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Abstract. Aerosol absorption properties are of high impor-
tance to assess aerosol impact on regional climate. This study
presents an analysis of aerosol absorption products obtained
over the Mediterranean basin or land stations in the region
from multi-year ground-based AERONET observations with
a focus on the Absorbing Aerosol Optical Depth (AAOD),
Single Scattering Albedo (SSA) and their spectral depen-
dence. The AAOD and Absorption Angström Exponent
(AAE) dataset is composed of daily averaged AERONET
level 2 data from a total of 22 Mediterranean stations hav-
ing long time series, mainly under the influence of urban-
industrial aerosols and/or soil dust. This dataset covers the
17-yr period 1996–2012 with most data being from 2003–
2011 (∼89 % of level-2 AAOD data). Since AERONET
level-2 absorption products require a high aerosol load (AOD
at 440 nm > 0.4), which is most often related to the pres-
ence of desert dust, we also consider level-1.5 SSA data,
despite their higher uncertainty, and filter out data with an
Angström exponent < 1.0 in order to study absorption by car-
bonaceous aerosols. The SSA dataset includes AERONET
level-2 products. Sun-photometer observations show that val-
ues of AAOD at 440 nm vary between 0.024± 0.01 (resp.
0.040± 0.01) and 0.050± 0.01 (0.055± 0.01) for urban
(dusty) sites. Analysis shows that the Mediterranean urban-
industrial aerosols appear “moderately” absorbing with val-
ues of SSA close to∼0.94–0.95± 0.04 (at 440 nm) in most
cases except over the large cities of Rome and Athens, where

aerosol appears more absorbing (SSA∼0.89–0.90± 0.04).
The aerosol Absorption Angström Exponent (AAE, esti-
mated using 440 and 870 nm) is found to be larger than 1 for
most sites over the Mediterranean, a manifestation of min-
eral dust (iron) and/or brown carbon producing the observed
absorption. AERONET level-2 sun-photometer data indicate
a possible East-West gradient, with higher values over the
eastern basin (AAEEast= 1.39/AAEWest= 1.33). The North-
South AAE gradient is more pronounced, especially over the
western basin. Our additional analysis of AERONET level-
1.5 data also shows that organic absorbing aerosols signif-
icantly affect some Mediterranean sites. These results indi-
cate that current climate models treating organics as nonab-
sorbing over the Mediterranean certainly underestimate the
warming effect due to carbonaceous aerosols.

1 Introduction

Numerous studies have identified the Mediterranean basin
as one of the most prominent “Hot-Spots” in projected cli-
mate change assessments (Giorgi, 2006; Giorgi and Lionello,
2008). General Circulation Model (GCM) or Regional Cli-
mate Model (RCM) climate simulations have demonstrated
that the Mediterranean is characterized by its vulnerability to
changes in the water cycle and predict a substantial precipi-
tation decrease and warming, especially during the summer
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season. By the end of 21st century, the average prediction of
the models suggests a significant loss of freshwater over the
Mediterranean basin:−40 % for the period 2070–2090 com-
pared to 1950–1999 (Sanchez-Gomez et al., 2009). Climate
simulations underline that the drying of the Mediterranean
basin is associated with increasing anticyclonic circulation
over the region, which causes a northward shift of the mid-
latitude storm track (Giorgi and Lionello, 2008).

Until now, most global and regional future climate sim-
ulations have only investigated the impact of global warm-
ing on the Mediterranean climate without clearly consider-
ing the influence of “Mediterranean aerosols” (pollution par-
ticles, smoke and mineral dust) that can significantly mod-
ify the radiation budget (Markowicz et al., 2002; Formenti et
al., 2002b; Mallet et al., 2006; Roger et al., 2006). Specif-
ically, atmospheric aerosols decrease the amount of short-
wave (SW) radiation reaching the sea and continental sur-
faces. The column amount of atmospheric aerosol, quantified
by the Aerosol Optical Depth (AOD), is one of the main fac-
tors causing this decrease. This aerosol-induced perturbation
of the surface radiation budget can impact the Sea Surface
Temperature (SST) (Foltz and McPhaden, 2008; Yue et al.,
2011) and surface moisture exchanges by modifying latent
heat fluxes (Ramanathan et al., 2001a).

In addition, due to their optical properties and especially
their ability to absorb solar radiation, aerosols can trap SW
radiation within the atmospheric layer where they reside.
This additional absorption contributes to the direct heating of
the atmosphere and causes changes in the atmospheric heat-
ing rate profiles, dynamical processes and more generally,
the hydrological cycle (Solmon et al., 2008; Lau et al., 2009;
Mallet et al., 2009). For example, Solmon et al. (2008) simu-
late that a change in dust absorbing properties could modify
precipitation over Western Africa. Ramanathan et al. (2001b)
also conclude that heating caused by carbonaceous absorb-
ing aerosols exported from India reduces the low cloud frac-
tion over the Indian Ocean during the dry monsoon season.
Therefore, a rigorous quantification of the effect of aerosols
on the Mediterranean radiation budget and climate is re-
quired, including estimates of both the atmospheric aerosol
load and its ability to absorb radiation.

