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A bstract-T he paper presents results on the modeling and control of a multi-body air vehicle concept that incorporates a robotic arm to a miniatute rotorcraft robot. O ne of our goals was to obtain a detailed model in order to identify and qualify inherent constraints provided by the interaction of both mechanical subsystems.T o do this, we used the E uler-L agrange formulation. T he knowledge of the model of the interactive aerial robot allowed us to propose a hierarchical control scheme, where a nonlinear Sliding M ode C ontroller (SM C ) handle the translational motion while the rotational motion is addressed by a H ∞based controller. N umerical simulations were carried out to validate the overal control approach.

I . I nt r oduct ion

T he applications of Miniature Air Vehicles (MAVs) have widely diversified during the last years. T hey compriseboth military and civilian, though thelatter has had a lower development rate. T he main goal of Unmanned Air Vehicles (UAVs) is to provide a remote and mobile extension of human perceptions, allowing not only the security of the user (soldier, policeman, cameraman, volcanologist) but also the collection of valuable information of zones/ targets of interest used for online or offline analysis. Rotorcraft MAVs represent an excellent alternative due to its versatile flight profile as hovering, vertical take-off/ landing (VT OL) and maneuverability, allowing theaccess to small enclosures or navigatewithin unstructured environments. Indeed, actual proficiency of navigation and control algorithms has allowed the incursion of VT OL MAVs in other civilian applications as wildlife study, urban surveillance (car and pedestrian traffic), and pollution monitoring, to mention just a few.

However, despite the actual application range of MAVs, the operational role of these air robots remains limited (passive agent) in the mission context, restricting them to surveillance tasks. Enhancing the current profile of civilian MAVs implies the integration of novel operational capabilities to go beyond the aerial medium. For instance, air robots intended to evolvein terrestrial mediums (Multimodal MAVs -MMAVs) requirean additional J . Escareno, G. F lores and R. L ozano are with he Heudiasyc L aboratory UM R 7253, Université de Technologie de Compiègne j uanant oni o. escar eno@ f em t ost . f r , gf l or esc@ hds. ut c, r l ozano@ hds. ut c. f r M . Rakotondrabe are with the F EM T O-ST Institute, UM R CNRS -UFC / ENSM M / UT BM , A utomatic Control and M icro-M echatronic Deparment, 24, rue A lain Savary, Besancon, France j uanant oni o. escar eno@ f em t o-st . f r , m r akot on@ f em t ost . f r locomotion system. Likewise, those attempting to interact with thesurrounding environment (interactiveMAVs -iMAVs) need additional actuators (gripper(s), arm(s), tool(s)). T hese novel applications represent important scientific and technical challenges for different domains involving mechanics, control, artificial vision, embedded systems, etc.

Reduced payload-carrying capacity of multirotor MAVs, as quad-rotors, represents an critical issue while transporting cargo or aerial grasping. However, multiple vehicles are able to overcome this issue, as demonstrated by [START_REF] Mellinger | Trajectory generation and control for precise aggressive maneuvers with quadrotors[END_REF] and [START_REF] Mellinger | Control of quadrotors for robust perching and landing[END_REF], wherea quad-rotors fleet transport a cargo through grippers or cables, respectively. In [START_REF] Pound | Grasping From the Air: Hovering Capture and Load Stability[END_REF] presents the planar model, attitude control analysis and outdoors experimental validation of a middle-size helicopter equipped with a compliant gripper capable of robust grasping and transporting objects of different shapes and dimensions. An alternative UAV configuration equipped with a hook intended to deliver/ retriving cargo using a vision-based strategy is presented in [START_REF] Kuntz | Towards Autonomous Cargo Deployment and Retrieval by an Unmanned Aerial Vehicle Using Visual Servoing[END_REF]. In [START_REF] Bernard | Load Transportation System based on Autonomous Small Size Helicopters[END_REF], the problem of slung load transportation using autonomous small size helicopters is addressed. T he modeling and control of a variablenumber of helicopters transporting a load is presented. Indeed, theproposed controller prevent and compensate oscillations of load during the flight, which is demonstrated by real flight load transportation by three helicopters.

