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Abstract

A numerical model to predict train induced vibrations is presented. The dynamic computation
considers mutual interactions in vehicle/track coupled systems by means of a finite and discrete
elements method. The rail defects and the case of out-of-round wheels are considered. The dynamic
interaction between the wheel-sets and the rail is accomplished by using the non-linear Hertzian
model with hysteresis damping. A sensitivity analysis is done to evaluate the variables affecting more
the maintenance costs. The rail-sleeper contact is assumed extended to an area defined contact-zone,
rather than a single point assumption which fits better real case studies. Experimental validations
show how prediction fits well experimental data.

1 Introduction

The main causes of vibrations induced by train traffic are: rail irregularity, wheel defects and variation
of stiffness due to discrete supporting of rail. Effects of vibrations influence the maintenance of track
(ballast principally), passenger comfort and the wave propagation in the environment. Predicting vi-
brations, displacements, accelerations and contact-forces is not an easy and immediate process. This is
mainly due to the number of parameters, the behavior of different elements, the heterogeneity of track
properties and corrugation.
Numerous studies have been conducted to simplify this problem. Some works [1, 2, 3] studied the wave
propagation through the track-ground system in three dimensions, modeling contact forces as constant
or harmonic vertical forces moving along the rails. Others [4, 5, 6, 7, 8] studied the coupled train/track
system in two dimensions; they modeled rail as an Euler-Bernoulli or a Timoshenko beam connected to
pads by singular points. [9, 10] studied the vehicle/track coupled system modeling with finite elements
the rail, considering it connected to pads by singular points and discretizing the rail with a singular finite
element for each pair of sleepers. Furthermore, they discretized the rail with a singular finite element for
each pair of sleepers. Actually, the rail/sleepers contact zone is not negligible if compared to the length
of the rail suspended between two consecutive sleepers. In fact, sleeper base measures between 60 and
70 cm and the pad length measures between 17 and 26 cm. In addition, the midspan point of the rail
assumes the maximum displacement during vibration, that cannot be modeled with a singular element
between two sleepers. Finally, the shear effects for rail finite elements are neglected in [9, 10] that is not
acceptable because the classical hypothesis for slender beams is not applicable in this case. In fact, the
height of rail section is 14.8 cm for a 50 UNI rail and 17.2 cm for a 60 UNI rail [11], that is not small
enough if compared to the length of a beam element.
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In this work the vehicle is modeled as seven discrete elements in accordance to [5, 12, 10, 13], rail
is modeled as finite elements considering shear effect and the algorithm allows to choose the number
of elements between two sleepers. Moreover, it is possible to create different meshes for elements
connected to pads and for suspended elements. As the variation of track stiffness met by wheels during
motion is one of the causes of vibrations, precision of connections has been increased introducing a series
of spring/damper elements placed along all the longitudinal length of the sleeper [14]. As explained
further in this paper, we implemented a particular algorithm for the resolution of the motion equations,
that allows the reduction of computational time. More in detail, the algorithm solves the non-linear
contact problem combining a fixed point and a Newton-Raphson method. The problem is studied in two
dimensions, assuming flat railway, absence of bends and neglecting the rolling motion of the vehicle.
The work presented allows to extend the analysis to different types of wagon. The case studies are
related to a locomotive, i.e. the heavier wagon of a passenger trains and the one producing the worst
effects. However freight vehicles may be heavier; simple variations of the vehicle model parameters
may be carried out to evaluate further case studies.

2 Description of the model

2.1 The vehicle model

The vehicle is modeled by seven two-dimensional rigid elements corresponding to the body, two bogies
and four wheels. It is assumed that the problem is symmetric, so masses are considered half of their
actual values. Bogies are suspended on wheels by primary suspensions represented by a spring-damper
couple. Similarly, the vehicle body is linked with bogies by secondary suspensions. Ten degrees of
freedom are considered: the vertical displacement of vehicle body, bogies and wheels; the pitch of
bogies and vehicle body. All mechanical parameters and the degrees of freedom are represented in
Figure 1. The equation of motion in matrix form is

Mvz̈v + Cvżv + Kvzv = qv − fv, (1)

where Mv, Kv and Cv are stiffness, damping and mass matrix of the vehicle, as defined in appendix;
zv is the assembled vector of the ten degrees of freedom; qv is the forces vector which contains the
gravitational forces and fv contains the wheel-rail contact forces.

