
HAL Id: hal-00873000
https://hal.science/hal-00873000

Submitted on 14 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Under-approximation of Reachability in Multivalued
Asynchronous Networks

Maxime Folschette, Loïc Paulevé, Morgan Magnin, Olivier Roux

To cite this version:
Maxime Folschette, Loïc Paulevé, Morgan Magnin, Olivier Roux. Under-approximation of Reach-
ability in Multivalued Asynchronous Networks. fourth International Workshop on Interactions
between Computer Science and Biology (CS2Bio’13), Jun 2013, Florence, Italy. pp.33–51,
�10.1016/j.entcs.2013.11.004�. �hal-00873000�

https://hal.science/hal-00873000
https://hal.archives-ouvertes.fr

CS2Bio 2013

Under-approximation of Reachability in
Multivalued Asynchronous Networks

Maxime Folschette1

LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597
(Institut de Recherche en Communications et Cybernétique de Nantes)

1 rue de la Noë - B.P. 92101 - 44321 Nantes Cedex 3, France.

Loïc Paulevé
BISON group, Automatic Control Laboratory, ETH Zürich

Physikstrasse 3, 8092 Zurich, Switzerland.

Morgan Magnin
LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597
(Institut de Recherche en Communications et Cybernétique de Nantes)

1 rue de la Noë - B.P. 92101 - 44321 Nantes Cedex 3, France.

Olivier Roux
LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597
(Institut de Recherche en Communications et Cybernétique de Nantes)

1 rue de la Noë - B.P. 92101 - 44321 Nantes Cedex 3, France.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Folschette et al.

Abstract

The Process Hitting is a recently introduced framework designed for the modelling of concurrent
systems. Its originality lies in a compact representation of both components of the model and its
corresponding actions: each action can modify the status of a component, and is conditioned by the
status of at most one other component. This allowed to define very efficient static analysis based
on local causality to compute reachability properties. However, in the case of cooperations between
components (for example, when two components are supposed to interact with a third one only
when they are in a given configuration), the approach leads to an over-approximated interleaving
between actions, because of the pure asynchronous semantics of the model.
To address this issue, we propose an extended definition of the framework, including priority
classes for actions. In this paper, we focus on a restriction of the Process Hitting with two classes of
priorities and a specific behaviour of the components, that is sufficient to tackle the aforementioned
problem of cooperations. We show that this class of Process Hitting models allows to represent any
Asynchronous Discrete Networks, either Boolean or multivalued. Then we develop a new refinement
for the under-approximation of the static analysis to give accurate results for this class of Process
Hitting models. Our method thus allows to efficiently under-approximate reachability properties
in Asynchronous Discrete Networks; it is in particular conclusive on reachability properties in a 94
components Boolean network, which is unprecedented.

Keywords: qualitative modelling, model abstraction, static analysis, asynchronous network

1 Introduction

Discrete modelling frameworks for biological networks is an active research
field where formal methods have proved that they were very powerful. Such
a work started in the seventies. It was later enriched in many directions and
widely used to elucidate many biological questions. Among these questions, a
major one is to understand precisely how biological systems evolve and behave;
why and how they change their usual behaviours. . . This leads to questions
about the reachability (possible or inevitable) of some states. The ultimate
goal is to discover how it could be possible to prevent biological systems from
reaching some pathological states.

Of course, such formal models on which analyses are performed are ab-
stract representations of the actual studied systems. They are associated with
parameters that have to be synthesised to give the most faithful representation
of the real systems with their observed behaviours. As a matter of fact, the ab-
stractions we get are more or less rough or accurate. Usual formal frameworks
for such modelling activities are state-transition systems or process algebras.
We developed a quite similar framework named the Process Hitting [10], con-
sisting in a restriction where the evolution of a component is determined by
the state of at most one other component that does not evolve. In a sense,
these kind of actions are of the form X + Y → X +Z where X behaves like a
catalyst molecule that “hits” another molecule Y and changes it into Z, with-
out being itself changed. Assuming catalysts are always available, this can
represent any biochemical system made of monomolecular reactions, and can
also represent catalytic networks such as metabolic networks. Our motivation

1 Maxime.Folschette@irccyn.ec-nantes.fr

2

Maxime.Folschette@irccyn.ec-nantes.fr

Folschette et al.

behind this framework was to design a model and analysis techniques adapted
to biological modelling. These analyses avoid to build the whole state space,
which allows to tackle very large systems (that would have led to a huge num-
ber of states, hopelessly too huge to be analysed). They are based on the
fact that most biological models have few levels of expression per component:
in Boolean networks [8,13] there are only two levels per component and in
its multivalued equivalent, Asynchronous Discrete Networks [5], components
rarely have more that four levels.