Merging the 3D mobility of VT OL MAVs with robot manipulators yields an unique blend of capabilities that allows the remote interaction with the surrounding environment. Whereas this concept is very promising, it also comes with significant challenges. Foremost amongst these is the modeling the composite mechanical system and the design of robust controllers against couplings and/ or external disturbances that guaranteethestability over partial/ complete operational regime. Specifically, this paper deals with an aerial system composed of a quad-rotor MAV having onboard an one-degree-offreedom (1DOF) manipulator capable of grasping small loads. Our proposal differs from configurations cited above, whose end-effector (gripper) is directly attached to the helicopter's airframe. T he actual configuration focuses on reaching targets beyond the quad-rotor's geometry granting access to MAV-denied environments. Likewise, additional DOFs provided by the manipulator attenuates the influence of disturbed/ erroneous hovering position (wind-gusts, ground effect) during grasping tasks. On the other hand, the presented configuration restricts the payload capacity of the vehicle, reducing the variety of grasping tasks.

The equations of motion for the composite dynamics of the interactive flying robot are obtained through the Lagrangian formalism, that provides in a natural way the couplings between mechanical subsystems [START_REF] Goldstein | Classical Mechanics[END_REF] [START_REF] Fantoni | Nonlinear control for underactuated mechanical systems[END_REF]. The proposed configuration may be seen as combination of a slung-load-like problem with aerial grasping, which is very attractive from a control perspective. In terms of control, a robust-adaptive control strategy is proposed to achieve the motion control objective of the quadrotor while the manipulator is driven to desired position carrying a load.

This work is organized as follows: section II describes the problem arising from having a robotic arm onboard of an miniature vehicle, as well as, is derived the rotational mathematical model of the iMAV. Two control strategies are proposed to deal with inherent dynamic couplings, such designs are presented in III. Numerical simulations results are presented in section IV. Conclusions and perspectives are finally given in Section V.

II. Dynamic Model

Consider a quad-rotor MAV evolving within the longitudinal plane, capable to interact with the surrounding environment by means of a 1DOF onboard manipulator. The robotic arm is intended to perform basic prehension (grasping and holding) tasks regarding to placing/recovering objects (sensors, camera, RFID tags, WiFi link, etc.) into/from constrained cavities, as well as transporting tasks. Such grasping/trasporting tasks are performed during near-hovering or in-motion maneuvers. According to figure (Fig. 1), θ is the pitch angle, γ is the the manipulator's angle with respect to (w.r.t.) -e 3 , while T 1 and T 2 are the thrust provided by frontal and rear rotors, respectively. The kinematics of the flying robot comprise two right-handed reference coordinates systems [START_REF] Etkin | Dynamics of Flight[END_REF].

• Let (e x , e y , e z ) defines the fixed inertial coordinates system F i , whose origin O i located at the earth surface. For the longitudinal case the vector basis becomes (e x , 0, e z )

• Let (e 1 , e 2 , e 3 ) be the body-fixed frame F b , whose origin O b corresponds to the center of gravity CG of the quadrotor. For the longitudinal case the vector basis becomes (e 1 , e 3 ).

• Figure Fig. 1 depicts the vehicle rotating clockwise

(righthanded sense) while the manipulator does in the opposite sense. This rotational behavior is expressed by the orthogonal transformation matrix.

R(θ -γ) = � cos(θ -γ) sin(θ -γ) -sin(θ -γ) cos(θ -γ) � (1) 
where θ and γ correspond to the quad-rotor's attitude and manipulator's joint angle, respectively. 1) Kinetic Energy.

