
HAL Id: hal-00873051
https://hal.science/hal-00873051v1

Submitted on 15 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A path-optimal GAC algorithm for table constraints
Christophe Lecoutre, Chavalit Likitvivatanavong, Roland Yap

To cite this version:
Christophe Lecoutre, Chavalit Likitvivatanavong, Roland Yap. A path-optimal GAC algorithm for ta-
ble constraints. 20th European Conference on Artificial Intelligence (ECAI’12), 2012, France. pp.510-
515. �hal-00873051�

https://hal.science/hal-00873051v1
https://hal.archives-ouvertes.fr

A Path-Optimal GAC Algorithm for Table Constraints
Christophe Lecoutre1 and Chavalit Likitvivatanavong and Roland H. C. Yap2

Abstract. Filtering by Generalized Arc Consistency (GAC) is a
fundamental technique in Constraint Programming. Recent advances
in GAC algorithms for extensional constraints rely on direct manip-
ulation of tables during search. Simple Tabular Reduction (STR),
which systematically removes invalid tuples from tables, has been
shown to be a simple yet efficient approach. STR2, a refinement of
STR, is considered to be among the best filtering algorithms for pos-
itive table constraints. In this paper, we introduce a new GAC al-
gorithm called STR3 that is specifically designed to enforce GAC
during search. STR3 can completely avoid unnecessary traversal of
tables, making it optimal along any path of the search tree. Our exper-
iments show that STR3 is much faster than STR2 when the average
size of the tables is not reduced drastically during search.

1 Introduction
Constraint propagation, which consists in calling iteratively filter-

ing algorithms associated with constraints, is one of the most attrac-
tive features of Constraint Programming (CP). The various levels of
possible filtering are typically described by properties of constraint
networks called consistencies. Generalized Arc Consistency (GAC),
which corresponds to the highest filtering level of variable domains
when constraints are considered independently, is such a property.
GAC is one very important lever to solve efficiently Constraint Sat-
isfaction Problems (CSPs) because it identifies many more incon-
sistent values than limited consistency forms (e.g., those defined on
domain bounds or dependent on the number of assigned variables),
reducing search space considerably as a consequence.

Table constraints are defined in extension by explicitly listing all
permitted combinations of values (positive tables) or all forbidden
ones (negative tables). Table constraints naturally arise in many ap-
plication areas such as configuration and databases, and besides they
can be viewed as a universal mechanism for representing any con-
straints. Classical filtering algorithms (e.g. [3, 4, 9, 10]) generally do
not alter table constraints during backtrack search. Recent develop-
ments, however, suggested handling tables directly, which leads to
faster algorithms [8, 13]. Alternatively, specially-constructed inter-
mediate structures such as tries [7] or Multi-valued Decision Dia-
grams (MDDs) [6] have been proposed. In any case, the search space
gets smaller as the tables or their equivalent structures are reduced.

Most GAC algorithms follow the same pattern: a value is proved
to be consistent by producing a valid tuple containing that value (in
the case of positive table constraints) or by producing evidence from
auxiliary structures (a path from top to bottom in the case of MDDs).
This is usually performed by traversing these structures and running
tests on each chunk. Reducing the amount of traversal has long been
the focus of a many works resulting in many optimization techniques.

1 CRIL-CNRS, UMR 8188, Université d’artois, France, lecoutre@cril.fr
2 School of Computing, National University of Singapore, Republic of Sin-

gapore, likitchav@gmail.com, ryap@comp.nus.edu.sg

Simple Tabular Reduction (STR) and its improvements [8, 13] fall
into this category and have been shown to be among the best GAC
algorithms for positive table constraints. The main idea of STR is to
remove invalid tuples systematically from tables immediately.

In this paper, we introduce a new GAC algorithm called STR3. It
is based on the same principle as STR but employs a different rep-
resentation of table constraints. Indeed, domain values are the focal
points: a set of tuple identifiers (row numbers) is associated with each
value, indicating the different tuples (rows) where the value appears
in. Figure 1 gives a ternary constraint example showing the standard
table and our equivalent representation, i.e. both representations have
the same semantics. We also introduce a novel technique for main-
taining valid supports of domain values. Two kinds of data structures
are involved: the first one for partitioning each set of rows (as in
Figure 1b) into invalid and untested areas, and the other for keeping
track of which value depends on which row as its valid support. The
former requires maintenance while the latter is backtrack-free. We
show that the synergy between these two structures leads to greater
efficiency and provides us with extra valid supports with no addi-
tional cost when the search backtracks.

