been
defined, a finite automaton representing the detectable motion
of the inhabitant can be built. This finite automaton is called
Detectable Motion Automaton (DMA) and is formally defined
as DMA = (Q,Σ, δ, Q0) with:
• Q a set of states,
• Σ an alphabet of events,
• δ : Q× Σ→ 2Q the transition function,
• Q0 ⊆ Q the set of initial states.
We also adopt the notation that δ(q, σ)! means that

δ(q, σ) ⊆ Q i.e. at least one transition from state q labeled
with the event σ is defined.

We propose Algorithm 1 to systematically generate the
DMA. The first step consists in defining the set Q of the
states of DMA (line 3). Each state represents a zone of the
house. Furthermore, each state of the automaton is defined as
being an initial state of the automaton (line 4) because the
initial location of the inhabitant is assumed to be unknown.
Then, the events are created (line 6 to 10). Both the falling
edges and rising edges are considered for the sensors like door
barrier sensors of floor pressure sensors since both edges are
indicating a movement of the inhabitant. On the contrary, only
the rising edge is considered for motion detectors because a
falling edge is not representative of a change of location but it
can just be symptomatic of someone staying motionless in a
zone. Finally, the transitions are defined (line 12 to 19). There
exists a transition between a state qi and a state qj labeled
with the event Sk 1 (and there also exists a transition labeled
with the event Sk 0 for sensors not being motion detectors)
if it is topologically possible (Top(i,j) = 1) and if the zone
related to the destination state qj is observed by the sensor Sk

(Obs(k,j) = 1).
For the case study, the resulting DMA is depicted on Fig. 2.

Some particular points have to be highlighted.
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Fig. 2. Detectable Motion Automaton DMA

As stated before, it is assumed that the initial location of the
inhabitant is unknown. This is the most permissive hypothesis
and can be seen in the model where each state is initial.
Knowing accurately the initial location is not necessary to
perform online location tracking because the current estimation
of the location of the inhabitant does not strongly depends on
his initial location. If for some smart home applications it is
mandatory to know the initial location of the inhabitant, some

Algorithm 1 Generation of DMA

Require: Z, T op,S, Obs
1: DMA := 〈Q,Σ, δ, Q0〉
2: for i := 1 to |Z| do
3: Create state qi = Zi in Q
4: Set state qi initial, qi ∈ Q0

5: end for
6: for k := 1 to |S| do
7: Create event Sk 1 in Σ
8: if Sk is not a motion detector then
9: Create event Sk 0 in Σ

10: end if
11: end for
12: for (i, j, k) := (1, 1, 1) to (|Z|, |Z|, |S|) do
13: if (Obs(k,j) = 1) ∧ (Top(i,j) = 1) then
14: Define δ(qi,Sk 1) = qj
15: if Sk is not a motion detector then
16: Define δ(qi,Sk 0) = qj
17: end if
18: end if
19: end for
20: return DMA

techniques (for instance in [7]) can be used to determine the
initial state of an automaton after observing a more or less
long sequence of events.

Some zones are not observed by any sensor. This can
be seen in the model: certain states of DMA are reachable
only by the fact that they are initial (Out and C). This is
symptomatic of a lack of instrumentation in these zones.

Some sensors are observing more than one zone. This can
be seen in the model: DMA is a non-deterministic Finite
Automaton (e.g. two transitions labeled with the same event
MD3 1, having D as source state, one reaching state D and
one reaching E).

Based on the DMA, the aim of location tracking is to
estimate the reached state(s) for an observed sequence of
events. Since DMA is not deterministic, the construction of a
state estimator of DMA is a way to perform location tracking.
The procedure to obtain this estimator is detailed in the next
subsection.

C. Offline computation of the state estimator

Since each state of DMA represents the location of the
inhabitant in exactly one zone of the house, the semantics of
the states of the automaton is important and has to be kept
while building a state estimator. This estimator is obtained by
computing the equivalent deterministic automaton, by using a
standard algorithm proposed in many works e.g. [8] or [9].