The total kinetic energy function K( θ, γ) of the multi-body mechanic system resulting from the rotational and translational motion can be partitioned by the sum of the the quad-rotor's kinetic energy,

K M ( θ) = 1 2 I Y θ2 + 1 2 M ẋ2 + 1 2 M ż2 (2) 
and the manipulator's kinetic energy

K m ( γ, θ) = 1 2 I y ( θ -γ) 2 + 1 2 m ẋ2 m + 1 2 m ż2 m (3) 
where

x m = x -� sin(θ -γ) z m = z -� cos(θ -γ)
are the coordinate of the manipulator center of gravity CG m , � is the distance from the pivot to the manipulator's CG m , θ denotes the angular velocity of the body frame, I Y and I y are the inertia massmoment of the quad-rotor airframe and manipulator, while M and m represents the mass of the quadrotor and the manipulator, respectively. 2) Potential Energy Likewise, the potential energy of the iM AV is given by the sum of quad-rotor's and manipulator's potential energies [START_REF] Fantoni | Nonlinear control for underactuated mechanical systems[END_REF] 

P = M gz + mg [z -� (1 -cos(θ -γ))] (4) 
Using ( 2), ( 3) and ( 4) given above, the Lagrangian may be written as

L = 1 2 (M + m) ẋ2 + 1 2 (M + m) ż2 + 1 2 I Y θ2 + 1 2 (m� 2 + I y )( θ -γ) 2 -m� cos(θ -γ) ẋ( θ -γ) +m� sin(θ -γ) ż( θ -γ) -M gz -mg [z -� (1 -cos(θ -γ))]
(5)

A. Equations of motion

Applying the Euler-Lagrange formulation we obtain the equations modeling the overall motion of the iMAV, i.e. the translational

       u x = (M + m)ẍ -m� cos(θ -γ)( θ -γ) +m� sin(θ -γ)( θ -γ) 2 u z = (M + m)z + m� sin(θ -γ)( θ -γ) +m� cos(θ -γ)( θ -γ) 2 + (M + m)g (6) 
notice that for the translational equation, displacement along the x-axis is underactuated by the attitude, i.e. u x = 0. The corresponding equations describing the rotational motion are

       u θ = (I Y + I y + m� 2 ) θ -(m� 2 + I y )γ -m� cos(θ -γ)ẍ +m� sin(θ -γ)z + mg� sin (θ -γ) u γ = (I y + m� 2 )γ -(ml 2 + I y ) θ + m� cos(θ -γ)ẍ -m� sin(θ -γ)z -mg� sin (θ -γ) (7) 
The set of scalar motion equations, translational [START_REF] Mellinger | Control of quadrotors for robust perching and landing[END_REF] and rotational [START_REF] Kuntz | Towards Autonomous Cargo Deployment and Retrieval by an Unmanned Aerial Vehicle Using Visual Servoing[END_REF], obtained from the Lagrange formulation are grouped in compact vectorial expressions.

1) Translational Motion:

(M + m) V = U ξ + W (M +m) + F c (8) 
where V = ( ẋ, ż) T represents the 2D velocity of the drone, U ξ = (0, u z ) T denotes the thrust vector used as control input, W (M +m) = (0, -(M + m)g) T is the total weight vector and F c is the coupling force vector provided by manipulation subsystem, which is written as

F c = � m� cos(θ -γ)( θ -γ) -m� sin(θ -γ)( θ -γ) 2 -m� sin(θ -γ)( θ -γ) -m� cos(θ -γ)( θ -γ) 2 � (9) 
Such term, describes the centrifugal provided by the manipulation subsystem and tangential forces exerted in the drone.