2.2 The wheel-rail contact

The problem of contact between wheel and rail has been studied in details by [15, 16, 17, 18, 19]. In
our model, contact forces between the jth wheel and rail are computed by the non-linear Hertz’s model
with hysteresis damping as defined by Lankarani and Nikravesh [18, 19] as

Rw/r,j =

{
Khδ

3
2 + Chδ̇ if δ > 0,

0 if δ < 0;
(2)

where δ is the total deflection of wheel and rail at the contact point computed as

δ = zwj − zrj − ηrj , (3)

in which zwj is the vertical displacement of the jth-wheel, zrj and ηrj are the displacement and the
vertical defect of rail at jth-contact-point respectively; Kh and Ch are the Hertzian and the damping
contact coefficient. During the phase of calibration of the model the non dissipative behavior of the
Hertz’s contact emerged. So at the end of calibration the damping coefficient Ch is neglectable.
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Figure 1: Draft of the model.
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2.3 The rail model

A finite element discretization is used to model the rail. Considering insignificant the axial displacement,
we discretized the rail with Timoshenko beam finite elements with two degrees of freedom: rotation
and vertical displacement. The algorithm allows to choose the number of beam elements between two
sleepers and the number of beam elements vertically connected to sleeper by pads. Similarly to the Eq.
(1), motion equation for rail may be expressed as

Mrz̈r + Crżr + Krzr = qr + fr, (4)

where zr is the nodal displacement-rotation vector of 2n-dimensions if n is the total number of nodes;
Mr is the lumped mass matrix written also considering the inertial effects associated to rotational de-
grees of freedom, Kr and Cr are the stiffness and the damping matrix respectively, qr is the forces
vector which contains the gravitational forces and fr contains the wheel-rail contact forces.

2.4 Description of rail-pads, sleepers and ballast model

In comparing mass and stiffness between rail-pads and concrete sleepers, rail-pad mass (1 ∼ 2 kg) is
negligible if compared to concrete sleeper mass (250 ∼ 350 kg); similarly, sleeper stiffness (Ks = 30 ∼
40 · 1012 N m−1) is six orders of magnitude higher than pad stiffness (15 ∼ 25 · 106 N m−1). Moreover,
rail-pads should not be modeled as a punctual connection like [5, 9, 13, 7, 20], because rail-pads length
cannot be neglected if compared to sleeper base. Therefore, rail-pad is modeled as a combination of
spring-damper couples without mass. In accordance with [12, 13, 5, 20, 9] the sleeper is modeled as a
discrete rigid element and the ballast is modeled as single blocks placed in correspondence of sleepers.
A spring-damper couple, representing the elasticity and viscosity of the ballast blocks, connects them
with sleeper-elements. Other spring-damper couples connect ballast blocks horizontally, allowing the
transmission of vibration along the motion direction. Ballast stiffness is calculated according to [21], so
the stiffness for a ballast block is:

kb =
2 tanϕ(ls − bs)Eb
ln
[
ls(2 tanϕhb+bs)
bs(2 tanϕhb+ls)

] , (5)

in which ϕ is the internal friction angle of ballast, ls and bs are the dimensions of the effective contact
area between ballast and sleepers, hb and Eb are the height and the modulus of elasticity of the ballast
respectively. In accordance with [5] coefficients for longitudinal springs and dampers are calculated as
30% of the respective vertical coefficient. To represent the behavior of background, a spring-damper
couple is added over ballast blocks (see Figure 1). The motion equations for the substructure are:

Msubz̈sub + Csubżsub + Ksubzsub = qsub + fsub. (6)

The sub-matrices and the assembling procedure are described in Appendix B.