Numerous studies of aerosol properties over the Mediter-
ranean have documented AOD for pollution particles, smoke
and dust aerosols using in-situ observations (Horvath et al.,
2002; Formenti et al., 2002a; Gerasopoulos et al., 2003; Ku-
bilay et al., 2003; Meloni et al., 2004, 2006; Fotiadi et al.,
2006; Pace et al., 2006; Roger et al., 2006; Mallet et al.,
2006; Tafuro et al., 2007; Saha et al., 2008). In brief, these
studies report AOD values in the range 0.1–0.5, 0.3–1.8 and
0.3–0.8 in the spectral range of 440 to 550 nm for pollution,
dust and smoke particles, respectively. In addition to analyses
of local sun-photometer observations, several studies have
used long time series of satellite-derived AOD at regional
scales from Meteosat (Moulin et al., 1998), SeaWiFs (An-
toine and Nobileau, 2006), the MODerate resolution Imag-

ing Spectroradiometer (MODIS) (Barnaba and Gobbi, 2004;
Papadimas et al., 2008, 2009; Nabat et al., 2012), the combi-
nation of MODIS and TOMS (Hatzianastassiou et al., 2009),
MSG/SEVIRI (Lionello et al., 2012), or even all products
(Nabat et al., 2013).

In contrast to the considerable scientific literature related
to AOD distribution, aerosol absorbing properties over the
Mediterranean have received much less attention, and are
poorly documented, in spite of their great importance for
direct radiative forcing and overall regional climate. To the
best of our knowledge, the only long term in-situ observa-
tions of absorbing aerosols available in the Mediterranean
background atmosphere are those reported from Crete Island
in the eastern Mediterranean by Sciare et al. (2008), high-
lighting the major role of long-range transported biomass
burning aerosols on Black Carbon (BC) concentration lev-
els. Consequently, long-term observations of absorption in
the atmospheric column, and specifically an analysis of the
role played by dust aerosols, are still missing. This moti-
vates the present work; its main objective is to characterise
aerosol absorption over the Mediterranean region using avail-
able surface remote-sensing data. We focus our study on (i)
the aerosol absorption optical depth (AAOD), which is the
fraction of AOD due to absorption only, (ii) the aerosol single
scattering albedo (SSA), which is the ratio of aerosol scatter-
ing to total extinction (i.e. scattering + absorption), and (iii)
the spectral dependence of these optical parameters, calcu-
lated in terms of Angström Exponent (AE) or Absorption
Angström Exponent (AAE) in the case of optical depth or
absorption optical depth, respectively:

AAE = log(AODλ1/AODλ2)/ log(λ2/λ1) and AAE (1)

= log(AAODλ1/AAODλ2)/ log(λ2/λ1)

Subsequent to the data description (ground-based dataset
used in our work) in Sect. 2, the results are presented and
discussed in two main parts. First (Sects. 3.1–3.2), we report
AAOD and AAE AERONET level-2 and 1.5 multi-year ob-
servations for different Mediterranean sites. AERONET SSA
is analysed in Sect. 3.3.

2 Remote sensing ground-based AERONET
observations

AERONET (Aerosol Robotic Network;http://aeronet.gsfc.
nasa.gov/) is a federated network of ground-based sun-
photometers and the associated data inversion and archive
system, that routinely performs direct sun observations ev-
ery 15 mn, and both almucantar and principal plane sky ra-
diance measurements, and retrieves and distributes global
aerosol columnar properties (Holben et al., 1998). Along
with AOD observations, the AERONET aerosol retrieval al-
gorithm (Dubovik and King, 2000) delivers the complete
set of column-effective aerosol microphysical parameters,
including volume size distribution, refractive index at four
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Fig. 1.Location of the 22 Mediterranean AERONET sites with long
time series used in this work. Northernmost (resp. southernmost)
sites are found in the western (eastern) basin.

wavelengths (440, 670, 870 and 1020 nm) and fraction of
spherical particles (Dubovik et al., 2006, also see descrip-
tion in Dubovik et al., 2011). In addition, using these micro-
physical parameters, the algorithm provides other column-
effective aerosol optical properties of interest to the scien-
tific community, such as wavelength dependent SSA, phase
function, and asymmetry parameter, as well as integral pa-
rameters of bi-modal particle size distributions (concentra-
tion, mode radii and variances) (Dubovik et al., 2002). In the
present study, the analysis is mostly focused on AAOD and
SSA for AERONET level 2.0, cloud-screened and quality-
assured AOD (Smirnov et al., 2000) and level 2.0 inversion
products (Dubovik et al., 2002). The accuracy of AERONET
retrievals is evaluated and discussed by Dubovik et al. (2000,
2002): the uncertainty of retrieved AAOD is estimated at the
level of ± 0.01 at wavelengths 440 nm and greater, whereas
SSA uncertainty is estimated to be± 0.03 for AOD (440 nm)
> 0.2 for water soluble aerosols and for AOD (440 nm) > 0.5
(zenith angle larger than 50 degrees) for desert dust and
biomass burning particles. Finally, for AOD (440 nm) < 0.2,
the SSA accuracy is± 0.05–0.07 (Dubovik et al., 2000,
2002). The AERONET’s Version 2.0 quality assured aerosol
products were used. The criteria used for Version 2.0 quality
assurance are described in details by Holben et al. (2006).

