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Abstract— This paper presents a new control strategy for Kite
Generator System (KGS). The proposed feedback strategy is
based on motion planning using the virtual constraint approach
and ensures exponential orbital stability of the desired trajec-
tory. The strategy is detailed, applied and tested via numerical
simulations and showed good convergence to a desired periodic
motion.

I. INTRODUCTION

The so-called kite generator system (KGS) is a kite-
based wind energy generator. A mechanical power is gen-
erated when one or several tethered airfoils (normally light
weighted kites) are pulled by wind. This power is then
transformed into an electrical energy by means of an on-
ground generator.
In general, three types of kite-based systems were proposed:
Pumping-type [4][7], closed-loop [1][3], and carousel sys-
tems [12]. These new concepts and are currently heavily
investigated by many research groups and start-up compa-
nies. Fig.1 shows the main projects mounted in Western
Europe (for more details, see the recent survey written by
the authors [2]). Kite-based systems are expected to produce
huge amounts of power using a simple and safe structure,
but they are challenged by a complexity of their modeling
and control, since they are nonlinear, constrained, and highly
unstable in the open-loop. As well, due to limitation of the
tether’s length and power region, the kite should always be
redrawn to its initial position to start a new cycle, a phase
consumes energy. This traction-recovery functioning yields
a generating-consumption cycle that needs to be optimized.
This is achieved by controlling the kite to follow a certain
trajectory via control of the kite’s attack and/or roll angle,
and the tether’s traction that is controlled via the ground
generator torque [2]. The trajectory choice is done through
a maximization of the produced power, and the kite is
controlled to track this trajectory through an orientation
mechanism. Control methods vary from simple linear control
[19], observer-based control [10], to nonlinear model predic-
tive control (NMPC) [11], [1] and neural network control [9].
In this paper, a virtual constraint based control for orbit
stabilization of kite’s trajectories is proposed. Applying this
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method offers a simple yet efficient control, that generates
an exponentially orbitally stable trajectory for the KGS. As
a first step in this application, the aim is to work with
an increasing level of complexity, starting from a relatively
simple kite-based system design, whose structure is shown in
Fig.2. Note that all of the principles explained in this paper
can be used as a basis for more complex systems.

Fig. 1. Overview of the main existing European research groups exploring
the wind kites principle.

The paper is structured as follows. In section II, a brief
recall of virtual constraints control methods is given. A de-
scription of the KGS dynamic model and its virtual constraint
reduced model are presented in section III. The proposed
control law is designed in section IV followed by simulation
results in section V. The paper ends with conclusions and
perspectives (section VI).

II. VIRTUAL CONSTRAINT APPROACHES

Virtual constraints (VC) has emerged recently as a valu-
able tool to solve motion control problems. For an under-
actuated Euler-Lagrange system, VC are defined as relations
among the system’s variables and are enforced by feedback,
which leads to reducing the system’s degrees of freedom.



Fig. 2. A simplified Kite Generator System with r length of the tether, θ
flight angle and α kite’s angle of attack.

The goal of the feedback design is either to render an
existing periodic motion orbitally stable or to force the
system dynamics to generate a new periodic motion and
ensure its orbital stability [5][13].
The notion of virtual constraints has been useful to design
controllers for biped robots, as well as, control of under-
actuated 3DOF helicopter movement [18], pendubot [8], and
cart-pendulum system [15].
This VC approach seems to be suitable to the control and
periodic motion stabilization of the kite generator system,
which, to the authors’ knowledge, had never been used before
for this type of systems. In this paper, the constructive tool
for orbital stabilization of under-actuated nonlinear systems
proposed by [15] will be applied. It can be summarized by
the following steps:
• Finding the Euler-Lagrange model of the system.
• Application of a partial feedback linearization, where

the remaining nonlinear part is integrable.
• Construction of an auxiliary linear periodic control

system of reduced order.
• Design of a LQR-based control for the auxiliary system.
• A modification of the control developed in the previous

item to be applied to the original nonlinear system.
These steps will be developed in details in the following
sections with a special attention to the studied kite generator
system.

III. KITE GENERATOR SYSTEM DYNAMIC MODEL

The considered KGS is shown in Fig.2. Simply stated,
the system consists of a tethered kite connected to a gen-
erator through a drum. The kite’s roll and attack angles are
controlled via an orientation mechanism, while the traction
exercised on the kite can be controlled by the generator’s
torque.
The system model is validated in [10], where a pumping
mode with a fixed inclination of the tether is adapted and
insured using an observer-based control.

A. KGS Under-actuated Model

The previous system has two degrees of freedom, a
translation along the tether r, and a rotation θ. The objective
is to control both r, and θ by only one input that is the attack
angle α1. Thus the considered system is an under-actuated
system.
To simplify the presentation of the system’s model, the
following notations are used:

a = 1
2ρaS

b = a(
C2

L

πλe + CD0
)

with:
• ρa is the air density.
• A is the kite surface.
• λ is the kite’s aspect ratio.
• e is the Oswald effeciency factor.
• CL, CD are the lift and drag coefficients.