2.5 Numerical model of wheel and rail defects

Two models have been used to generate track irregularities. The first one is suggested by the ISO3095
[22], the International Organization for Standardization that reports the frequency spectrum of rail irreg-
ularities. The roughness profile has been evaluated in 1/3 octave bands discretizing each band with 50
wavelengths. The procedure to generate the roughness profile is described in [23]. The second model,
used by Association of American Railway (AAR) [9], allows to simulate the oldness of track varying
the grade of irregularities.

3 Resolution of dynamic equations

In order to solve the non linear system of equations (1), (6), displacements and speeds are written as
function of accelerations applying the linear acceleration method (Newmark scheme with δ = 1/2 and
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θ = 1/6). Therefore the equation system of vehicle and substructure may be rewritten in the following
discrete form:

Fv (z̈v,i+1) = Avz̈v,i+1 + fv,i+1(z̈v,i+1, z̈sub,i+1)− bv,i = 0 (7a)

Fsub (z̈sub,i+1) = Asubz̈sub,i+1 + fsub,i+1(z̈v,i+1, z̈sub,i+1)− bsub,i = 0 (7b)

where
Aα =

(
Mα + ∆t

2 Cα + ∆t2

6 Kα

)
,

bα,i =
[
qα −Cα

(
żα,i + ∆t

2 z̈α,i
)
−Kα

(
zα,i + ∆tżα,i + ∆t2

3 z̈α,i

)]
,

(8)

for α = v or sub. These two systems of equations are coupled by the forces vector. In fact, the contact
forces Rr/w are inside both vectors fv,i+1 and fsub,i+1 with opposite signs. The forces vector is a non
linear function of accelerations in both equations, that would allow to solve the non linear system with
the fixed-point iterative method like [9] or with the Newton-Raphson iterative method. Nevertheless,
to reduce computational time and maintain accuracy, a different procedure that mixes both methods is
proposed.
At the first fixed-point iteration of each time-step, substructure equations are solved with the implicit
integration method. At this iteration, contact forces may be calculated with Eq. (2); Rw/r is calculated
as function of vehicle and substructure displacements relative to previous time-step; differently, rail
defect values are associated to current time-step. The now calculated displacement vector of the sub-
structure becomes input for the the Newton-Raphson method applied to the vehicle dynamic equation.
Afterwards, the non-linear contact force is calculated for every Newton-Raphson iteration as function of
vehicle displacements (that varies for every N.R.1 iteration); substructure displacements are temporally
assumed as constant.
The Jacobian associated to the vehicle system (7a) is:

J = Av +

[
06×6 06×4

04×6
∂r
∂z̈w 4×4

]
, (9)

where ∂r
∂z̈w 4×4

is a diagonal matrix and diagonal elements are defined as:

δrjj = Ch
∆t2

4

[
ziw,j + ∆tżiw,j +

∆t2

6

(
z̈i+1w,j + 2z̈iw,j

)
− zir,j − ηir,j

] 1
2

. (10)

Once the Jacobian is defined, the solution z̈i+1 may be calculated as limit of the sequence
[
z̈ki+1

]
k∈N,

where the apex k is relative to the kth N.R. iteration, as follows2:

J
(
z̈ki+1

)(
z̈k+1
i+1 − z̈ki+1

)
= −F

(
z̈ki+1

)
, (11)

At the end of N.R. iterations a new contact-force vector and a new displacement vector are calculated for
the vehicle. Then, the new contact-forces become input for the next f.p.3 iteration. At each f.p. iteration,
convergence is checked on the displacement vector of the substructure, as:

norm(zsj − zsj−1)

norm(zsj )
≤ ε, (12)

where ε is the tolerance and subscript represents the jth f.p. iteration. If the inequality (12) if satisfied,
the algorithm goes to the next time step. Similarly, convergence is checked on displacement vector of
the vehicle to proceed with the N.R. iterations.