It is worthwhile to note that algorithms such as STR2 [8] or mddc
[6] may suffer from multiple traversals of the same region when
they are invoked successively. On the other hand, STR3, similarly to
GAC4, is path-optimal: each element of a table is examined at most
once along any path of the search tree. Importantly, STR3 is designed
to be used directly during search, where maintaining consistency is
needed and cost of backtracking should be minimized. GAC4, how-
ever, is to enforce consistency in a standalone context. While it is
possible to convert GAC4 to MGAC4 (Maintaining GAC4), this is
not simple and not been treated anywhere as far as we know. STR3
also allows some freedom during initialization, e.g. using STR2.

Our experiments show that STR3 is rather complementary to
STR2. Where simple tabular reduction can eliminate so many tuples
from the tables that they become largely empty, STR2 is faster than
STR3. STR3, by contrast, outperforms STR2 when the average size
of the tables during search is not too low.

X Y Z
1 a f l
2 b f m
3 e g m
4 a f m
5 b g o
6 a h o
7 d h o
8 b i n
9 c j k

(a) Standard table

X Y Z
a {1,4,6} f {1,2,4} k {9}
b {2,5,8} g {3,5} l {1}
c {9} h {6,7} m {2,3,4}
d {7} i {8} n {8}
e {3} j {9} o {5,6,7}

(b) Equivalent representation

Figure 1: Two representations of the same table constraint.

2 Preliminaries
A finite constraint network P is a pair (X , C) where X is a fi-

nite set of n variables and C is a finite set of e constraints. D(X)
represents the domain of X ∈ X , i.e., the set of values that can be
assigned to X . During search, Dc(X) denotes the current domain of
X . If a ∈ Dc(X), we say that a is present in D(X); otherwise a is
absent from D(X). We use (X, a) to denote the value a ∈ D(X) (or
simply a when the context is clear). Each constraint C ∈ C involves
an ordered subset of variables of X , called its scope and denoted by
scp(C), and a relation denoted by rel(C). For any r-ary constraint C
with scp(C) = {X1, . . . , Xr}, rel(C) ⊆

∏r

i=1
D(Xi) denotes the

set of satisfying combinations of values for the variables in scp(C).
A solution to a constraint network is an assignment of a value to each
variable such that every constraint is satisfied. A constraint network
is satisfiable iff at least one solution exists.

For any r-tuple t = (a1, . . . , ar) ∈ rel(C) such that scp(C) =
{X1, . . . , Xr}, t[Xi] denotes ai. A tuple t ∈ rel(C) is valid iff
t[X] ∈ Dc(X) for each X ∈ scp(C). A tuple t ∈ rel(C) is a
support of (X, a) on C iff t[X] = a. A value (X, a) is Generalized
Arc-Consistent (GAC) on a constraint C involving X iff there exists
a valid support t of (X, a) on C; (X, a) is GAC iff it is GAC on every
constraint C involving X . A variable X is GAC iff Dc(X) 6= ∅ and
(X, a) is GAC for each a ∈ Dc(X). A constraint network is GAC
iff each of its variables is GAC.

We assume a total ordering for every rel(C) and define pos(C, t)
to be the position of the tuple t in that ordering. Given C ∈ C, X ∈
scp(C), and a ∈ D(X), we define row(C,X, a) to be the set
{pos(C, t) | t ∈ rel(C) ∧ t[X] = a} — the set of indices
(called rows) to each support of (X, a) on C. We say that row k
of constraint C is (in)valid iff the tuple t such that pos(C, t) = k
is (in)valid. The set of invalid rows of C is denoted by inv(C) =
{pos(C, t) | t ∈ rel(C) ∧ t is invalid }.

3 STR3
In this section, we introduce STR3, an algorithm based on simple

tabular reduction for enforcing GAC on positive table constraints. A
central operation for a GAC algorithm is to check whether a given
value a ∈ Dc(X) has a valid support on a table constraint C, which
usually entails going through every tuple t in rel(C) and testing if
t[X] = a and t[Y] ∈ Dc(Y) for every Y ∈ scp(C) \X . Checking
each row (tuple) and column (tuple value) in this manner has been
the cornerstone of many GAC algorithms. Optimizations efforts are
often concentrated on reducing the amount of traversal, typically by
skipping over irrelevant rows or columns of the tables [7, 9, 10].

In Simple Tabular Reduction (STR) [13], tables are dynamically
maintained so that they contain valid tuples only. STR2 [8] features
two improvements over standard STR. When a tuple t is being in-
spected, t[X] is skipped over if it is known that every single value
of Dc(X) is already supported. Second, there is no need to check
whether t[X] ∈ Dc(X) if there has been no change to the domain
of X since the last time STR2 was called (throughout this paper we
actually refer to the variant called STR2+ in [8]).

We propose STR3 which uses the same underlying principle as
STR and STR2: we no longer examine a tuple once it has been recog-
nized as invalid. But unlike STR and STR2, we do not explicitly dis-
card the tuple from the table. Rather, we accomplish this indirectly by
partitioning off invalid tuples in a different but equivalent represen-
tation. This allows us to avoid duplicated effort in re-establishing the
consistency of values across the search tree as it commonly happens
with conventional GAC algorithms. STR3, which is repair-based and

fine-grained, works as follows:

• Every time a value (X, a) is deleted, STR3 is invoked for ev-
ery constraint C involving X . row(C,X, a) is then merged into
inv(C).