As well, the effective wind velocity is defined as the differ-
ence between the wind’s and the kite’s speed. Its norm and
angle are expressed in the polar coordinates (r, θ) in eq.1.

W 2
e = (rθ̇ cos θ + ṙ sin θ)2 + (V + rθ̇ sin θ + ṙ cos θ)2

αw = − arctan ( rθ̇ cos θ+ṙ sin θ
V+rθ̇ sin θ+ṙ cos θ

)
(1)

with V being the wind speed.
The previously defined notations allow writing the KGS
dynamic model by the equations eq.2 and eq.3.

θ̈ + 2ṙθ̇
r + 1

rM (bv2r sin (θ − αw)

−av2r(∂CL

∂α αw + CL0) cos (θ − αw) +W cos θ)

=
av2r
rM

∂CL

∂α cos (θ − αw)αu

(2)


r̈ − M

M+MIM
rθ̇2 + 1

M+MIM
(bv2r cos (θ − αw)

+av2r(∂CL

∂α αw + CL0) sin (θ − αw)−W cos θ − T )

=
av2r

M+MIM

∂CL

∂α sin (θ − αw)αu
(3)

with:
• M is the system’s flying part mass
• MIM is the rotor’s mass.
• W is the system’s flying part weight.
• αu the attack angle control
• T is the tension in the tether.

The KGS dynamics can be equally expressed in the Euler-
Lagrange representation by eq.4.

D(θ, r)

[
θ̈
r̈

]
+C(θ, r, θ̇, ṙ)

[
θ̇
ṙ

]
+OP (θ, r) = B(θ, r)αu (4)

where:
• D(θ, r) is the inertia matrix.
• C(θ, r, θ̇, ṙ) is the Coriolis matrix.
• P (θ, r) is the potential energy function.
• B(θ, r) is the control matrix.

The detailed expressions of the previous matrices are given
in the Appendix.

1The tension in the tether is constant in this case.



As noticed, the system can be represented by one equation
with two variables and no input. Forcing a virtual constraint
to link both variables, leads to a reduced dynamics with one
degree of freedom.

B. The Reduced Dynamics system

As mentioned above, the objective of the VC approach
is to find a reduced dynamics system by applying a partial
feedback linearization.
The choice of the virtual constraint is determined by the
desired orbit of the system hence its functionality. It should,
however, respect a few conditions that will be discussed later
on. For a start, the function of eq.5 is chosen as the virtual
constraint with d0 being a constant.

r = φ(θ) =
d0
sinθ

(5)

Note that the function can be derived either by observation
of some real motion, by analytic design procedures, or by
some numerical research as cited in [18].
Suppose that there exists a control law of the under-actuated
system of eq.4 that makes the constraint presented in (eq.5)
invariant, then the overall closed-loop system results in an
input-free reduced system that can be written in the form of
eq.6.

α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = 0 (6)

with:

α(θ) = Mφ(θ) sin (θ − αw)− (M +MIM )φ′(θ) cos (θ − αw)

β(θ) = (Mφ(θ)− (M +MIM )φ′′(θ)) cos (θ − αw)
+2Mφ′(θ) sin (θ − αw)

γ(θ) = bv2r −W sin (αw)− cos (θ − αw)T
where φ′(.) and φ′′(.) are respectively the first and second
derivatives of the virtual constraint with respect to θ.
The chosen virtual constraint should be regular and
stabilizable [6]. In order to be regular it should satisfy the
condition ([6]-proposition 3.2)

B⊥.D(φ̂(θ)).φ̂′(θ) 6= 0

with φ̂(θ) = [θ, φ(θ)], which implies that the system’s
variables should respect the condition.

−Mφ(θ)sin(θ − αw) + (M +MIM )φ′(θ)cos(θ − αw) 6= 0

It is necessary as well that the virtual constraint is stabi-
lizable, hence, there exists a smooth feedback u(θ, θ̇) that
enforces it. According to [6] parametric VCs r = φ(θ),
which is the case of the chosen KGS, are stabilisable.
The resulted reduced system is a periodic Euler-Lagrange
system [6] (Fig.3), which means that the same feedback
strategy, used to enforce the VC, results in generating a
periodic motion for all the system’s degrees of freedom [17].

Fig. 3. The reduced system periodic orbits.