1Newton-Raphson.
2subscript “v” is omitted to simplify notations
3fixed-point.
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The strength of this algorithm consists in treating the non linearity of contact forces for every f.p. itera-
tion applying N.R. only to the vehicle system. In fact, the dimensions of the vehicle matrices are widely
lower than the substructure ones, so the factorization and the vehicle system resolution result faster.
Moreover, treating a part the non linearity of the vehicle system allows a reduction of f.p. iterations. A
global overview of the method is presented in Figure 2. The algorithm has been programmed with the
software MATLAB.

4 The importance of the contact-area model for the receptance analysis

A draft of the difference between the contact-area and the contact-point models is shown in Figure 3.
It is clear how the deformed shapes could be very different in the two cases. The importance of the
contact-area model related to the receptance estimation of the railway track is shown in the Figure 4
and Figure 5. The contact-point model produces errors especially in the range of the pinned-pinned
frequency. In this frequency range, it overestimates the receptance by 400% in the case of midspan
excitation. Additionally, in the case of on-sleeper excitation, the receptance is underestimated by 150%.
On the contrary, the contact-area model fits closely the experimental data that could be explained by
the analogy with a simply supported beam. In this case, the amplitude of deflection associated with the
fundamental frequency is proportional to the length. Similarly, in the contact-area model the length of
the rail not supported by pads is shorter than the one of the contact-point model; consequently also the
receptance is lower. All the parameters used in the simulation are reported in Table 3.

5 Validation of the numerical model

A comparison with experimental results and other numerical models is carried out to validate the present
model. To have a correct approximation and avoid an excessive extension of the computational time,
an appropriate number of finite elements is chosen. The part of rail between two consecutive sleepers
is discretized as nine beam elements while the the one vertically connected to sleepers by pads with six
beam elements. The model is applied to a set of railway lines with different properties.

5.1 Case 1 - corrugated rail (AAR [9]) - comparison with experimental results

The first railway section, 64.35 m long, is relative to the Italian line Alcamo-Marsala (116 km), an
old line with wooden sleepers. In this railway, measurements have been carried out with a series of
accelerometers by [13]. AALn688 train with a single configuration, having a velocity of 90 km h−1, has
been considered. The model parameters are shown in Table 1. A comparison between experimental data
[13] and numerical results of the rail vertical acceleration is shown in Figure 6; a comparison between
sleeper vertical acceleration is shown in Figure 7. Experimental data (Figure 6(a)) show how the rail
vertical acceleration peaks are included between 50 m s−2 and 100 m s−2 and occur in correspondence of
the four wheel-set passages. This behavior is predicted by the numerical simulation as well (Figure 6(b)).
Additional experimental data (Figure 7(a)) shows how peaks of sleeper vertical acceleration occur in
correspondence of bogie passage but they are not distinguishable for each wheel-set. Figure 7(b) shows
how the present model predicts well this kind of behavior. The irregularity grade of railway is unknown
so it has to be assumed. To study the influence of uncertainties connected to line grade index, many
simulations have been implemented. Numerical results and experimental data have been compared in
function of the line grade index. The worst value of index (Ilg = 1) allows numerical simulation to fit
well experimental data. Furthermore, this case is referred to an old line so it is supposable that defects
are relevant.
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5.2 Case 2: out-of-round wheels - comparison with experimental results and other nu-
merical models

The second railway line model has been developed on the basis of the field testing results reported by
[25]. Their study has been carried out to analyze vertical interaction between wagon and track in case of
out-of-round wheels. Wheels have been artificially ground with a defect 40 mm long and 0.35 mm deep.
Experimental data has been used by [5] to validate the model. The discretization adopted for the rail is
the same of the precedent case. Because of the few parameters reported by [25], model parameters for
train and substructure have been extracted both from [5] and [25]. All values are reported in Table 2. A
comparison between experimental data [5] and numerical results for the second railway line is shown
in Figure 8. A simulation with no rail defects have been developed by other authors too [5, 25] (see
Figure 9(a) and 9(b)). Focusing on Figure 8(a), the contact force returns to static value approximatively
0.05 s after the perturbation caused by wheel defect. Analyzing the experimental data in Figure 8(a) it
may be seen how the contact force maintains a periodical oscillation until next defect. This fact may be
explained considering that the experimental data are affected by a minimum level of defects present on
rail. A lower level of defect: Ilg = 6 is applied to the rail to better represent this phenomenon. Looking
at Figure 8(b) the simulation with rail defects seems to fit better experimental data. The lower and the
upper pulsation in Table 2 are equivalent to ordinary values of long wavelength roughness (2000 mm)
and medium wavelength roughness (220 mm) when train velocity is 70 km h−1. The number of defect
functions seems to be not relevant after the value of 100 functions; X. Lei and N.A. Noda [9] suggested
the value: N = 2500.