Besides, one further objective of our work is now to improve the accuracy
of the description of the studied systems dynamics. The idea for this is to
introduce timing features into models: we are interested in taking into ac-
count some knowledge about the relative length of some phenomena as it is
a way to refute some models (or parameters) that are inconsistent with the
observed dynamic behaviours. In this paper, we are dealing with these timing
properties through priorities, that are based on the simple founding idea that
prioritised actions have to be processed before the other ones. Indeed, due
to the Process Hitting framework restrictions, bimolecular reactions are not
immediately available, but one can simulate them with an encoding called
“cooperation”. That encoding however introduces extra reactions, and this is
where the priorities become useful, if not necessary. The extra reactions can be
given “infinite speed” (high priority) so that they do not affect the behaviour
of “normal” (low priority) reactions, including the bimolecular ones.

Until now, such a priority scheduling of the actions was not studied ex-
tensively in the different formal modelling frameworks dedicated to systems
biology. Nevertheless, such an attempt has been carried out for Petri nets by
F. Bause [1], and the concept of priority relations among the transitions of a
network has also more recently been introduced by A. K. Wagler et al. [15,14]
in order to allow modelling deterministic systems for biological applications.
The concept of priority is much straightforward in the approach of process
algebras as it was shown by R. Cleaveland and M. Hennessy in [2,4] and their
abstractions and equivalences were studied in [3]. It was later extended for
applications in the field of systems biology by M. John et al. [7].

Contributions
Since our formalism (the Process Hitting) can be considered as a subset

of Calculus of Communicating Systems, our work is related to such semantic
ramifications of extending traditional process algebras with the concepts of
priority that allow for some transitions to be given precedence over others.
The concept is derived in two directions: dynamic versus static, the difference
being naturally that the former one refers to a semantics where priority val-
ues may change during execution according to some evolution rules. In our
work, actions exhibit a two-level static priority structure, some of them being

3

Folschette et al.

designated as “prioritised” and others as “unprioritised”.
In this paper, we introduce a new extension to the semantics of Process

Hitting by partitioning actions into classes of priorities. One of the objec-
tives is to reach an accurate representation of cooperating components in the
model, that was not fulfilled with the initial semantics. We then develop an
efficient under-approximation of the reachability of the state of components
on a subclass of this new framework, thus allowing to compute efficient static
analysis. This local reachability under-approximation can be also easily ex-
tended to study the reachability of a global state. Finally, as the subclass of
models studied proves to be bisimilar to Asynchronous Discrete Networks, we
state to have developed an efficient method to compute the reachability of a
state and thus study the behaviour of such models.

The method developed in this paper has been implemented into the ex-
isting Pint library and tested on a large-scale biological model containing 94
components. The under-approximation turned out to be conclusive in all
cases and results were computed in hundredths of seconds, thus overtaking
the efficiency of usual model-checkers.

Our paper is organised as follows. The Process Hitting framework is de-
fined in section 2; we introduce static analysis of the Process Hitting in section
3; section 4 illustrates the approach on an example before the discussion and
conclusion in section 5.

Notations
If A is a finite set, |A| is the cardinality of A and ℘(A) is the power set of

A. N is the set of natural numbers, N∗ = N \ {0} is the set of positive natural
numbers and Jx; yK = {x, x + 1, . . . , y − 1, y} is the set of natural numbers
from x to y included. If x = (xi)i∈J1;nK is a sequence of elements indexed by
i ∈ J1;nK, Ix = J1;nK is the set of indexes of this sequence. We also denote by
ε the empty sequence. If A and B are sets, f : A→ B denotes an application
f that maps the elements of A to elements of B. lfp{x0} (x 7→ x′) is the least
fixed point of the function x 7→ x′ which is greater than x0. The Cartesian
product is denoted ×.

2 The Process Hitting Framework

We give in this section the definition and the semantics of the Process Hit-
ting (PH) with priorities, which is an extension of the basic semantics given
in [10]. Then we describe the modelling of cooperation between components
and discuss how the new aforementioned semantics makes this modelling more
accurate. Finally, in order to perform a static analysis adapted to this new
semantics, we give several criteria to restrict the class of models that we can

4

Folschette et al.

study, and give several theorems that follow. This class of models is equivalent
to Asynchronous Discrete Networks.

2.1 Definition of the Process Hitting with k classes of priorities

A PH with k classes of priorities (Def. 2.1), also simply called “PH” in the
following when it is not ambiguous, gathers a finite number of concurrent
processes divided into a finite set of sorts. A process belongs to a unique sort
and is noted ai where a is the sort and i the identifier of the process within the
sort a. Each process stands for a kind of “activity level” of its sort; a state of
the PH thus corresponds to a set of processes containing exactly one process
of each sort.