• Because row(C,X, a) contains all supports of (X, a) on C, to
verify whether a domain value (X, a) is GAC on C, STR3 needs
only to test if row(C,X, a) \ inv(C) 6= ∅.

• Each set row(C,X, a) is associated with a separator (can be
thought of as a cursor) which partitions the set into two areas:
one containing the tuples known to be invalid, the other the tuples
yet to explored. The separator moves sequentially from one end
of row(C,X, a) to the other in a fixed direction. As search pro-
gresses, the invalid area grows until it encompasses the whole set,
at which point (X, a) has been proven to be not GAC on C.

• To check the validity of a row k in row(C,X, a), STR3 tests if
k ∈ inv(C).

• Each row of the table is associated with a list of domain values, in-
dicating that this row is a valid support for these values. Whenever
the row becomes invalid, STR3 must look for a new valid support
for every value in the list.

3.1 Implementation
Detailed operations of STR3 is given as pseudo-code in Figure 2.

We first explain the data structures used in the algorithm:

• row(C,X,a) is implemented as an array. row(C,X,a).size is
the number of elements of this array while row(C,X,a).curr
is a number ranging from 0 to size − 1, called the separator
of row(C,X,a), indicating that row(C,X,a)[row(C,X,a).curr]
corresponds to the last known valid support of (X, a) on
C. For brevity, we shall use row(C,X,a)[↑] to denote
row(C,X,a)[row(C,X,a).curr]. The value of curr is maintained
throughout the search.

• inv(C) is implemented as a sparse set: inv(C).members gives the
position of the last current element in inv(C) and inv(C).dense is
the array containing all elements (see [5, 6] for details). In inv(C),
we only need to keep at most a single copy of each value once
the search starts. This is sound because the sets row(C,X, a) are
fixed — only row(C,X, a).curr may change during search and
must be restored when backtracking occurs. inv(C).members is
also maintained throughout the search.

• dep(C) is called the dependency list of C, implemented as an array
of sets. dep(C)[k] is the set of values (X, a) such that the tuple
in row k is a valid support of (X, a) on C; we say that (X, a)
depends on row k. dep is not maintained during search.

Because STR3 can maintain GAC but does not establish it from
scratch, a different GAC algorithm is needed before search (in the
preprocessing stage). GACinit (Lines 1–6) is first called to remove
all invalid tuples and to initialize all data structures. During search,
STR3 (Lines 7–28) is called on a constraint C every time a value
a is removed from the domain of a variable X ∈ scp(C). For
each such value (X, a), every row in row(C,X, a) becomes invalid.
STR3 then appends these rows to inv(C) if they are not already
present (Line 9–11). Values that need new valid supports are later
processed (Lines 14–27); we discuss this part of the algorithm in
the next subsection. Upon backtracking, Functions restoreR and
restoreI are called so as to restore values row(C,X, a).curr and
inv(C).members through the use of the stacks stateR and stateI. Val-
ues are stored in these stacks at Lines 13 and 25 by calling Function
save (Lines 29–31).

1 GACinit(C: Constraint)
2 remove invalid tuples from rel(C)
3 inv(C)← ∅
4 foreach X ∈ scp(C) and a ∈ Dc(X) do
5 row(C,X, a).curr ← row(C,X, a).size− 1
6 dep(C)[row(C,X, a)[0]]← {(X, a)}
7 STR3(C: Constraint, X: Variable, a : Value)
8 prevMembers← inv(C).members
9 for k ← 0 to row(C,X, a).curr do

10 if row(C,X, a)[k] /∈ inv(C) then
11 add row(C,X, a)[k] to inv(C)
12 if prevMembers = inv(C).members then return true
13 save(C, prevMembers, stateI)
14 foreach i ∈ {prevMembers + 1, . . . , inv(C).members} do
15 k ← inv(C).dense[i]
16 foreach (Y, b) ∈ dep(C)[k] such that b ∈ Dc(Y) do
17 p← row(C, Y, b).curr
18 while p ≥ 0 and row(C, Y, b)[p] ∈ inv(C) do
19 p← p− 1
20 if p < 0 then
21 removeValue(Y, b)
22 if Dc(Y) = ∅ then return false
23 else
24 if p 6= row(C, Y, b).curr then
25 save((C, Y, b), row(C, Y, b).curr, stateR)
26 row(C, Y, b).curr ← p
27 move (Y, b) from dep(C)[k] to dep(C)[row(C, Y, b)[p]]
28 return true
29 save(key, newData, store)
30 if (key, oldData) /∈ top(store) for any oldData then
31 insert (key, newData) to top(store)