5.3 Case 3: corrugated rail (ISO3095 [22]) - Comparison with other numerical models

In this case a rail with corrugation based on ISO3095 [22] is considered. The modal frequency analysis
of the contact-force has been compared to results obtained by A. Johansson and J.C.O. Nielsen [26]
model. The comparison between the models is shown in Figure 10. The highest amplitude of the Fourier
spectrum of the normal contact-force corresponds to the passing frequency of the train on the sleeper,
i.e. 85 Hz. Focusing on Figure 10(b), amplitudes increase in magnitude around 600 Hz, 900 Hz and
1200 Hz. These frequencies correspond to the bending modes of a rail, with pinned-pinned boundary
conditions, considering the same length of the boogie wheelbase [27, 28]. Experimental results confirm
this behavior [26].

6 Sensitivity analysis

A sensitivity analysis has been carried out to study the influence of each model variable on the output
parameters. The output parameters selected for the analysis are the dynamic amplification factor of
the wheel-rail contact force δdyn = Rw/r/Rstatic and the sleeper elastic deflection zsl (Rstatic is the
vehicle weight divided by the number of wheels). The dynamic amplification factor is time dependent.
The contact force Rw/r varies around the static value during the simulation and, for certain time steps,
assumes very high values. Anyway, these values are singular points and do not represent the total
behaviour of contact-force during the whole time of simulation T . The following procedure has been
conducted to choose a representative output parameter. The time simulation T has been cut in p ranges
of time τ . For each g-range the maximum value of the dynamic amplification factor δdyn,g has been
evaluated for the third wheel from the left. In fact, the third wheel is the one less affected by boundary
effects. Therefore the average between maximum values in all the time ranges has been calculated for
every simulation. The procedure is summarized in Equation (13).

δdyn =
∑p

g=1
δdyn,g

p

p = T
τ

δdyn,g = max
[
Rw/r,3(t)

Rstatic

]
t ∈ [(g − 1)τ, (g)τ ]; g = 1, 2, . . . , p.

(13)
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The interval τ has been calculated as the time necessary to cover the transit of three sleepers. The sleeper
distance used is 0, 65 meters, so τ has been calculated as 2, 3 m/V , being (3 · 0, 65 m) < 2, 3 m.
Many studies [29, 30, 31, 32, 33, 34] show how the ballast vertical settlement is proportional to the
elastic deflection caused by each wheel pass and the number of applied wheel loads. Being ballast
maintenance one of the most important costs for rail infrastructure operators, a sensitivity analysis of
the sleeper deflection has been carried out. The sleeper chosen to check the maximum deflection value
is the nearest one to the midpoint between the end of the railway length and the fourth wheel from the
left. Among others, this sleeper is the one less affected by boundary effects. A OFAT model (one-factor-
at-a-time) is adopted to evaluate the sensitivity of parameters to all variables. The sensitivity index for
each variable may be calculated with the standard regression coefficient [35] as:

SRCi =
β2
i V (Xi)

V (Y )
∈ [0, 1] (14)

where the operator V means variance of . The coefficient βi, in case of a linear model, may be calcu-
lated as the ratio between the variation of the output parameter ∆Y and the increment of the variable
∆Xi. In Figure 11, input parameters are ordered according their influence. It may be noticed the impor-
tance of train mass in both analyses. The ballast equivalent stiffness has a noticeable influence on the
sleeper deflection but not on the dynamic amplification factor. Focusing on Figure 11(a), a significant
outcome concerns the damping features of ballast, resulting less significant than pad damping. This
behaviour is inverted for the ballast deflection (Figure 11(b)) where the ballast equivalent damping is
more significant. Moreover in both analyses the wheel masses show a considerable influence.