The 22 AERONET Mediterranean sites considered in our
study are selected based on both their location (within or
close to the basin) and their long-term operation (> 2.5 yr).
They are mapped in Fig. 1 and listed in Table 1 along with
information regarding the location, period of observation
and a brief description of each site. The significant num-
ber of AERONET sites available over the Mediterranean and
their distribution allows us to investigate aerosol character-
istics under diverse conditions: over remote, anthropogenic-
polluted and dusty locations. Figure 2 plots averaged level-2
AE and AOD of the different stations. The 4 stations of Thes-
saloniki, Erdemli, Nes Ziona and Modena show a high AOD
range (0.28–0.32) whereas all other have an average < 0.23.
The high AE (∼1.55) at Modena and Thessaloniki indicate
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Fig. 2.Average AERONET level 2 aerosol Angström Exponent and
optical depth of the 22 selected stations. The 8 stations in green are
relevant of the eastern Basin (see Table 1 for the station codes).

urban pollution controlled by submicron particles. On the op-
posite, the low average AE value (< 1.0) at Nes Ziona reveals
the major influence of large particles, likely soil dust and pos-
sibly sea salt. Lampedusa, Blida and Sede Boker also show a
low AE (∼1), characterising a major influence of large par-
ticles in conditions of lower AOD (∼0.2). With intermedi-
ate AE values in the range 1.11–1.27 the stations of Malaga,
Granada, Oristano, Forth Crete and Erdemli correspond to
relatively southern stations (Fig. 1) where the influence of
desert dust from the south is still very significant. Larger AE
values in the range 1.31–1.37 correspond to stations in a lat-
itude band 38–40.6◦ N (Burjassot, Potenza, Lecce, Messina
and Athens) where the impact of dust is less visible but still
significant. The rest of the stations has an AE in the range
1.41–1.49 and is composed of more northern stations in the
western basin (Barcelona, Rome, Avignon, Ersa, Toulon, and
Villefranche). As a result, a very significant trend is found
between AE and station latitude, whereas AOD rather corre-
lates with the station longitude (Fig. 3).

Figure 4 provides the temporal distribution of the num-
ber of days per month with AERONET level-2 absorption
products available at each site considered. Numbers are most
often < 10 and this number is rarely exceeded at other sea-
sons than summer. The period covered spans from 1996 to
2012, but a single station of Sede Boker provides data be-
fore 2000. Figure 5 further plots some statistics. Twelve sta-
tions have at least 110 days of level-2 absorption products.
The number ranges between 18 and 365 days (at Ersa and
Erdemli, resp.) and the maximum number of days is always
found in the summer season which is known to be the maxi-
mum dust season in the western and central Mediterranean
(Moulin et al., 1998). 88.8 % of data are from the period
2003–2011. As AERONET level-2 derivations correspond to
a high aerosol load (AOD at 440 nm > 0.4) that is generally
associated to dust events, we also consider level-1.5 inversion
products in order to investigate the possible role of smoke

www.atmos-chem-phys.net/13/9195/2013/ Atmos. Chem. Phys., 13, 9195–9210, 2013
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aerosols on the absorption. We further limit the influence of
dust events on the results by considering only level-1.5 data
with an Angström Exponent > 1.0. In that case, uncertainties
on AAOD are estimated at about± 0.01.

3 Results and discussions

3.1 Aerosol absorption optical depth

AAOD (Level 2) has been derived from AERONET obser-
vations at different wavelengths. We first analyse AAOD at
440 nm obtained at the 22 selected AERONET sites (Fig. 1,
Table 2). Over urban-industrialized regions (Table 2), AAOD
falls between 0.027± 0.01 and 0.05± 0.01 with the maxi-
mum observed at Rome (Table 2). In most cases, AAOD is
around 0.03± 0.01 for other urban-polluted sites. Long-term
analysis of the AERONET records at the Modena and Rome
sites, having around 10 yr of observations, does not reveal a
clear AAOD trend excepted over Rome, where a decrease is
observed (−0.0005 yr−1) between 2001 and 2011 (Fig. 6).
For periods of 3–5 yr between 2005 and 2008, Toulon and
Thessaloniki display a possible decrease in AAOD (not
shown), though the period of observations is too short to de-
rive an AAOD trend with confidence.