32 restoreR()
33 list← pop(stateR)
34 foreach ((C,X, a), k) ∈ list do row(C,X, a).curr ← k

35 restoreI()
36 list← pop(stateI)
37 foreach (C, k) ∈ list do inv(C).members← k

38 removeValue(X: Variable, a: Value)
39 remove a from Dc(X)
40 add (X, a) to the propagation queue

Figure 2: Algorithm STR3

3.2 Synchronized Supports
Central to the implementation is the relationship between the sep-

arators and the dependency list. A present value (X, a) is GAC on
C either because (X, a) ∈ dep(C)[v] for some row v /∈ inv(C), or
because row(C,X, a)[↑] = w for some row w /∈ inv(C). Only one
of the conditions is necessary for (X, a) to be GAC, and when both
conditions are true, v does not have to be the same as w. We study the
circumstances involving these two conditions and their values here.

When v = w, we say that the dependency list and the separators are
synchronized at (X, a) (or that the supports of (X, a) are synchro-
nized). When the search starts, GACinit initializes curr and dep so
that each of them refers to an opposite end of row(C,X, a). Both
are valid supports of (X, a), as any invalid row is removed at Line
2 during preprocessing. Only the elimination of row k would trigger
the search for a new valid support for each (X, a) ∈ dep(C)[k].

When the separators and the dependency list are synchronized at a
particular value, we are provided with a single valid support instead
of two. In this case, the role of the dependency list is straightforward:
it just mirrors what happens to the separators. When row k becomes
invalid, we look for a new valid support for each value that depends
on k according to the dependency list (Line 16). Potential supports
are tested one by one against inv(C) (Lines 18–19). If no valid sup-
port is found the value is removed (Line 21). STR3 immediately fails
when that value is the last one left in the domain (Line 22). Other-

wise, the previous curr is recorded for backtrack purpose (Line 25)
and the position where the support is found is set to be the value
of curr (Line 26). dep(C) is updated accordingly at Line 27. The
separators and the dependency list remain synchronized.

Given (X, a) ∈ dep(C)[k], when the search algorithm backtracks
dep(C)[k] will hold on to its values while row(C,X, a)[↑] must re-
vert back to its previous state if applicable. We may end up with a
situation where the separators and the dependency list are no longer
synchronized at (X, a). In such cases, tuples at row(C,X, a)[↑] and
k are two distinct valid supports of (X, a) on C. We consider what
happens inside STR3 when their validity later change:

• The tuple at row(C,X, a)[↑] becomes invalid while the tuple at
row k remains valid. Because we seek a new valid support only
when k is invalid (Line 16), nothing needs to be done.

• The tuple at row(C,X, a)[↑] remains valid while the tuple at row
k becomes invalid. Value (X, a) is simply updated (Line 27).
There is no need to seek a new valid support, only verification
(Line 18) is required. The dependency list and the separators are
synchronized at (X, a) as a result.

• The tuple at row(C,X, a)[↑] becomes invalid first, then the tuple
at row k becomes invalid afterward. The search for a new valid
support proceeds as usual. The dependency list and the separators
are synchronized at (X, a) if the search succeeds.

These relationships are summarized in Figure 3.

dep fails (= curr fails)

Synchronized Unsynchronized

dep fails
curr fails

One valid support
One invalid support

dep fails

start
curr restored curr restored

curr restored

Two distinct valid supportsTwo identical valid supports

Figure 3: Transition diagram with respect to (X, a). When dep fails,
STR3 is triggered and we end up with synchronized supports. STR3
is never called when curr fails.

The separators and the dependency list are comparable to watched
literals [12] introduced for SAT. Significant differences are as fol-
lows. To begin with, dep is the only activation point, working as a
primary valid support while curr serves as a possible backup; curr
points to a supporting row that may or may not be valid. In con-
trast, there are always two watched literals for SAT, both functionally
equivalent. curr is rigid and must maintain its value at all times while
dep is not maintained. The two watched literals are unmaintained. dep
and curr can be synchronized or unsynchronized depending on cir-
cumstances, in effect providing either a single support or two distinct
supports whereas for SAT the two watched literals are always distinct
where possible.

3.3 Related Works
STR3 is guided by deleted values, making it a fine-grained algo-

rithm. Other fine-grained (G)AC algorithms have been proposed in
the literature such as AC6 [1], AC7 [2] and GAC4 [11]. All these al-
gorithms use dependency lists. However, STR3 differs significantly
from AC6, AC7, and GAC4 by the choice of the additional data struc-

tures. The closest algorithm to STR3 is GAC4, which we will con-
sider in more detail.