The result is a Finite Automaton denoted as Est(DMA) =
(QEst,Σ, δEst, qEst0) with:

• QEst ⊆ 2Q a set of states (each state is a subset of the
set of states Q of DMA),

• Σ the same alphabet of events as the alphabet of DMA,



• δEst : QEst × Σ → QEst the deterministic transition
function,

• qEst0 ∈ QEst the unique initial state.
For the case study, Est(DMA) is represented in Fig. 3.

It is a Deterministic Finite Automaton and each of its state
represents an estimation (more of less accurate) of the state of
DMA i.e. of the location of the inhabitant.

The state estimator Est(DMA) is computed offline. This
operation is theoretically of exponential complexity O(2|Z|)
with |Z| the number of zones, but for practical applications,
the number of zones is not so large and the complexity is
limited.
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Fig. 3. State estimator for Location Tracking Est(DMA)

IV. MODEL-BASED ONLINE LOCATION TRACKING

From the state estimator, we propose Algorithm 2 to com-
pute the online location tracking that gives in real time an
estimation (denoted as L) of the zone(s) where the inhabitant
is.

Algorithm 2 Location tracking algorithm
Require: Est(DMA) = (QEst,Σ, δEst, qEst0)

1: Initialization of the location tracking:
Current location L = Initial state qEst0

2: while location tracking is active do
3: Wait for a new event e
4: New event e is observed
5: if δEst(L, e)! then
6: L′ = δEst(L, e)
7: Update current location L = L′

8: else
9: The location remains L

10: end if
11: end while

At the beginning, the estimation L, representing the current
location of the inhabitant, is equal to the initial state of the
estimator i.e. to the set of states of DMA. Then the algorithm
waits for the occurrence of a new event e emitted by a sensor.
It is assumed that two events can not simultaneously occur.

When an event e occurs, the algorithm computes, with respect
to the transition function, the state L′, successor of L, such that
L′ = δEst(L, e). When the new state is computed, the state L
is updated by the new state L′. Then, the program waits for
another new event to compute again the new location of the
inhabitant.

The complexity of this algorithm is linear in the number
of sensors O(2|S|), where |S| is the number of sensors. This
can be demonstrated by calculating the maximal number of
transitions having L as the source state that have to be explored
before finding the one involving the observed event e. There
are at most 2|S| transitions (one involving the rising edge +
one involving the falling edge for each sensor) having L as
a source state. Thus, algorithm 2 is efficient and the real-
time computation of the online location tracking can be easily
performed.

The practical use of this algorithm can be illustrated on a
real scenario of motion of the inhabitant for the case study
(see table I).

The scenario is the following: the inhabitant is entering the
house by the front door and is going to the bathroom (crossing
the vestibule, the living room and the kitchen).

0) The location tracking algorithm is initialized. Current
location is L = (A,B,C,D,E, F,Out) which is the
initial state of Est(DMA). It is a very inaccurate
location because it is assumed the initial location of the
inhabitant is unknown.

1) A rising edge of the motion detector in the vestibule
(MD4 1) is observed. The current location is updated
and is now L = F . The location of the inhabitant is now
accurate.

2) A rising edge of the motion detector in the living room
(MD3 1) is observed. The location is updated and is
equal to L = (D,E). The location is inaccurate, it can
not be decided whether the inhabitant is in the kitchen
or in the living room.

3) A rising edge of the motion detector in the bathroom
(MD2 1) is observed. The location is updated and L =
B. The location is accurate again.

4) A falling edge of the motion detector in the bathroom
(MD2 0) is observed. The falling edges of motion
detectors are not taken into account for location tracking,
consequently the event MD2 0 does not belong to the
alphabet of events of the automaton. Thus, the estimation
of the current location is not updated and L = B

5) A rising edge of the motion detector in the bathroom
(MD2 1) is observed. Since there are self loops in the
model representing the inhabitant moving within a zone
and not changing of location, the location is updated and
L = B. The location is accurate.

We applied this model-based algorithm on longer real
scenarios from real case studies in Kaiserslautern (Germany). It
is efficient and shows good performances to locate a single in-
habitant in an instrumented home. However, these experiments
showed that the accuracy of location is greatly connected to the
choices of a zone partition and of an instrumentation. To quan-



tify how good a combination zone partition - instrumentation
(P l, I(m,l)) is for location tracking, we propose in the next
section an evaluation procedure based on the systematically
generated Finite Automaton.