Mediterranean urban AAODs obtained at 440 nm are in
the same magnitude range as those observed over other ur-
ban sites such as Creteil/Paris (∼0.015± 0.01) or Mexico
(∼0.05± 0.01), but are generally higher than AAOD ob-
tained at GSFC (AAOD < 0.010) or over other sites along the
US Atlantic coast (AAOD∼0.01 for the same wavelength)
as reported by Russell et al. (2010). Compared to AAOD ob-
tained during SAFARI (Southern Africa Regional Science
Initiative) for smoke aerosols in southern Africa (AAOD
∼0.2 at 440 nm, see Russell et al., 2010) or in the Japan-
Korea region during ACE-Asia for mixed particles (AAOD
of about 0.1 at 440 nm), AAOD derived over the Mediter-
ranean display lower values.

AERONET observations (Table 2) indicate that “dusty”
sites (defined in Table 1) are logically characterized by larger
mean AAOD (at 440 nm) from 0.037± 0.019 at Lampe-
dusa to 0.055± 0.020 at Blida and 0.056± 0.041 at Oristano
with values in the range 0.045–0.052 at Malaga, Granada,
Nes Ziona and Sede Boker. Sites under desert dust influ-
ence seem to have experienced a decrease in AAOD (not
shown) although conclusions made over such short time
periods are highly uncertain (2003–2011 for Lampedusa,
2004–2009 for Blida). This observed decrease is consis-
tent with the results obtained by Zhang and Reid (2010),
who showed a negative trend in AOD of−0.022 per decade

Atmos. Chem. Phys., 13, 9195–9210, 2013 www.atmos-chem-phys.net/13/9195/2013/
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Fig. 4. Number of days with available level-2 AAOD (at 440 or 441 nm) data at every AERONET station and for each month from January
1996 to December 2012. Note that Thessaloniki and Erdemli have vertical scales different from other stations.

using the ten-year (2000–2009) Data Assimilation quality
MISR/MODIS combined aerosol product over ocean. Other
Mediterranean sites under the influence of dust aerosols dis-
play significant AAOD∼0.050. It should also be noted that
similar values are found for AAOD observed over Puerto
Rico during the PRIDE dust experiment (AAOD∼0.05–0.06
at 440 nm) and over dusty sites in Bahrain/Persian Gulf, So-
lar Village/Saudi Arabia or Cape Verde (Russell et al., 2010).
A linear correlation between AAOD and latitude (Fig. 3) is
found significant (at the 0.01 level).

3.2 Aerosol Absorption Angström Exponent (AAE)

3.2.1 Aerosol Level-2 Product

As reported by Russell et al. (2010), the spectral dependence
of AAOD, as defined in Eq. (1), can provide useful informa-
tion on the contribution different aerosol types make to the
shortwave absorption:

AAOD = Kλ−AAE (2)
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Table 2.Level-2 averaged Aerosol Absorbing Optical Depth at 440 nm (AAOD440), Single Scattering Albedo at 440 nm (SSA440), Absorb-
ing Angström Exponent estimated between 440 and 870 nm (AAE440−870), real and imaginary parts of aerosol Refractive Index (RI) at
440 and 670 nm, and number of days with data over the time period reported in Table 1. Standard deviations (sigma) are also reported in
parentheses for AOD, SSA and AAE.

AERONET/PHOTONS AAOD440 SSA440 AAE440−870 Real Part of Imaginary Part of RI
Site (sigma) (sigma) (sigma) RI at 440/670 nm at 440/670 nm (·10 000)

Modena 0.036 (0.014) 0.930 (0.026) 1.28 (0.21) 1.43/1.43 97/86
Avignon 0.039 (0.012) 0.918 (0.023) 1.24 (0.37) 1.42/1.43 98/89
Villefranche-sur-Mer 0.024 (0.012) 0.951 (0.024) 0.99 (0.24) 1.40/1.41 55/58
Toulon 0.033 (0.015) 0.929 (0.034) 1.20 (0.32) 1.40/1.42 90/87
Ersa 0.023 (0.014) 0.955 (0.023) 1.16 (0.28) 1.41/1.42 55/56
Rome Tor Vergata 0.047 (0.021) 0.904 (0.042) 1.50 (0.43) 1.43/1.44 119/89
Barcelone 0.036 (0.017) 0.929 (0.027) 1.19 (0.48) 1.42/1.42 74/65
Thessaloniki 0.031 (0.010) 0.937 (0.020) 1.33 (0.19) 1.38/1.40 69/57
Potenza 0.039 (0.023) 0.925 (0.040) 1.28 (0.63) 1.45/1.46 73/75
Lecce University 0.036 (0.014) 0.925 (0.026) 1.47 (0.53) 1.44/1.45 76/64
Oristano 0.056 (0.041) 0.907 (0.023) 1.59 (0.50) 1.44/1.46 70/46
Burjassot 0.030 (0.012) 0.939 (0.021) 1.18 (0.29) 1.43/1.42 59/51
Messina 0.037 (0.025) 0.933 (0.031) 1.20 (0.39) 1.42/1.43 62/58
Athens-NOA 0.043 (0.007) 0.906 (0.015) 1.45 (0.42) 1.43/1.43 106/89
Granada 0.048 (0.017) 0.904 (0.031) 1.71 (0.51) 1.43/1.46 63/37
Malaga 0.048 (0.015) 0.898 (0.028) 1.61 (0.42) 1.43/1.46 65/41
Erdemli 0.040 (0.025) 0.922 (0.048) 1.18 (0.43) 1.41/1.42 73/59
Blida 0.055 (0.020) 0.896 (0.031) 1.80 (0.42) 1.43/1.46 79/46
Lampedusa 0.037 (0.019) 0.929 (0.030) 2.13 (0.65) 1.46/1.48 35/18
Forth Crete 0.038 (0.022) 0.928 (0.019) 1.68 (0.45) 1.43/1.45 49/33
Nes Ziona 0.052 (0.036) 0.902 (0.071) 1.45 (0.56) 1.44/1.44 97/58