MGAC4 requires complicated management of dependency lists,
which have to be implemented as doubly linked-lists along with ad-
ditional structures to keep complexity cost down. Because a row po-
sition appears in more than one list, difficulty arises when backtrack
occurs: MGAC4 has to be careful not to restore row positions that
have been removed at shallower depths. This entails record keeping
and thus increases overhead. STR3 avoids this problem by sequen-
tially scanning the lists and cordoning off invalid members rather
than performing random-access operations on any location. In a way,
STR3 can be seen as a highly optimized version of MGAC4 (for
which, we are not aware of any efficient implementation published
in the literature) through the mechanism of simple tabular reduction.

4 Example
As an illustration, we consider the table constraint depicted in

Figure 1a to demonstrate how the algorithm works. For each value
(X, a), row(C,X, a) is given in Figure 1b. After GAC preprocess-
ing, row(C,X, a).curr and dep(C) are initialized as shown in Fig-
ure 4. For clarity, we synchronize the separators and the dependency
list before the search starts, as opposed to the unsynchronized ver-
sion in the actual code of GACinit. The symbol /t indicates that
the associated value is assigned as curr at time t.

Assume values h, i, and o are eliminated. During the execution
of STR3, all rows involving these values are appended to inv(C).
We update dep(C)[k] for each k ∈ inv(C). The result is shown in
Figure 5. We denote the fact that inv(C).curr is assigned the value
k at time t by placing ↑t at column k. A square box surrounding a
domain value means that this value has been deleted.

Suppose now that we backtrack to t = 1. dep(C) is unaffected
while row(C,X, a).curr and inv(C).members are rolled back to
the ones at time t = 1. The result is shown in Figure 6.

a b c d e f g h i j k l m n o
1 2 9/1 7/1 3/1 1 3 6 8/1 9/1 9/1 1/1 2 8/1 5
4 5 2 5/1 7/1 3 6
6/1 8/1 4/1 4/1 7/1

k 1 2 3 4 5 6 7 8 9
dep(C)[k] l e f g a d b c

m h i j
o n k

Figure 4: Status right after GAC preprocessing. Elements of row and
dep(C)[k] are displayed vertically.

a b c d e f g h i j k l m n o
1 2/2 9/1 7/1 3/1 1 3/2 6 8/1 9/1 9/1 1/1 2 8/1 5
4/2 5 2 5/1 7/1 3 6
6/1 8/1 4/1 4/1 7/1
k 0 1 2 3 4 5 6 7 8 9
inv(C).sparse 4 1 2 3
inv(C).dense 6 7 8 5
inv(C).members ↑1 ↑2
dep(C)[k] l b e f d i c

g m h n j
a o k

Figure 5: Status at t = 2

a b c d e f g h i j k l m n o
1 2 9/1 7/1 3/1 1 3 6 8/1 9/1 9/1 1/1 2 8/1 5
4 5 2 5/1 7/1 3 6
6/1 8/1 4/1 4/1 7/1
k 0 1 2 3 4 5 6 7 8 9
inv(C).sparse 4 1 2 3
inv(C).dense 6 7 8 5
inv(C).members ↑1
dep(C)[k] l b e f d i c

g m h n j
a o k

Figure 6: After backtracking to t = 1

a b c d e f g h i j k l m n o
1 2 9/1 7/1 3/1 1 3 6 8/1 9/1 9/1 1/1 2 8/1 5
4 5 2 5/1 7/1 3 6
6/1 8/1 4/1 4/1 7/1
k 0 1 2 3 4 5 6 7 8 9
inv(C).sparse 1 4 1 2 2
inv(C).dense 3 8 8 5
inv(C).members ↑1 ↑3
dep(C)[k] l b e f g d i c

m h n j
a o k

Figure 7: Status at t = 3

Next, suppose e, and n are eliminated. Rows 3 and 8 are added to
inv(C). We will look at the changes to dep(C) in details (Figure 7).
Value e in dep(C)[3] and value n in dep(C)[8] are already deleted so
they remain in their positions according to Line 16 of STR3. Value i
is removed because it has no further valid support. We now consider
values g and b. A valid support has to be found for g because it de-
pends on row 3. Recall that g ∈ dep(C)[3] tells us that the tuple in
row 3 is a valid support of g. As soon as row 3 becomes invalid, a
new valid support must be found. Because row(C, Y, g)[↑] = 5 is a
valid support, g is moved from dep(C)[3] to dep(C)[5]. On the other
hand, while the invalidation of row(C,X, b)[↑] = 8 deprives b of a
valid support, because b is not contained in dep(C)[8] we do not need
to look for a new valid support for b. In fact, b ∈ dep(C)[2], so the
process of seeking a new valid support for b is activated only when
row 2 is removed.

5 Correctness and Complexity
Correctness is guaranteed by the two following invariants.

Invariant 1 Given C ∈ C, X ∈ scp(C), and a ∈ Dc(X), no valid
support of (X, a) on C exists in row(C,X, a)[k] for any k such that
row(C,X, a).curr < k < row(C,X, a).size.