TABLE I
REAL SCENARIO OF MOTION OF AN INHABITANT

Real location Estimated location
Step 0 Initialization
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  MD4 
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Step 1 Observed event: MD4 1

  

  

  

      

  

    
  

MD1 

MD2 MD3 
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Step 2 Observed event: MD3 1
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  MD4 

DB 
F D,E 

A,D 
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Step 3 Observed event: MD2 1
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A,D 
A 

B D MD2_1 
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Step 4 Observed event: MD2 0
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  MD4 

DB 
F D,E 

A,D 
A 
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Step 5 Observed event: MD2 1

  

  

  

      

  

  

  
  

MD1 

MD2 MD3 

  MD4 

DB 
F D,E 
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V. MODEL-BASED EVALUATION OF A COUPLE ZONE
PARTITION - INSTRUMENTATION

This performance evaluation is performed a priori i.e.
offline and before performing location tracking. Thus, different
combinations can be evaluated and compared before choosing
the best combination zone partition - instrumentation and
installing the sensors.

For a given combination zone partition - instrumentation,
two criteria are proposed:
• The unlocationable zones (inability of the sensors to

detect the presence of the inhabitant in certain zones).
• The strong and weak accurate-location-ability, based on

the accuracy of location estimation (guarantee to estimate
accurately the location of the inhabitant).

A. Unlocationable zones

The ability of (P l, I(m,l)) to detect the presence of the
inhabitant in each zone can be quantified by computing the set
of states representing unlocationable zones QUZ . They are the
states of DMA being reachable only by the fact that they are
initial. It is impossible to detect the presence of the inhabitant
in these zones because they do not belong to the set of states
of Est(DMA) except to its initial state.

Definition 1: Unlocationable Zones
The number of Unlocationable zones (if they exist) can be

quantified by the cardinal of QUZ with:
QUZ = {q′ ∈ Q | @(q, σ) ∈ Q× Σ, δ(q, σ) = q′}
For the case study: QUZ = {C;Out} and |QUZ | = 2. This

result shows that the inhabitant will never be located in zone
C or in zone Out. This is not critical for zone C since it
only represents a closet in the house. On the contrary, this is
critical for the zone Out since the location of the inhabitant in
this zone is meaning that the inhabitant is not at home. This
particular information is mandatory for some applications, for
instance applications aiming to detect health problem when
the inhabitant is at home. Such an application should be
deactivated each time the inhabitant is outside in order to
avoid false alarm. Thus, the ability to give the information
“inhabitant is out of the home” is required. Consequently, this
combination (P, I) does not have the ability to guarantee that
the apartment is empty.

B. Accuracy of the estimated locations

The accuracy of the location estimation is computed on the
state estimator Est(DMA). Each state of Est(DMA) is a
subset of the set of states of DMA. Thus, the accuracy of
each estimated location can be quantified by the cardinal of
this subset, denoted as |qEst| ∀qEst ∈ QEst. For instance in
Est(DMA) of the case study, |(D,E)| = 2 and |A| = 1.
Each qEst ∈ QEst such that |qEst| = 1 represents an accurate
estimation of the location (inhabitant accurately located in one
zone). In opposite, each qEst ∈ QEst such that |qEst| > 1 rep-
resents more or less inaccurate estimation of the real location
(it can not be decided accurately in which zone the inhabitant
is really located). Based on this consideration, the states of
Est(DMA) are divided in two subsets: Qa representing the



set of accurate estimated locations and Qi representing the set
of inaccurate estimated locations. QEst = Qa

⋃
Qi where:

• Qa = {qEst ∈ QEst such that |qEst| = 1}
• Qi = {qEst ∈ QEst such that |qEst| > 1}
Note that Qa ∩ Qi = ∅ and that the initial state qEst0 ∈

Qi. For the case study, Qa = {A,B,D, F} and Qi =
{(A,B,C,D,E, F,Out), (A,D), (D,E)}

Based on these definitions of the sets Qa and Qi, two no-
tions of accurate-location-ability are defined. They are inspired
by the notions of strong and weak detectability of DES [10].