It follows that an AAE of 1.0 corresponds toλ−1 dependence
of absorption. Due to its relatively constant refractive index,
the absorption spectrum of fossil fuel Black Carbon (BC)
aerosols emitted from incomplete combustion processes is
expected to exhibit AAE of about 1.0 (Sun et al., 2007).
Laboratory studies and field measurements taken in urban ar-
eas support this statement (e.g., Bond and Bergstrom, 2006;
Sciare et al., 2011). Following the BC nomenclature, Brown
Carbon (BrC) is a recently introduced term for a class of
light-absorbing carbonaceous material, which, unlike BC,
has an imaginary part of its refractive index that increases
toward shorter visible and ultraviolet (UV) wavelengths, re-
sulting in an AAE much larger than unity (Moosmüller et
al., 2009). As described by Moosmüller et al. (2009), BrC is
part of Organic Carbon (OC), with OC aerosols having pre-
viously been assumed to absorb only weakly in the visible
spectral region. Recent studies have suggested that the op-
tical properties of BrC may be due to water-soluble organic
carbon (WSOC) compounds and in particular, to humic-like
substances (HULIS), which can have an AAE as large as 6–7
(Hoffer et al., 2006). The main sources of water-soluble BrC
are biomass burning and, to a lesser extent, primary emis-
sions from fossil fuel and secondary organic aerosols (Heco-
bian et al., 2010). In parallel, the presence of OC in biomass
burning plumes has been confirmed by OMI satellite obser-
vations (Jethva and Torres, 2011).

In addition to the chemical composition of aerosols,
Gyawali et al. (2009) have shown recently that the AAE of
BC cores (with diameter > 10 nm) that are coated by scat-
tering shells may deviate from the typically assumed AAE
of 1 relationship. Lack and Cappa (2010) have shown that
BC cores coated by scattering shells can produce AAE val-
ues up to 1.6. This finding clearly complicates the attribution
of observed AAE larger than 1 to BrC vs. mixing state. It
should be also remembered that AAE is highly dependent of
the wavelengths used in the calculation (Russel et al., 2010;
Bahadur et al., 2012).

The mean and associated standard deviations of
level 2 AAE obtained over AERONET sites are reported in
Table 2 (AAE presented in this study is always calculated
between 440 and 880 nm). Our results indicate that average
AAE values obtained over the Mediterranean fall between
0.99 and 2.16. For the urban polluted sites (Lecce, Toulon,
Rome, Thessaloniki, Messina, Barcelona, Burjassot and
Athens), AAE is larger than 1, with a maximum of 1.5
in Rome (see Table 2). Such AAE values obtained over
urban Mediterranean sites are similar to those obtained
for other urban sites by Russell et al. (2010) (AAE∼ 0.95,
1.40, 1.20, estimated between 440 and 880 nm for GSFC,
Creteil/Paris and Mexico City, respectively). We note that
AAE obtained at urban sites in the Eastern Mediterranean

Atmos. Chem. Phys., 13, 9195–9210, 2013 www.atmos-chem-phys.net/13/9195/2013/
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reported

Table 3. Adjusted parameters of particle volume size distributions
averaged for the stations relevant to the western and eastern basins
(see Fig. 9), assuming bimodal lognormal distributions (R is the
modal radius andσg the geometric standard deviation).

Basin Western Eastern

Mode Fine Coarse Fine Coarse
Proportion (%) 37.0 63.0 30.6 69.4
R (µm) 0.158 2.34 0.157 2.23
σg 1.61 2.11 1.58 2.02

basin are generally higher than those reported by Russell et
al. (2010).