The objective is to design the feedback controller that
guarantees the invariance of the chosen virtual constraints
and an orbital asymptotic stability of the chosen periodic
solution. This control problem can be expressed by eq.7

y = r − φ(θ) = 0, θ(t) = θ(t+ T ) (7)

C. Partial feedback linearization

After introducing the problem in the form eq.7, a partial
feedback linearisation is applied in order to simplify the
stability analysis for the nonlinear system of eq.6 to stability
analysis for an auxiliary linear periodic in time controlled
system.
Since

r = y + φ(θ)

ṙ = ẏ + φ′(θ)θ̇

r̈ = ÿ + φ′′(θ)θ̇2 + φ′(θ)θ̈

the Euler-lagrange system of eq.4, can be written in the
coordinates (θ, y) in eq.8.

L(θ, y)

[
θ̈
ÿ

]
+N(θ, y, θ̇, ẏ)

= [B(θ, r)αu − C(θ, r, θ̇, ṙ)

[
θ̇
ṙ

]
− OP (θ, r)]r=y+φ(θ)

(8)
with:

L(θ, y) =

[
1 0

φ′(θ) 1

]
and:

N(θ, y, θ̇, ẏ) =

[
0

φ′′(θ)θ̇2

]
.

The dynamics of the variable y are given by:

ÿ = K(θ, y)u+R(θ, y, θ̇, ẏ) (9)



K(θ, y) = ∂CL
∂α

av2r
M(M+MIM )(y+φ)

(−(M +MIM )φ′ cos(θ − αw) +M(y + φ) sin(θ − αw))

R(θ, y, θ̇, ẏ) = φ′

M(y+φ)
(2M(ẏ + φ′θ̇)θ̇ + bv2rsin(θ − αw)− av2r(

∂CL
∂α

αw + CL0)cos(θ − αw) +Wcosθ)− φ”θ̇2

+ 1
M+MIM

(M(y + φ)θ̇2 + bv2rcos(θ − αw) + av2r(
∂CL
∂α

αw + CL0)sin(θ − αw)−Wcosθ − T )

(10)

where K(.), R(.) are given in eq.10.
According to eq.9, using the feedback transformation:

u = K−1(y, θ)[v −R(θ, y, θ̇, ẏ)] (11)

results in a partly linear system:{
α(θ)θ̈ + β(θ)θ̇2 + γ(θ) = gy(θ, θ̇, θ̈)y + gẏ(θ, θ̇)ẏ + gv(θ)v
ÿ = v

(12)
with,

gy = −M sin(θ − αw)θ̈ −M cos(θ − αw)θ̇2

gẏ = 2Mθ̇ sin(θ − αw)

gv = (M +MIM ) cos(θ − αw)

Let (θ∗, θ̇∗) be the reference orbit, if α(θ∗(t)) 6= 0,∀t ∈
[0, Tp], then the integration I defined in eq.13 conserves a
constant value on the reference orbit[14].

I(θ∗, θ̇∗) =
θ̇2∗
2 − exp (−

θ∗∫
x0

2β(τ)
α(τ) dτ){

y20
2 −

θ∗∫
x0

exp (−
θ∗∫
s

2β(τ)
α(τ) dτ) 2γ(s)

α(s) ds

} (13)

Introducing the new coordinates ξ = [I, y, ẏ]T , the system
of eq.12 can be also represented by eq.14.{

İ = 2θ̇
α(θ) [gy(t)y + gẏ(t)ẏ + gv(t)v − β(θ)I]

ÿ = v
(14)

The resulted incomplete nonlinear system of eq.14 plays an
important role in developing a stabilizing controller in the
next section.

IV. CONTROLLER DESIGN

The state-space representation of the system in eq.14 is:

ξ̇ = A(t)ξ + b(t)v (15)

where ξ = [I, y, ẏ]T , and:

A(t) =

−β(θ) 2θ̇
α(θ) gy(t) 2θ̇

α(θ) gẏ(t) 2θ̇
α(θ)

0 0 1
0 0 0


b(t) =

[
gv(t)

2θ̇
α(θ) 0 1

]T
One choice of the feedback controller v to exponentially
stabilize the linear periodic system (eq.15), can be inspired
from [16] where an LQR control is applied. The feedback
controller can take the following form:

v = −Γ−1b(t)R(t)ξ (16)

where R(t) is a symmetric matrix R(t) = R(t)T for all
t ∈ [0, Tp], periodic R(t) = R(t + Tp), and satisfies the
Riccati equation:

Ṙ(t)+A(t)TR(t)+R(t)A(t)+G = R(t)b(t)Γ−1b(t)TR(t)

Γ is a positive scaler and G is a (3× 3) positive symmetric
matrix.
The obtained control diagram is shown in Fig.4. To resume,
the KGS model is reduced via insertion of the VCs given in
eq.5. The introduction of the full integral I , forms a partly
linearised system for which the stabilizer (16) is designed.
The stabilizer output v is then transformed using eq.11 in
order to get the KGS input u.

!