7 Conclusions and perspectives

The model presented in this paper allows to predict contact force and vibrations in both vehicle and
track components for a simplified vehicle model. The validation shows how predictions fit well experi-
mental data. The introduced model of rail support is more accurate than past models for modal analysis
of contact force and vibrations. The contact-area model is strongly recommended to evaluate the track
receptance. The contact-point model provides satisfactory results as well, but produces considerably
incorrect forecast in the pinned-pinned frequency range. The masses have a noticeable influence too,
especially the vehicle and the wheel masses. The ballast equivalent stiffness results as the second im-
portant variable characterizing the sleeper elastic deflection. In future works we may include a flexible
wheel-set instead of a single wheel mass; this will change the system response. The model could also
be extended modeling a 3D contact including changes in the lateral position of the contact.
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Figure 4: Comparison between receptances of the railway in the case of: the contact-point model, the
contact-area model and experimental data [24]; case of midspan excitation.
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Figure 5: Comparison between receptances of the railway in the case of: the contact-point model, the
contact-area model and experimental data [24]; case of on-sleeper excitation.
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Figure 9: Numerical results of: (a) Sun and Dhanasekar[5]; (b) Fermer and Nielsen[25].
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Figure 11: Sensivity analysis of: (a) the dynamic amplification factor; (b) the sleeper elastic deflection.
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A Vehicle matrices

The displacement vector zv, the forces vector fv, the mass matrix Mv, the stiffness matrix Kv and the
damping matrix Cv are here defined:

zv =



zc
φc
zt
φt
zt
φt
zw1

zw2

zw3

zw4


10×1

, qv =



mcg
0
mtg

0
mtg

0
mwg
mwg
mwg
mwg


10×1

, fv =



0
0
0
0
0
0

Rr/w1

Rr/w2

Rr/w3

Rr/w4


10×1

, (15)

Mv = diag
[
mc Jc mt Jt mt Jt mw mw mw mw

]
10×10

, (16)

Kv =



2k2 0 −k2 0 −k2 0 0 0 0 0
0 2k2l

2
t −k2lt 0 k2lt 0 0 0 0 0

−k2 −k2lt k2 + 2k1 0 0 0 −k1 −k1 0 0
0 0 0 2k1l

2
w 0 0 −k1lw k1lw 0 0

−k2 k2lt 0 0 k2 + 2k1 0 0 0 −k1 −k1

0 0 0 0 0 2k1l
2
w 0 0 −k1lw k1lw

0 0 −k1 −k1lw 0 0 k1 0 0 0
0 0 −k1 −k1lw 0 0 0 k1 0 0
0 0 0 0 −k1 −k1lw 0 0 k1 0
0 0 0 0 −k1 −k1lw 0 0 0 k1


10×10

(17)

Cv =



2c2 0 −c2 0 −c2 0 0 0 0 0
0 2c2l

2
t −c2lt 0 c2lt 0 0 0 0 0

−c2 −c2lt c2 + 2c1 0 0 0 −c1 −c1 0 0
0 0 0 2c1l

2
w 0 0 −c1lw c1lw 0 0

−c2 c2lt 0 0 c2 + 2c1 0 0 0 −c1 −c1

0 0 0 0 0 2c1l
2
w 0 0 −c1lw c1lw

0 0 −c1 −c1lw 0 0 c1 0 0 0
0 0 −c1 −c1lw 0 0 0 c1 0 0
0 0 0 0 −c1 −c1lw 0 0 c1 0
0 0 0 0 −c1 −c1lw 0 0 0 c1


10×10

,

(18)
where 2lw is the wheelbase and 2lt is the distance between the bogies pivot points.