As shown in Table 2 and Fig. 7a, Mediterranean dusty
sites present larger AAE (∼1.96) compared to urban loca-
tions (∼1.31). Lampedusa and Blida are characterized by
slightly different averaged AAE (and associated standard
deviation) of 2.16 (± 0.67) and 1.80 (± 0.42), respectively,
which could be due to differences in dust size distribution.
Indeed, a higher contribution of coarse dust particles near
the sources (Blida) could lead to larger AAOD at 880 nm
and decreasing AAE compared to sites far from the dust
sources (Lampedusa). Mediterranean dust AAE values are
found to be slightly lower than observed during the PRIDE
(dust aerosols) or ACE-Asia (mixed dust-urban-industrial
particles) experiments (AAE∼ 2.34 and 2.27, respectively).
However, Mediterranean dust AAE values are similar to
those observed over Bahrain/Persian Gulf (2.10, calculated
between 440 and 870 nm) and Arabia (1.80, between 440 and
870 nm). Finally, dust AAE obtained over the Mediterranean
are found to be consistent with AAE observed over Western
Africa at Banizoumbou (1.7± 0.6, estimated between 440
and 870 nm), Dakar (1.9± 0.6) and Ougadougou (1.6± 0.5)
as reported by Giles et al. (2012).

One important result concerns the AAE regional gra-
dient which appears over the Mediterranean. Analysis of

AERONET level 2 data (excluding AERONET sites affected
by the presence of dust, such as Blida and Lampedusa) dis-
play lower mean AAE values over the Western basin (Table 2
and Fig. 7b). Calculated AAE over Spain (including Bur-
jassot, Granada and Barcelona) and France (Toulon, Ville-
franche sur Mer and Ersa) are between 0.99 and 1.22 (Ta-
ble 2) and clearly increase over Italy (AAE of 1.30–1.50),
Greece (Thessaloniki and Athens) and Crete Island, with
AAE values comprised between 1.30 and 1.70. Average AAE
for Eastern and Western AERONET sites are about 1.39 and
1.33, respectively (Fig. 7b). This AAE regional gradient in-
dicates that mineral dust and/or organic absorbing particles
might make a larger contribution to the total aerosol load over
the Eastern Mediterranean. As the AERONET level-2 prod-
uct retains only high-quality cases having AOD higher than
0.4 at 440 nm for estimating AAOD, this gradient supports a
larger influence of mineral dust over the Eastern region. Fig-
ure 8 plots the particle size distribution retrieved from level-
2 AERONET sky measurements (Dubovik et al., 2000) and
averaged over the eastern and western stations. Larger con-
centrations are generally found in the eastern basin, but the
difference appears only significant for the coarse mode. If we
fit those distributions by a bimodal lognormal distribution,
the coarse mode is found to have a slightly larger relative
contribution in the eastern basin (Table 3). In addition, Fig. 9
reports AAE for northern and southern AERONET sites clas-
sified for the western (Fig. 9a) and eastern (Fig. 9b) basins.
In this case, the regional latitudinal gradient is clearly more
pronounced over the western basin, where the mean AAE is
about 1.77 and 1.22 for the northern and southern AERONET
sites, respectively, due to the desert dust influence. This gra-
dient is also well observed over the eastern basin with a mod-
erate difference in AAE between the Southern (mean AAE
of 1.47) and Northern (mean AAE of 1.34) AERONET sites,
respectively.
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3.2.2 Aerosol level-1.5 product

As mentioned below, AERONET data quality criteria do not
support the study of the brown carbon influence on absorb-
ing properties in most cases, as smoke plumes are generally
characterized by moderate AOD (0.2 < AOD < 0.5). Further-
more, most AERONET sites do not provide observations in
near UV where the influence of brown carbon is more preva-
lent. However and as already mentioned, smoke aerosols

that contain high concentrations of organics are character-
ized by large AAE (for SAFARI African biomass smoke,
AAE ∼ 1.45, calculated between 325 and 1000 nm; Russell
et al., 2010). In addition, the work of Kirchstetter et al. (2004)
and Jethva and Torres (2011) confirm the high AAE val-
ues of smoke aerosols when taking into account wavelengths
shorter than 440 nm.

In order to investigate the possible role of smoke
aerosols, we have conducted complementary analyses using

Atmos. Chem. Phys., 13, 9195–9210, 2013 www.atmos-chem-phys.net/13/9195/2013/
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Fig. 10.AAE (calculated between 440 and 870 nm) and AOD (440 nm) estimated from AERONET Level 1.5 data for Rome(a) and Crete
(b) AERONET sites. Mean values and standard deviations are included.