C. Accurate-location-ability

The accurate-location-ability is defined as the ability to
estimate accurately the location of the inhabitant. Two defi-
nitions for strong and weak accurate-location-ability as well
as properties to check strong or weak accurate-location-ability
are proposed.

Definition 2: Strong accurate-location-ability
A combination (P l, I(m,l)) is strongly accurate-location-

able if after a finite sequence of sensor events the location
is accurate from now, whatever the inhabitant is doing.

Property 1:
A combination (P l, I(m,l)) is strongly accurate-location-

able if Qa is not empty and there is no loop between states
of Qi and no transition from a state of Qa to a state of Qi.
Formally this property is written:

(P l, I(m,l)) is strongly accurate-location-able if:
• Qa 6= ∅
• ∀σ1σ2 · · ·σm ∈ Σ∗ | ∃(q1, q2, · · · , qm, qm+1) ∈ Qm+1

i ;
δEst(q1, σ1) = q2, · · · , δEst(qm, σm) = qm+1;
∀(qi, qj) ∈ (q1, q2, ..., qm+1)2 qi 6= qj

• @(q, σ) ∈ Qa × Σ | δEst(q, σ) ∈ Qi

Proof: The condition of non emptiness of Qa and the
condition of no transition from Qa to Qi guarantee that once
a state of Qa is reached, the subsequent states are also in Qa

and thus the location will be accurate. Moreover, if a state of
Qi is reached, the condition of no loop in Qi guarantees that
after a sequence of events of maximum length |Qi| a state
belonging to Qa will be reached.

Definition 3: Weak accurate-location-ability
A combination (P l, I(m,l)) is weakly accurate-location-

able if it is possible that the location is accurate from now,
depending on what the inhabitant is doing.

Property 2:
A combination (P l, I(m,l)) is weakly accurate-location-able

if Qa is not empty and there are loops in Qa. Formally this
property is written:

(P l, I(m,l)) is weakly accurate-location-able if:
• Qa 6= ∅
• ∃σ1σ2 · · ·σm ∈ Σ∗ | ∃(q1, q2, · · · , qm, qm+1) ∈ Qm+1

a ;
δEst(q1, σ1) = q2, · · · , δEst(qm, σm) = qm+1;
∃(qi, qj) ∈ (q1, q2, ..., qm+1)2 qi = qj

Proof: The condition of non emptiness of Qa and the
fact that every states of Qa are accessible (by construction of
the estimator) guarantees that it is possible to enter at least

one loop on Qa. Thus, there exists a sequence of events such
that after a certain number of events the current location and
subsequent locations become accurate.

For the case study, strong location-ability is not obtained
because there is at least one transition between Qa and
Qi in Est(DMA) (for example the transition from F to
(D,E) labeled with event MD3 1). Thus there exists a
sequence of events such that the location becomes inaccurate
after it has been accurate. For instance the sequence of
events MD4 1,MD3 1 leads to the sequence of locations
(A,B,C,D,E, F,Out), F, (D,E) where F is accurate and
the first and third locations are inaccurate.

However, since Qa is not empty and there exist loops
on Qa (for instance the self loop on state A, formally
written δEst(A,MD1 1) = A), the weak location-ability
is guaranteed. There exists at least one sequence of events
such that the current location becomes accurate and all the
subsequent location are accurate. For instance the sequence
MD3 1,MD1 1,MD1 1? leads the location to be inaccurate
in (A,B,C,D,E, F,Out) , then it is inaccurate in (D,E)
and then it is accurate in A and remains accurate in A since
δEst(A,MD1 1) = A.

VI. CONCLUSION

In this paper, we proposed an approach for model-based
location tracking of a single inhabitant in his instrumented
home. We developed a method for systematic generation of
the model and model-based criteria to evaluate the relevance
of an instrumentation for location tracking.

Our current work is devoted to relax the restrictive hy-
pothesis of single inhabitant and thus to extend the proposed
approach to multiple inhabitants location tracking.
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