The concurrent interactions between processes are defined by a set of ac-
tions divided into classes of priorities. Actions describe the replacement of a
process by another of the same sort conditioned by the presence of at most
one other process and by the fact that no other action of higher priority can be
played in the considered state of the PH. An action is denoted by ai → bj � bk
where ai, bj, bk are processes of sorts a and b. It is required that bj 6= bk and
that a = b ⇒ ai = bj. An action h = ai → bj � bk is read as “ai hits bj to
make it bounce to bk”, and ai, bj, bk are called respectively hitter, target and
bounce of the action, and can be referred to as hitter(h), target(h), bounce(h),
respectively.

Definition 2.1 [Process Hitting with k classes of priorities] If k ∈ N∗, a
Process Hitting with k classes of priorities is a triplet PH = (Σ;L;H〈k〉),
where H〈k〉 = (H(1); . . . ;H(k)) is a k-tuple and:

• Σ
∆
= {a, b, . . . } is the finite set of sorts,

• L ∆
= ×

a∈Σ
La is the finite set of states, where La = {a0, . . . , ala} is the finite

set of processes of sort a ∈ Σ and la ∈ N∗. Each process belongs to a unique
sort: ∀(ai; bj) ∈ La × Lb, a 6= b⇒ ai 6= bj,

• ∀n ∈ J1; kK,H(n) ∆
= {ai → bj � bl | (a; b) ∈ Σ2∧(ai; bj; bl) ∈ La×Lb×Lb∧bj 6=

bl ∧ a = b⇒ ai = bj} is the finite set of actions of priority n.

We call Proc
∆
=
⋃
a∈Σ La the set of all processes, and H ∆

=
⋃
n∈J1;kKH(n) the

set of all actions.

The sort of a process ai is referred to as Σ(ai) = a. Given a state s ∈ L, the
process of sort a ∈ Σ present in s is denoted by s[a], that is the a-coordinate
of the state s. If ai ∈ La, we define the notation ai ∈ s

∆⇔ s[a] = ai. The
override of a state s by a process ai is defined in Def. 2.2 as the same state in
which the process of sort a has been replace by ai, which then allows to define
the dynamics of a PH in Def. 2.3.

5

Folschette et al.

Definition 2.2 [e : L × Proc → L] Given a state s ∈ L and a process ai ∈
Proc, (seai) is the state defined by: (s e ai)[a] = ai∧∀b 6= a, (s e ai)[b] = s[b].
We also extend this definition to a set of processes ps given that all processes
are from different sorts by the override of each process: ∀as ⊆ Σ,∀ps ∈
×
a∈as
La, s e ps = s e

ai∈ps
ai.

Definition 2.3 [Dynamics of a PH (→PH)] An action h = ai → bj � bk ∈
H(n) of priority n is playable in s ∈ L if and only if s[a] = ai, s[b] = bj and
∀m < n, ∀g ∈ H(m), hitter(g) /∈ s ∨ target(g) /∈ s. In such a case, (s · h) stands
for the state resulting from the play of the action h in s and is defined by:
(s · h) = s e bounce(h). Moreover, we denote: s→PH (s · h).

If s ∈ L, a scenario δ from s is a sequence of actions of H that can be
played successively in s. The set of all scenarios from s is noted Sce(s).

In Def. 2.4, we define the n-reduction of a given PH as the PH with n
classes of priorities in which only actions of priority lower or equal to n are
considered.

Definition 2.4 [PH n-reduction] If PH = (Σ;L;H〈k〉) is a Process Hitting
with k classes of priorities and n ∈ J1; kK, we denote PH n the n-reduction of
PH. PH n = (Σ;L;H′〈n〉) is a PH with n classes of priorities with:

H′〈n〉 = (H(1); . . . ;H(n))

Furthermore, we denote: Sce n(s) the set of scenarios from s in PH n.

Example 2.5 Fig. 1 gives an example of PH with 2 classes of priorities where:

Σ = {a, b, c, ab} ,
La = {a0, a1} , Lb = {b0, b1} ,
Lc = {c0, c1} , Lab = {ab00, ab01, ab10, ab11} .

There also is especially: {ab11 → c0 � c1, a1 → a1 � a0, a0 → b0 � b1} ⊆ H(2).

2.2 Modelling cooperation

Cooperation between processes to make another process bounce can be ex-
pressed in PH by building a cooperative sort, as described in [10]. Fig. 1 shows
an example of cooperation between processes a1 and b1 to make c0 bounce to
c1: a cooperative sort ab is defined with 4 processes (one for each sub-state of
the presence of processes a1 and b1). For the sake of clarity, the processes of ab
are indexed using the sub-state they represent. Hence, ab10 represents the sub-
state 〈a1, b0〉, and so on. Each process of sort a and b hit ab to make it bounce
to the process reflecting the status of the sorts a and b (e.g., a1 → ab00 � ab10

and a1 → ab01 � ab11). Then, to represent the cooperation between a1 and b1,

6

Folschette et al.

the process ab11 hits c0 to make it bounce to c1 instead of independent hits
from a1 and b1.