2) Rotational Motion:

Mη = U η + G η + T c (10) 
η = (θ, γ) T stands for the generalized coordinates vector, and M (symmetric and invertible) represents the inertia matrix

M = � I Y + I y + ml 2 -ml 2 + I y -ml 2 + I y I y + ml 2 � ( 11 
)
The effects of the mass are visible in vector G

G η = � -mgl sin(θ -γ) mgl sin(θ -γ) � (12) 
as well as couplings are depicted by T c , written as

T c = � ml cos(θ -γ)ẍ -ml sin(θ -γ)z -ml cos(θ -γ)ẍ + ml sin(θ -γ)z � (13) 

III. Control Strategy

In this section we present the control strategy, which is based on a hierarchical scheme considering the wellknown time-scale separation between rotational and translational dynamics. The main goal is to drive the rotorcraft drone according to the commanded reference while rejecting coupling disturbances provided by the evolution of the onboard manipulator. The use of a hierarchical approach allows to synthesize modular control algorithms for the inner-and outer-loop dynamics, respectively. Since the quadrotor features an underactuated dynamic nature, i.e. translation relays on rotational motion. Thus, the control design must provide robust stability to the inner-loop (rotational subsystem) to guarantee the effectiveness of the outer-loop control (translational motion).

A. Standard H ∞ robust control of the inner-loop

We present in this subsection the calculation of the controller C η (s) of the internal loop in order to enhance the performances the rotation. For that, we propose to use standard H ∞ approach because of its robustness relative to the uncertainties and also relative to external disturbances. Indeed, it is possible to account a priori these disturbances during the calculation of the controller such that performances will still be maintained in their presence (performances robustness). In our case, the disturbance is given by G η + T c .

1) Modeling: From the rotation model in the time domain as in [START_REF] Fantoni | Nonlinear control for underactuated mechanical systems[END_REF], we derive the rotation model in the Laplace domain:

η = G η (s) (U η + D η ) ( 14 
)
where

D η = G η + T c is an input disturbance and G η (s) = � g11 s 2 g12 s 2 g21 s 2 g22 s 2 � = 1 s 2 M -1 (15) 
such that g ij ∈ R. Fig. 2 pictures the block diagram of the internal closedloop including the system G η (s) and the controller C η (s) to be synthesized. In the figure, η d indicates the desired angle. The following specifications will be used for the calculation of the controller.

Tracking performances specifications -For each angles in η, we impose the following requirements:

• a settling time no more than 300ms, • a maximal overshoot of 10%, • a statical error less than 1%.

Disturbance rejection -

The characterization shown that the disturbance G η has a maximal amplitude of G max η = 0.145 while the disturbance T c has an infinite norm of �T c � ∞ = 0.1. Consequently, it is specified that the corresponding maximal disturbance D η will imply a maximal angle error of 3 o , that is:

3 o (0.145+0.1)
is the maximal error due to disturbance.

Command moderation -With only the above two specifications, it is difficult to compute a convenient H ∞ controller. Indeed, the calculated controller led to unstability when simulated due to numerical limitation such as the minimal sampling time possible. This numerical problem can be solved by introducing a shaping to the command signal and that will moderate (limit) it. Different tests show that a maximal ratio of Uη η d = 1.95 45 o is a convenient for each of the two axis of η. 2) Standard form and standard H ∞ problem: From the above specifications, three weighting functions denoted W 1 , W 2 and W 3 are systematically introduced: the first one to weight the error signal ε η in order to account the tracking performances, the second one to weight the input disturbance signal D η in order to account its rejection specifications and the last one to weight the command signal U η . Fig. 4-a pictures the corresponding weighted closed-loop in which o ε is the weighted output error signal, o u is the weighted command signal and i η is the new disturbance accounting the weighting function. From this scheme, the standard scheme used for the controller synthesis is derived (Fig. 4-b). It consists of the interconnection between an augmented system P η (s) and the controller to be synthesized. The input of the interconnection are composed of the exogenous signals The standard H ∞ problem consists in finding an optimal value γ > 0 and the controller C η (s) stabilizing the interconnection in Fig. 4-b and guaranteeing the following inequality [START_REF] Balas | µ-analysis and synthesis toolbox[END_REF]:

�F l (P η (s), C η (s))� ∞ < γ (16) 
where F l (P η (s), C η (s)) is the lower linear fractionnar transformation between P η (s) andC η (s) defined here as follows:

� o ε o u � = F l (P η (s), C η (s)) � η d i η � (17) 
From Fig. 4-a, we have:

� o ε = W 1 S η η d -W 1 G η S η W 2 i η o u = W 3 C η S η η d -W 3 C η G η S η W 2 i η (18) 
where

S η = (I + G η C η ) -1
is the sensivity function.