Proof The invariant holds when the search starts since GACinit
has already eliminated all invalid tuples and curr is assigned the
maximum value. Considering STR3, we see that curr is decreased
only when the row it points to becomes invalid, in which case a new
valid support is needed. If a new valid support is found, the previous
value of curr is saved so that the search can restart from this point
after backtrack. If no valid support is found, curr is left unchanged.
Therefore, if a valid support exists in row(C,X, a)[k] for some k
such that row(C,X, a).curr < k < row(C,X, a).size, this can
only happen as a result of some backtracking from a particular depth.
Because any change to curr is recorded in stateR, its previous value
must be restored upon backtracking as well, meaning the value of
curr must be at least k, contradicting our assumption. 2

Invariant 2 If a ∈ Dc(X) and (X, a) ∈ dep(C)[k] then the tuple
in row k is a valid support of (X, a) on C.

Proof The invariant holds right after GACinit. We now look at
STR3, which is invoked when at least one value becomes absent.
From the code, we see that whenever row k is invalid, any (X, a) in
dep(C)[k] will be moved to another dep(C)[j] when a different valid
row j is found (Line 27). The invariants for dep(C)[k] and dep(C)[j]
are then maintained. If no valid alternative is found, (X, a) becomes
invalid. The invariant remains true because we only deal with present
values. However, when backtracking occurs we have to re-examine
the relationship between row(C,X, a).curr and dep(C).

If (X, a) switches from being absent to present after backtrack,
the invariant for it remains true, because either (1) (X, a) is removed
as consequence of the instantiation of X to some other value b 6= a,

in which case the invariant is unaffected, or (2) chronological back-
tracking makes sure that the row (X, a) depended on most recently
is restored as well.

An interesting situation happens when (X, a) is present before and
after backtrack. In this case, the value of row(C,X, a).curr may be
reverted. Assume the value of row(C,X, a)[↑] before the backtrack
is k and after backtrack it is j (k < j). This means (X, a) is in
dep(C)[k] before backtrack. We consider dep(C)[k] and dep(C)[j]
after backtrack. Because backtracking never invalidates tuple, the tu-
ple in row k must still be valid after backtrack. Because dep(C) is
not maintained, (X, a) remains in dep(C)[k]. Therefore, the invari-
ant for dep(C)[k] is still true, although row(C,X, a)[↑] is no longer
k. The invariants involving values in dep(C)[j] are unaffected.

Next, consider what happens if the search goes forward when
two distinct valid supports exist. That is, (X, a) ∈ dep[k] while
row(C,X, a)[↑] = j 6= k for some value (X, a). If row k becomes
invalid, we need to find a new valid support for (X, a). If there ex-
ists 0 < i ≤ j such that row i is valid we merely move (X, a)
to dep(C)[i]. The invariants for dep(C)[k] and dep(C)[j] hold after-
ward. If no valid support is found, (X, a) remains in dep[k] and a
becomes absent, making the invariant trivially true. 2

STR3 is designed to be incremental by being capable of eliminat-
ing repeated domain checks along the same path in the search tree.
In our complexity analysis, we consider the worst-case accumulated
cost along a single path of length m in the search tree involving a
positive r-ary table constraint containing t tuples.

Theorem 1 The worst-case accumulated cost along a single path of
length m in the search tree involving a positive r-ary table constraint
containing t tuples is O(rt+m) for STR3.

Sketch: STR3’s operations can be seen as belonging to two indepen-
dent phases. First, invalid rows are collected incrementally. Because
indices are duplicated r times in the representation, the collection
cost for a single path is O(rt). Second, curr pointers are moved in
one direction from one end to the other. In a single path of the search
tree, this is equivalent to traversing each element of each tuple in the
table once. Hence, the traversal cost is O(rt). Besides, each call to
STR3 requires another fixed cost O(1) involving other miscellaneous
operations, whose cost can be kept low thanks mainly to the various
constant-time sparse set operations. The total cost is O(rt+ rt+m)
= O(rt+m). 2

Since there are rt elements in a table and m << rt in general, it
follows that STR3 is path-optimal.

Observation 1 The accumulated cost along a single path of length
m in the search tree involving a positive r-ary table constraint con-
taining t tuples can be as much as O(rtm) for STR2.

Reasoning: Recall that STR2 improves over standard STR in two
major ways. First, any (X, a) can be disregarded if D(X) is fully
supported. Second, no validity check is necessary for (X, a) if it is
known that there was no change to the domain of X since the last
time STR2 is called. Because STR2 is also sensitive to ordering, we
can build a table constraint and a search path such that (1) each call
to STR2 involves a domain reduction of exactly one value on every
domain, so that the second improvement is useless. (2) each call to
STR2 results in exactly one tuple eliminated and this tuple is found
at the end of the table. As a result, the cost is O(

∑m

i=1
r(t − i)),

which is O(rtm) when m << t. 2
On the other hand, each backtrack costs O(rd) in the worst-case

for STR3, where d is the domain size, whereas it is O(r) for STR2.