Kite 
Model 

Coordinats 
Change 

Stabilizer 

!! (!, !, !̇, !̇) (!, !̇, !) 

!!

Feedback 
transformation 

Reference 
orbit 

Virtual 
Constraints 

Fig. 4. Control block diagram.

To finish, the obtained solution for the reduced system
of eq.6 is a solution of the closed-loop KGS system. That
is expressed by Theorem.1, that is the reformulation of
(Theorem 3 - [15]) for the KGS considered case.

Theorem 1: Considering the under-actuated Kite Gener-
ator System of eq.4, which has 2 degrees of freedom, the
tether’s inclination and length (θ, r), and one control input,
the attack angle α, and given that:
• Applying the virtual constraint of eq.5 on the system

results in a reduced system (eq.6) for which there is a
periodic solution θ∗(t).

• detL(θ, y) 6= 0,K(θ, y) 6= 0∀(θ, y)
• The partial feedback linearization results in the linear

periodic system of eq.14 which is completely control-
lable over its period.

Applying the designed control law of eq.16 on the KGS after
transforming it using eq.11 grant the chosen periodic solution
θ∗(t) of eq.7 to be an exponentially orbitally stable for the
KGS.

Proof: Since the virtual constraint is enforced using the
control v of eq.16 then the reduced system’s solution θ∗(t)



is a solution for the closed-loop KGS, and the LQR-based
designed controller of eq.16 is exponentially orbitally stable
according to the Proposition 4 of [15].

V. SIMULATION RESULTS

To show the effectiveness of the proposed feedback con-
trol, a simulation study was performed using the coefficients
of the experimental set-up of GIPSA-Lab [10]. They are
given in Table.V.

symbol name value
M mass 0.1 Kg
MIM rotor’s mass 0.0481 Kg
ρ air density 1.225 Kg/m3

S wing area 0.1375 m2

e Oswald’s factor 0.7
λ aspect ratio 2.5

∂CL/∂α lift derivative w.r.t. α 0.05 deg−1

CD0 zero lift drag 0.07
V mean air speed 6 m/s
T The tether’s tension 3 N.m

TABLE I
COEFFICIENTS FOR THE SIMULATION STUDY.

Our objective is to stabilize the system around a periodic
orbit while controling the attack angle only.
Starting from an arbitrary point (θ, r, θ̇, ṙ) within the power
region of the kite, the application of proposed virtual
constraints-based control developed in this paper gives the
closed loop behaviour of Fig.5. One can clearly see the
effectiveness of the proposed feedback control. Several initial
conditions have been tested and for all of them, the trajecto-
ries have stabilized on a periodic orbit in a short time. The
speed of convergence depends on the gain of the feedback
control v.

Fig. 5. The closed loop system’s portrait.

In Fig.6, Fig.7 and Fig.8, the temporal evolution of the
tether’s length r and angle θ of the KGS and the applied
controls are respectively shown. Though these results may
be improved through suitable choice of Γ and G, one can
still see the effectiveness of the proposed control for this first
approach.

Fig. 6. The evolution of θ and θ̇ of the KGS.

Fig. 7. The evolution of r and ṙ of the KGS.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed the application of a
state feedback control law that ensures exponential orbital
stabilization of a periodic target motion for the case of a Kite
generator system (KGS). The motion planning was carried
out using the virtual constraint approach. Using this approach
allows a fast in-loop control method that is robust against
disturbances.
Numerical simulations have shown the effectiveness of the
proposed control strategy and the convergence to the pre-
planned motion, even when initialized at an angle away from
the reference orbit.
This promising result will be applied on the experimental
set-up of GIPSA-Lab. It will be combined with our previous
study using observer-based control [10]. In addition, more
research is needed to apply the proposed control strategy on
a real scale system which is constructed by GIPSA-lab. The
reader can visit the following website to see the authors’



Fig. 8. The applied control for the studied KGS.

actual activities in this field2.
Finally, a special attention will be given to reference orbits
that maximizes the extracted/produced energy while taking
into consideration the wind variations and the bounded angle
of attack.
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APPENDIX

The detailed expression of system (4) are given by the
following expressions:
• The Inertia matrix:

D(θ, r) =

[
Mr 0
0 (M +MIM )

]
• The Coriolis matrix:

C(θ, r, θ̇, ṙ) =

[
2Mṙ 0

−Mrθ̇ 0

]
• The Potential energy function:

OP (θ, r) =

[
bv2r sin(θ − αw)

−bv2r cos(θ − intαw)

]
−
[
av2r(∂Cl

∂α αw + CL0) cos(θ − αw)

av2r(∂Cl

∂α αw + CL0) sin(θ − αw)

]
+

[
W cos θ

W sin θ + T

]
• The control matrix:

B = av2r
∂Cl
∂α

[
cos(θ − αw)
sin(θ − αw)

]