Using (Inequa. 16) and (Equ. 18), the standard H ∞ problem becomes into finding C η (s) and an optimal value of γ such that:

       �W 1 S η � ∞ < γ �-W 1 G η S η W 2 � ∞ < γ �W 3 C η S η � ∞ < γ �-W 3 C η G η S η W 2 � ∞ < γ (19)
which is satisfied if we find a controller ensuring the following inequalities:

               |S η | = σSη < γ � � � 1 W1 � � � |G η S η | = σGηSη < γ � � � 1 W1W2 � � � |C η S η | = σCηSη < γ � � � 1 W3 � � � |C η G η S η | = σCηGηSη < γ � � � 1 W3W2 � � � (20)
where σSη , σGηSη , σCηSη and σCηGηSη are the upper singular values of S η , of G η S η , of C η S η and of C η G η S η respectively. The problem in (Equ. 20) is called a 4-blocks mixed sensivity. To solve this problem, we use the Glover-Doyle algorithm [START_REF] Doyle | State-space solutions to standard H 2 and H∞ control problems[END_REF]. The transfers 1 W1(s) and 1 W1W2 are called gabarits or bounds and are calculated from the specifications in Section. III-A.1 as we will present in the next subsection.

3) Derivation of the weighting functions: To obtain the gabarit 1 W1(s) , the specifications of tracking performances are used. To account the statical error, the settling time and the no-overshoot transient part, we propose the following gabarit:

1 W 1 = 0.1003s + 0.01 0.04778s + 1 (21) 
Concerning the gabarit 1 W1W2 , the disturbances rejection specifications are used. As a rejection of εη Dη = 2% is wanted for any frequency, we choose:

1 W 1 W 2 = 3 o (0.145 + 0.1) (22) 
The weightings W 1 and W 2 can be afterwards derived from (Equ. 21) and (Equ. 22).

Finally, the gabarit 1 W3(s) is derived from the specifications concerning the command moderation. We use:

1 W 3 (s) = 1.95 45 (23)

4) Calculation of the controller:

The controller (a matrix transfer function with four elements) has been calculated. We find find a matrix where each element has an order of 8. The optimal value of γ is: γ optimal = 3.63. From these curves, we remark that the controller will not necessarily satisfy the specifications (as predicited by the γ optimal which is superior to one) mainly for the distrubance rejection and for the command moderation. However, as we can remark, the tracking performances will be satisfied. Concerning the distrubance rejection, the non-satisfaction will be at very low frequency. However, this case of disturbance will rarely happen during the functioning of the rotorcraft. On the other hand, the command moderation is not satisfied at high frequency (for one angle). Although this, the general performances of the rotorcraft are still in accordance with the initial expectation (tracking performances and disturbance rejection). 

B. Outer-loop Control

In order to apply the SMC [START_REF] Slotine | Applied nonlinear control[END_REF] scheme to system described by (Fig. 8),as first step we define the sponding sliding surface vector S = (s x , s z ) T as

S = ξ + Λ ξ ( 24 
)
where Λ = diag(λ x , λ z ) is a definite-positive tunable matrix and ξ = ξ-ξ d stands for the position error vector. The problem of tracking the desired vector

ξ d = (x d , z d ) T is equivalent to stabilize the first-order dynamics Ṡ Ṡ = 1 M + m � U ξ + W (M +m) + F c � -ξd + Λ ξ (25) 
where F c verifies �F c � ≤ β. The system (25) is stabilized using the controller

U ξ = (M + m) � -K p S -K α sign(S) -Λ ξx + ξd + ge z � (26 
) where K p = diag(k px , k pz ) and K α = diag(α x , α z ) are definite-positive matrices. 