AERONET level-1.5 retrievals with data screened for
Angström Exponent > 1.0 to avoid mineral dust aerosols
(level 2 data are not used here for keeping consistency). For
these data (AOD > 0.2 and AE > 1.0), AAOD uncertainties
are about 0.01 (O. Dubovik, personal communication). Re-
sults of calculations are shown in Fig. 10 for two different
AERONET sites: Crete and Rome (Barcelona and Lecce are
provided in annexe material), demonstrating that AAE values
larger than 1 are derived in a number of cases. Over Rome,
we observe AAE values reaching 1.6–1.7 in number of cases
(mean of 1.19), suggesting that organic particles could af-
fect shortwave absorption over this site. Similar conclusions
are obtained in Lecce and Athens (not shown), with aver-
age AAE of 1.15. In Lecce, AAE values larger than 1 are
observed in all years from 2003 to 2011 with maxima dur-
ing summer (not shown), indicating that a significant frac-
tion of the aerosol absorption in Southern Italy is due to BrC.
However, the Forth Crete site is characterized by lower mean
AAE (1.05) even though values up to 1.7 were derived during
summer 2003 intense heat wave event. These higher values
are consistent with a large agriculture waste biomass burning
smoke contribution originating from the region surrounding
the Black Sea and transported over Crete (Sciare et al., 2003,
2008). This influence of wood burning shows a maximum
during summertime, consistent with the maxima in AAOD
observed in that season over Moldova and Northern Greece,
which are on the path of air masses originating from the
Black Sea region and transported over the Eastern Mediter-
ranean. Finally, over Barcelona, even if the mean value is
near unity, indicating that BC aerosol is the main contrib-
utor to absorption, a large range of AAE is also observed,
with maxima around 1.6. In such a case, organic particles
could participate to the absorption of solar radiation as sug-
gested by Shinozuka et al. (2009) during the MILAGRO ex-
periment. Further analysis is needed to link the calculated
AAE with the chemical composition of aerosols over differ-
ent AERONET sites when such data are available. To con-
clude, such additional analysis of AERONET level-1.5 data

reveal that, in addition to dust particles, organic aerosols also
contribute to shortwave absorption over the Mediterranean.
This result demonstrates that current regional climate models
treating OC as nonabsorbing over Mediterranean underesti-
mate the total warming effect of carbonaceous particles by
neglecting part of atmospheric heating.

3.3 Aerosol Single Scattering Albedo (SSA)

3.3.1 AERONET Level 2 observations

As mentioned previously, SSA (level-2) has been determined
from AERONET inversions at different wavelengths. Long-
term SSA observations (more than 5 yr, i.e., Modena and
Rome) display average daily values between 0.70± 0.04
and 0.97± 0.04 (440 nm) with no significant trends. Over ur-
ban sites, Table 2 indicates that in most cases Mediterranean
urban-industrial polluted locations appear as “moderately”
absorbing with SSA close to∼0.95± 0.04 (at 440 nm). Such
SSA values are found to be in the same range as AERONET
SSA observed in Creteil (a suburb of Paris)∼0.94± 0.04
(at 440 nm, yearly mean of 1999) and lower than SSA ob-
tained at GFSC (Goddard Space Flight Center Greenbelt,
Maryland) (0.98± 0.04 at 440 nm, mean value for the 1993
to 2000 period) (Dubovik et al., 2002). Over the Mediter-
ranean, the highest urban-industrial aerosol absorption is ob-
served for Rome (SSA of 0.89) and Athens (0.90) in accor-
dance with AAOD observations. It should be noted that such
values are in the same range as the one derived in Mexico
(SSA∼ 0.90 at 440 nm, mean value for the 1999 to 2000 pe-
riod; Dubovik et al., 2002).

Even if not directly comparable with in-situ SSA obser-
vations due to differences in temporal sampling and vertical
integration, we attempted to compare AERONET SSA with
in-situ estimates for urban/industrial Mediterranean zones.
Over Southern France, AERONET SSA is comparable to in-
situ observations published by Saha et al. (2008) and Mal-
let et al. (2003, 2004), with SSA of 0.85 (here at 550 nm)
for the period 2005–2006 and during the summer 2001,
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Fig. 11.Wavelength dependence of Single Scattering Albedo (SSA) for Urban and Dusty AERONET sites(a) and for Western and Eastern
AERONET sites(b). Standard deviations are also reported.

respectively. Similar concurrence is observed with SSA air-
craft measurements obtained by Mallet et al. (2005) over the
Marseille/Etang de Berre area (SSA∼ 0.88–0.93 at 550 nm
during summer 2001).

Over Southern Spain, AERONET SSA (Burjassot and
Granada) display mean values of 0.93± 0.04 and 0.90± 0.04
(at 440 nm), consistent with the values reported by Hor-
varth et al. (2002) at Almeria (SSA of 0.86–0.90) during
June 1999. Over Greece, the differences between AERONET
(0.91± 0.04 at Athens and 0.94± 0.04 at Thessaloniki) and
in-situ observations (0.82 in Thessaloniki, Chazette and Li-
ousse, 2001) obtained for two polluted events of June 1997
are more pronounced. Over southeastern Italy, Tafuro et
al. (2007) reported a value of∼0.94 during summer (2003–
2004 years) for anthropogenic particles, consistent with
Lecce and Messina AERONET measurements (0.92± 0.04
and 0.94± 0.04).