Similarly, it can be shown that mddc [6] or tries [7] are not path-
optimal. Not counting space for the table representation itself, the
space complexity of STR3 for a single table constraint is is O(rd+t)
whereas the space complexity for STR2 is O(r).

6 Experimental Results
In order to show the practical interest of the approach we pro-

pose, we have implemented the algorithm STR3 and conducted an
experimentation using a cluster of Xeon 3.0GHz with 1GiB of RAM
under Linux. Because it has been shown that STR2 is state-of-the-
art on many series of instances [8], we have compared the respective
behavior of STR3 and STR2 (we also include results from STR as
a baseline). We have considered some series of instances3 involving
positive table constraints with arity greater than 2. We use MAC with
the dom/ddeg variable ordering and lexico as value ordering heuris-
tic, to solve all these instances; a time-out of 1, 200 seconds was set
per instance. The two chosen heuristics guarantee that we explore the
very same search tree regardless of filtering algorithm used.

Table 1 shows mean results (cpu time in seconds and memory us-
age in MiB) per series. Below the name of each series, we give the
number p of instances solved by MAC with the three algorithms (un-
der the form #p) as well as the average proportion q of remaining
tuples (i.e., the ratio “size of the current table” to “size of the ini-
tial table”) over all table constraints and over all nodes of the search
tree (under the form avgP = q%). For the crossword series, we have
discarded the numerous easy instances, those that require less than
3 seconds to be solved. A first observation is that STR3 requires on
average two or three times more memory than STR2; more memory
was expected, but this is much better than what worst-case complex-
ity suggests. A second observation is that the results seem to vary
widely. STR2 and STR3 are respectively the best approaches on dif-
ferent series: half-7-25 and rand-8-20 for STR2, and rand-5-12 and
rand-10-60 for STR3. On series rand-3-20 and crosswords, STR3
offers a more limited benefit. What is interesting to note is that a cer-
tain correlation (if we discard renault4) between the value of avgP
and the ranking of STR2 and STR3 is visible: the higher the value of
avgP is, the more competitive STR3 becomes.

STR STR2 STR3

crosswords cpu 127 72 68
(#82 - avgP=14.4%) mem 25M 27M 96M

renault cpu 22 16.5 17.0
(#47 - avgP=30.6%) mem 31M 32M 65M

rand-3-20 cpu 126 92 74
(#49 - avgP=8.4%) mem 25M 25M 40M

rand-5-12 cpu 60 38 14
(#50 - avgP=24.5%) mem 137M 137M 382M

half-7-25 cpu 230 125 516
(#5 - avgP=0.9%) mem 160M 160M 410M

rand-8-20 cpu 17 16 235
(#18 - avgP=0.2%) mem 116M 116M 244M

rand-10-60 cpu 465 236 125
(#29 - avgP=23.0%) mem 74M 76M 281M

Table 1: Mean cpu time (in seconds) to solve instances from different
series (a time-out of 1, 200 seconds was set per instance) with MAC.

3 Available at http://www.cril.univ-artois.fr/CSC09.
4 In [8] renault was also reported as one of the few series of benchmarks

where there was little difference between STR2 and mddc.

STR STR2 STR3

Sat cpu 76 63 94
(#19 - avgP=5.5%) mem 57M 58M 191M

Unsat cpu 143 74 60
(#63 - avgP=17.9%) mem 16M 18M 68M

AvgP ≤ 8% cpu 128 90 109
(#28 - avgP=4.5%) mem 31M 32M 88M

AvgP > 8% cpu 124 61 44
(#54 - avgP=20.4%) mem 24M 24M 96M

Table 2: Mean cpu time (in seconds) to solve Crossword instances (a
time-out of 1, 200 seconds was set per instance) with MAC.

STR STR2 STR3

Structured instances
words-23-02 cpu 409 362 459

(sat - avgP=2.5%) mem 120M 123M 314M
ogd-11-13 cpu > 1, 200 1,017 784

(unsat - avgP=11.9%) mem 32M 177M
ogd-11-14 cpu 884 412 253

(unsat - avgP=20.8%) mem 30M 30M 163M
ogd-14-14 cpu 42.6 19.8 9.5

(unsat - avgP=34.1%) mem 20M 21M 112M
renault-42 cpu 18.6 14.3 15.4

(unsat - avgP=33.6%) mem 34M 34M 60M

Random instances
rand-3-20-26 cpu 275 188 130

(sat - avgP=7.7%) mem 35M 35M 50M
rand-5-12-26 cpu 52.8 35.7 11.8

(unsat - avgP=25.5%) mem 138M 138M 383M
half-7-25-2 cpu 210 124 438

(sat - avgP=1.2%) mem 156M 156M 404M
rand-8-20-8 cpu 93.5 54 525

(sat - avgP=0.2%) mem 115M 117M 273M
rand-10-60-5 cpu 258 154 71

(unsat - avgP=26.5%) mem 123M 123M 335M

Table 3: Detailed results on selected instances.