V = 1 2 S T S (27) 
Differentiating with respect to time Equ. 8, and using Equ. 26

V = S T � -K p S -K α sign(S) + F c M + m � (28) V ≤ -λ m {K p }�S� 2 -λ m {K α }�S��sign(S)� + �S��F c � M + m (29 
) where λ m {•} represent a matrix's minimal eigenvalue. Now, using the following properties:

• �x��y� ≥ |x T y| • �x� ≤ �x� 1 we get V ≤ -λ m {K p }�S� 2 -�S� 1 � �F c � M + m -λ m {K α } � ( 30 
)
where it is know that �F c � ≤ β, then we obtain

V ≤ -λ m {K p }�S� 2 -�S� 1 � β M + m -λ m {K α } � (31) 
Hence, to assure the negativity of the CLF, we assign

λ m {K α } = β M + m + ν (32) with ν > 0 , which results in V < -λ m {K p }�S� 2 -ν�S� 1 (33) 
The latter implies that the trajectory of S converges to the origin, which means that the trajectory-tracking objective is fulfilled.

IV. Numerical Simulation Numerical simulations were carried out in order to support the proposed control algorithms evaluating the performance of the rotational and translational disturbed subsystems. In the simulation we use the parameters close to real aerial platforms. Such parameters are depicted on table I In Fig. 5 is depicted the evolution of the states during the translation task consisting in reaching ξ d = (x d = 2, z d = 4) T , while the arm is meant to reach an desired angle of γ d = 35 deg. It is shown that the rotational subsystem fulfil the performance control requirements. Likewise, the translational subsystem is able to cope with the disturbance introduced by the motion of the rotational subsystem, particulary the manipilator.

Concerning the control inputs , in figure figure Fig. 6 we observe that the magnitude of control inputs remains within actual limited response (saturation). The control of the translational

V. Concluding remarks and perspectives

The present paper addressed the modeling and control of a rotorcraft configuration that features an onboard robotic manipulator. The modeling, obtained via the Euler-Lagrange formalism, was meant to identify the intrinsic relationships resulting from this kind of multibody (helicopter-manipulator) air vehicle. Based on the equations of motion provided by the we utilise a hierarchical scheme as overall control strategy. For the controller synthesis, a classical time-scale separation is considered between rotational (fast-dynamics inner-loop) and translational motion (slow-dynamics outer loop). Considering that couplings are considered as disturbances in the present study, we use a SMC approach to deal with the stabilization of the outer-loop, while inner-loop is tackled via a H ∞ -based controller. Since the inner-loop represents the core of control strategy, the use of the H ∞ technique obeys to the fact that, such approach allows to set specific performance features (response time, static error amount, etc) by means of weighting functions. The implementation of such controllers leads to a satisfactorily evolution of the system states fulfilling the control objective.
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 1 Fig. 1. Freebody diagram: (a) iMAV reference frames and (b) planar freebody diagram
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 2 Fig. 2. Closed-loop scheme of the internal loop.
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 3 Fig. 3. (a): weighted closed-loop scheme. (b): the standard scheme.
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 413 Fig. 4. (a): singular values of Sη and of the gabarit 1 W 1 . (b): singular values of GηSη and of the gabarit 1 W 1 W 2 . (c): singular values of CηSη and of the gabarit 1W 3 .

  In order to provide a controller that guarantees the convergence of state vector to the equilibrium, consider the following candidate Lyapunov function (CLF)

	Parameter	Value[units]
	l	0.35[m]
	M	0.4[Kg]
	m	0.03 [Kg]
	I Y	0.177 [Kgm 2 ]
	Iy	3.0625×10 -4
	g	9.8×10 -4 [Kgm 2 ]
	TABLE I
	Interactive Rotorcraft Vehicle
	1) Stability proof:	
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