For “dusty” sites, average SSA is in the range of 0.90–
0.92± 0.04 at 440 nm (see Table 2) indicating that dust par-
ticles are moderately absorbing over the Mediterranean. For
this aerosol type, comparisons between AERONET SSA and
in-situ observations are more limited, as most of estimates
were obtained with remote-sensing techniques (Di Biagio
et al., 2009; Meloni et al., 2004, 2007). In contrast to such
“moderate” dust SSAs, several studies reported larger ab-
sorbing efficiencies over the Mediterranean. Di Biagio et
al. (2009) indicated that SSA (at 415.6 nm) for desert dust
showed large variability, between 0.7 and 0.9 during the 2004
to 2007 period. Di Biagio et al. (2009) determined that 57 %
of the dust events with SSA (at 415.6 nm) lower than 0.75
correspond to trajectories (at 750 m) originating from central
Europe, and trajectories ending at 2000 and 4000 m coming
from Africa. In these cases, the presence of polluted absorb-
ing particles at lower atmospheric levels would explain the
low SSA values. More recently, in the case of dust aerosols
transported over Barcelona, Sicard et al. (2012) indicate sur-
prisingly low dust SSA (∼0.70 at 440 nm) due to the mixing
of dust with smoke-polluted particles.

3.3.2 SSA spectral dependence

The SSA wavelength dependence obtained for urban and
dusty AERONET sites is reported in Fig. 11a. We clearly
note two opposite behaviors, an increase and a decrease
of SSA with wavelengths, associated with dust and urban
aerosol, respectively, and similar to that reported by Russell
et al. (2010). Here, the SSA spectra for AERONET locations
dominated by desert dust increase from∼0.90–0.92± 0.04
(at 440 nm) to∼0.95–0.96± 0.04 (at 1020 nm). In contrast,
SSA is clearly decreasing for locations dominated by fine
pollution aerosols, from∼0.92–0.93± 0.04 (at 440 nm) to
∼0.91-0.92± 0.04 (at 1020 nm). Such a decrease seems less
marked than those reported by Russell et al. (2010) for other
anthropogenic sites.

Figure 11b presents the average SSA spectra obtained for
the western and eastern Mediterranean AERONET sites. The
mean value calculated at 440 nm for the eastern Mediter-
ranean sites is slightly lower (∼0.92± 0.04) than that over
the western part (∼0.94± 0.04). This result is consistent with
AAE observations, suggesting a more pronounced contribu-
tion of dust particles over the Eastern basin. As shown in
Fig. 11b, this finding is based only on the shortest wave-
lengths provided by AERONET (440 nm). Indeed, the dif-
ference in SSA becomes negligible for longer wavelengths
(670, 870 and 1020 nm, Fig. 11b). In that sense, new
AERONET photometer retrievals at 340 nm should be very
helpful, but unfortunately are not yet available.

4 Conclusions

A multi-year climatology of column-effective aerosol ab-
sorption properties obtained over the Mediterranean from
AERONET ground-based remote-sensing observations is
presented. The focus of this study was on characterizing
Aerosol Absorption Optical Depth (AAOD) and Single Scat-
tering Albedo (SSA), and their spectral dependence. The
AAOD dataset is composed of daily averaged AERONET
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level 2 data from 22 stations mainly under the influence of
urban-industrial and/or soil dust aerosols. The datasets span
1996–2012, but most data are from the 2003–2011 period.
Since AERONET level-2 absorption products are limited to
high aerosol load (AOD at 440 nm > 0.4), which are most of-
ten related to the presence of desert dust, we also considered
level-1.5 AAOD data despite their higher uncertainty.

Daily averaged AAOD values obtained from sun-
photometer observations over the Mediterranean at 440 nm
ranged from 0.024± 0.010 to 0.050± 0.010 for urban sites
(with maxima observed over Rome), whereas for dusty
sites, AAOD varied from 0.040± 0.010 to 0.055± 0.010.
The analysis of the corresponding SSA values showed that
aerosol over Mediterranean urban-industrial locations ap-
peared “moderately” absorbing, with SSA at 440 nm close to
∼0.94–0.95± 0.04, although in some locations (Rome and
Athens) the aerosol was as absorbing as heavily polluted sites
such as Mexico City.

The spectral dependence of absorbing properties was also
studied, using the Absorbing Angström Exponent (AAE) es-
timated between 440 and 870 nm. For most Mediterranean
sites, AAE is larger than 1, indicating strong shortwave ab-
sorption that can be associated with the presence of Brown
Carbon (BrC) and/or mineral dust (having high iron content)
aerosols. Sun-photometer level-2 data analysis indicates a
possible AAE regional gradient, with higher values obtained
over the eastern basin (AAEEast= 1.39/AAEWest= 1.33). In
parallel, the North-South AAE gradient is more pronounced,
especially over the western basin, with AAENorth and
AAESouthof about 1.22 and 1.77, respectively.

The complementary analysis using level-1.5 AERONET
retrievals with data screened to avoid mineral dust aerosols
(i.e., AOD > 0.2 and Angström Exponent > 1.0) show that
some Mediterranean sites are affected by organic absorbing
aerosols (mean AAE∼1.15), especially Rome, Lecce, Bur-
jassot and Athens. The effect is found to be lower for the
Barcelona and Forth Crete AERONET sites (mean AAE of
about 1.0). This result highlights that current regional climate
models that treat OC as purely scattering over the Mediter-
ranean underestimate the total warming effect of carbona-
ceous aerosols and neglect part of the atmospheric heating
due to particles.
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