B Assembling motion equations for the substructure

In order to simplify the resolution of the track/vehicle system, motion equations of substructure are
unified in matrix form by assembling equations of rail, sleepers and ballast blocks. The motion equation
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for the mth sleeper (see Figure 1) is

msz̈s + (cb + cp)żs + (kb + kp)zs − cbżb − kbzb −
cp
n

n∑
p=1

żr −
kp
n

n∑
p=1

zr = msg; (19)

the motion equation for the mth ballast block is4

mbz̈b + (2cw + cb + cf )żb + (2kw + kb + kf )zb − cwżbi+1
+

−cwżbi−1
− kwzbi+1

− kwzbi−1
− cbżs − kbzs = mbg.

(20)

Assembling all equations, in the matrix form:

Msubz̈sub + Csubżsub + Ksubzsub = qsub + fsub, (21)

where Msub is the assembled mass matrix of substructure:

Msub =

 Mr 02n×m 02n×m
0m×2n Ms 0m×m
0m×2n 0m×m Mb


(2n+2m)×(2n+2m)

, (22)

in which the sub-matrices Ms and Mb are

Ms = diag
[
ms · · · ms

]
m×m ,

Mb = diag
[
mb · · · mb

]
m×m ; (23)

Ksub is the assembled stiffness matrix of substructure:

Ksub =

 Kr BT 02n×m
B Ks D
0m×2n D Kb


(2n+2m)×(2n+2m)

, (24)

in which sub-matrices B, Ks, D and Kb are defined5 as

B =


−kp 0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 −kp 0 · · · · · · · · · 0

0 0 0 0 0 0
. . . . . . . . .

...
...

...
...

...
...

...
. . . . . . . . .

...
0 0 0 0 0 0 · · · 0 −kp 0


m×2n

, (25)

Ks = diag
[
kb + kp · · · kb + kp

]
m×m ,

D = diag
[
−kb · · · −kb

]
m×m , (26)

Kb =



k′wbf −kw 0 · · · · · · · · · 0

−kw kwbf −kw 0 · · · · · · 0
0 −kw kwbf −kw 0 · · · 0
... 0 −kw . . . . . . . . .

...
...

... 0
. . . . . . . . . 0

...
...

...
. . . . . . kwbf −kw

0 0 0 · · · 0 −kw k′wbf


m×m

, (27)

4The equation is written considering a generic ballast block connected horizontally with next and previous block. An
exception has to be done for boundary condition in which i+ 1 and i− 1 terms in (20) are nulls.

5Sub-matrix B shown in this example is written for simplicity considering only two beams between sleepers.
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where k′wbf = kw + kb + kf and kwbf = 2kw + kb + kf ;
Csub is the assembled damping matrix written as Ksub but substituting k terms with correspondent c
terms;
Zsub is the assembled vector of displacements and rotations:

Zsub =

 zr
zs
zb


(2n+2m)×1

, (28)

in which zs and zb are defined as

zs =
[
zs1 · · · zsi · · · zsm

]T
m×1

,

zb =
[
zb1 · · · zbi · · · zbm

]T
m×1

; (29)

qsub and fsub are the assembled forces vector:

fsub + qsub =

 fr
0
0


(2n+2m)×1

+

 qr
qs
qb


(2n+2m)×1

, (30)

where qs and qb are defined as

qs = msim×1, qb = mbim×1 , (31)

and im×1 is a vector where all components are one.
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C Model parameters

Table 1: Model parameters adopted for the simulation in first railway line.

Case 1

notation parameter value unit

Model parameters of substructurea

E young modulus of rail 2.07 · 1011 N m−1

I inertial modulus of rail 1884 · 10−8 m4

A section area of rail 63.62 · 10−4 m2

χ Timoshenko shear coefficient 0.34
mr railway mass (per unit length) 49.9 kg m−1