 1

 10

 100

 1000

 10000

 100000

 0 0.5 1 1.5 2 2.5 3 3.5 4

av
gS

STR2 / STR3

Figure 8: The ratio cpu STR2 to cpu STR3 is plotted against avgS
(average size of tables during search). Dots correspond to instances.

Intuitively, higher value of avgP also implies that there are fewer
chances that the solver can reach deeper levels of the search tree. This
value seems also to be related to unsatisfiability. To confirm this, Ta-
ble 2 divides crossword instances according to both satisfiability and
an avgP threshold (8%). Table 3 gives details on some representative
instances. In particular, on the four crossword instances words and
ogd in Table 3, the relationship between the efficiency of STR3 and
the value of avgP is obvious. Finally, Figure 8 plots the relative effi-
ciencies of STR2 against STR3 against the value of avgS (the average
size of the tables during search), when considering the 658 instances
of our experimental study. On the more difficult case where tables re-
main large (>1000 in Figure 8), STR3 can then be up to 3.6x faster
and only 0.6x slower than STR2.

7 Summary and Future Work
We introduce STR3, a new GAC algorithm for table constraints

that is competitive with STR2, a state-of-the art algorithm. Interest-
ingly, STR3 is path-optimal, by being able to completely avoid un-
necessary traversal of tables. We have shown that the performance of
STR3 correlates to the average number of tuples remaining in the ta-
bles during search. The advantage of STR2 appears to depend largely
on excessively high rates of table reduction (that is, very low avgP).
As soon as the reduction rate drops below 90%, STR2 becomes much
less effective. STR2 dominates on benchmarks tailor-made to suit ta-
ble reduction algorithms — we have seen a surprising number of
problems with tables that are virtually wiped out — but apart from
these cases STR3 has the upper hand.

The results in this paper exhibit a clear and actionable boundary
for which exploitation of both STR2 and STR3 is obvious: a problem
instance from a class with low avgP should be solved with STR2; the
others should be solved with STR3. To cope with problems of un-
known quality, many possibilities exist. For example, one can imag-
ine a simple hybrid algorithm that probes the problem first by ten-
tatively solving it for a while with STR2 while collecting data on
table ratios. If it turns out that avgP exceeds a certain threshold, the
algorithm may restart and switch to STR3.

REFERENCES
[1] C. Bessiere, ‘Arc consistency and arc consistency again’, Artificial In-

telligence, 65, 179–190, (1994).
[2] C. Bessiere, E.C. Freuder, and J. Régin, ‘Using constraint metaknowl-

edge to reduce arc consistency computation’, AIJ,107,125–148,(1999).
[3] C. Bessiere and J. Régin, ‘Arc consistency for general constraint net-

works: preliminary results’, in Proc. of IJCAI’97, pp. 398–404, (1997).
[4] C. Bessière, J.-C. Régin, R, H. C. Yap, and Y. Zhang, ‘An Optimal

Coarse-Grained Arc Consistency Algorithm’, AIJ, 165(2), (2005).
[5] P. Briggs and L. Torczon, ‘An efficient representation for sparse sets’,

ACM Letters on Prog. Languages and Systems, 2(1–4), 59–69, (1993).
[6] K. Cheng and R. Yap, ‘An MDD-based generalized arc consistency al-

gorithm for positive and negative table constraints and some global con-
straints’, Constraints, 15(2), 265–304, (2010).

[7] I. Gent, C. Jefferson, I. Miguel, and P. Nightingale, ‘Data structures for
generalised arc consistency for extensional constraints’, in AAAI-07.

[8] C. Lecoutre, ‘STR2: Optimized simple tabular reduction for table con-
straints’, Constraints, 16(4), 341–371, (2011).

[9] C. Lecoutre and R. Szymanek, ‘Generalized arc consistency for positive
table constraints’, in Proc. of CP-06, pp. 284–298, France, (2006).

[10] O. Lhomme and J.C. Régin, ‘A fast arc consistency algorithm for n-ary
constraints’, in Proc. of AAAI’05, pp. 405–410, (2005).

[11] R. Mohr and G. Masini, ‘Good old discrete relaxation’, in Proceedings
of ECAI’88, pp. 651–656, (1988).

[12] M. Moskewisz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, ‘Chaff:
Engineering an efficient SAT solver’, in Proc. of DAC’01.

[13] J. Ullmann, ‘Partition search for non-binary constraint satisfaction’, In-
formation Sciences, 177, 3639–3678, (2007).