Ms sleeper mass 33 kg
Mb ballast mass 700 kg
kp pad stiffness 26.5 · 107 N m−1

cp pad damping 40 · 103 N s m−1

kb ballast stiffness 24 · 107 N m−1

cb ballast damping 58.8 · 103 N s m−1

kw horizontal stiffness 7.84 · 107 N m−1

cw horizontal damping 80 · 103 N s m−1

kf subgrade stiffness 7.68 · 107 N m−1

cf subgrade damping 64.6 · 103 N s m−1

ls sleeper base 65 cm

Model parameters of train Aln668a

2Mc car body mass 28800 kg
Mb bogie mass 3600 kg

2Mw wheelset mass 500 kg
lc total length 23540 mm
2lb wheelset base 2.45 m
2lw bogie base 15.95 m
k1 primary suspension stiffness 500 kN m−1

k2 secondary suspension stiffness 8800 kN m−1

c1 primary suspension damping 0.5 kN s m−1

c2 secondary suspension damping 41.5 kN s m−1

Other simulation parameters

dt time step 6 · 10−5 s
Kh Hertz contact coefficientb 0.87 · 1011 N m−3/2

Ch contact damping coefficient 3 · 105 N s m−1

Ls simulation line lengtha 64.45 m
n number of pad elements 7
d number of beam elements between sleepers 9
N number of defects functions 200
ωu upper pulsation 1560 rad s−1

ωl lower pulsation 12 rad s−1

Ilg line grade index 1
V train velocity 90 km h−1

a parameters extracted from [13].
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Table 2: Model parameters adopted for the simulation in second railway line.

Case 2

notation parameter value unit

Model parameters of substructure

E young modulus of raila 2.07 · 1011 N m−1

I inertial modulus of railb 2940 · 10−8 m4

A section area of railb 77.70 · 10−4 m2

χ Timoshenko shear coefficientb 0.34
mr railway massa (per unit length) 60 kg m−1

Ms sleeper massb 270 kg
Mb ballast massb 480 kg
kp pad stiffnessa 57.65 · 106 N m−1

cp pad dampinga 33.65 · 103 N s m−1

kb ballast stiffnessc 29.06 · 106 N m−1

cb ballast damping 8.30 · 103 N s m−1

kw horizontal stiffnessc 7.84 · 106 N m−1

cw horizontal dampingc 2.49 · 103 N s m−1

kf subgrade stiffnessc 76.80 · 106 N m−1

cf subgrade damping 64.6 · 103 N s m−1

lsl sleeper basea 68.5 cm
Ls effective length of rail support areab 16.4 cm

Model parameters of the train

2Mc car body massd 72000 kg
Mb bogie massb 3600 kg

2Mw wheelset massb 1900 kg
2lb wheelset baseb 1.675 m
2lw bogie baseb 10.36 m
k1 primary suspension stiffnessb 6500 kN m−1

k2 secondary suspension stiffnessb 2555 kN m−1

c1 primary suspension dampingb 10 kN s m−1

c2 secondary suspension dampingb 30 kN s m−1

rw wheel radiusa 0.475 m

Other simulation parameters

dt time step 5.14 · 10−5 s
Kh Hertz contact coefficientb 0.87 · 1011 N m−3/2

n number of pad elements 7
d number of beam elements between sleepers 9
N number of defects functions 2500
ωu upper pulsation 555 rad s−1

ωl lower pulsation 61 rad s−1

Ilg line grade index 6
V train velocity 70 km h−1

a Values extracted from [25]
b Values extracted form [5]
c Calculated Values
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Table 3: Model parameters adopted for evaluation of railway receptance.

notation parameter value unit

Model parameters of substructure

E young modulus of rail 2.07 · 1011 N m−1

I inertial modulus of raila 2348 · 10−8 m4

A section area of rail 71.7 · 10−4 m2

χ Timoshenko shear coefficienta 0.34
mr railway massa (per unit length) 56 kg m−1

Ms sleeper massa 220 kg
kp pad stiffnessa 280 · 106 N m−1

cp pad dampingb 35 · 103 N s m−1

kb ballast stiffnessb 160 · 106 N m−1

cb ballast dampingb 90 · 103 N s m−1

lsl sleeper basea 69.8 cm

Other simulation parameters

nms number of sleepers (midspan excitation) 99
nos number of sleepers (on-sleeper excitation) 100
dt time step 3.37 · 10−5 s
n number of pad elements 8
d number of beam elements between sleepers 10

a Values extracted form [24]
b estimated Values
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