We note that cooperative sorts are standard PH sorts and do not involve
any special treatment regarding the semantics of related actions. Furthermore,
it is possible to “factorise” cooperative sorts in order to decrease the number of
processes created within each cooperative sort. For example, if three processes
x1, y1 and z1 cooperate, it is preferable to create a cooperative sort xy with 4
processes to state the presence of x1 and y1 and a second cooperative sort xyz
with 4 processes to state the presence of xy11 and z1, rather than a unique
cooperative sort with 8 processes stating the presence of x1, y1 and z1. This
“factorisation” allows to prevent the combinatorial explosion of the number
of processes in cooperative sorts, especially for cooperations between more
than three processes. It may have computational consequences as the static
analysis method developed in Sect. 3 does not suffer from the number of sorts
but from the number of processes in each sort.

The construction of cooperation in PH allows to encode any Boolean func-
tion between cooperating processes [10]. Due to the introduction of priorities
into the PH framework, it is possible to build cooperations with no temporal
shift by defining actions updating the cooperative sorts with the highest class
of priority. This allows to gain the same expressivity in PH than in Boolean
networks, as stated in Subsect. 2.2. The aim of this paper is to allow the static
analysis of the dynamics to be handled on PH models comprising such higher
priority actions updating cooperative sorts.

2.3 Restrictions

In the scope of this paper, we focus on a specific class of PH models. We
define here the restrictions that lead to this class of models and show that
they are equivalent to discrete networks.

Criterion 2.6 allows to distinguish two kinds of actions: unprioritised ac-
tions modelling the non-determinacy of biological evolutions and prioritised
actions used to model non-biological behaviours in the model, namely the up-
date of cooperative sorts. Criterion 2.7 states that the dynamics of the studied
model PH contains no infinite sequence of prioritised actions. As these ac-
tions can be considered as non-biological and therefore instantaneous, we thus
prevent the existence of any Zeno-like behaviour which would allow the play
of an infinite sequence of prioritised actions in “zero time”.

Criterion 2.6 (2 classes of priorities) In this paper, we only consider Pro-
cess Hitting with 2 classes of priorities: PH = (Σ;L;H〈2〉).

Criterion 2.7 (Bounded termination) The dynamics of PH 1 contains
no cycles: ∃N ∈ N,∀s ∈ L, ∀δ ∈ Sce 1(s), |δ| ≤ N .

7

Folschette et al.

In Def. 2.8 we define a well-formed component as a sort that is hit only by
unprioritised actions, or that no action hits.

Definition 2.8 [Well-formed component (Γ)] A sort a ∈ Σ is a well-formed
component if and only if:

∀h ∈ H,Σ(target(h)) = a⇒ prio(h) = 2 .

We call Γ the set of well-formed components.

Def. 2.9 defines chains of prioritised actions, and Criterion 2.10 prevents
the presence of cycles in these chains.

Definition 2.9 The set of chains of actionsH(a, b) between two sorts a, b ∈ Σ
is defined as below:

H(a, b) = {(hi)i∈J1;s+1K ∈ (H(1))s+1 | s ∈ N
∧ Σ(hitter(h1)) = a ∧ Σ(target(hs+1)) = b

∧ ∀i ∈ J1; sK,Σ(target(hi)) = Σ(hitter(hi+1))}

where (H(1))s+1 is the Cartesian product of s+ 1 times the set H(1).

Criterion 2.10 (Cycle-freeness in prioritised actions) There is no cy-
cles in chains of actions: ∀a ∈ Σ,H(a, a) = ∅.

In Def. 2.11 we define the notion of neighbouring sorts and actions of
a given sort. The set of neighbouring sorts VΣ(a) of a sort a is the set of
components that can interact with it through prioritised actions. The set of
neighbouring actions VH(a) of a is the set of prioritised actions influencing
a. These definitions are permitted by the previous restrictions (Criterion 2.6
and 2.10).

Definition 2.11 [VΣ : Σ→ ℘(Σ); VH : Σ→ ℘(H)] For all sort a ∈ Σ,

VΣ(a) = {b ∈ Γ | H(b, a) 6= ∅}
VH(a) = {h ∈ H(1) | ∃b ∈ VΣ(a),∃hs ∈ H(b, a), h ∈ hs}

Finally, we introduce the notion of local steady-state of a sort from a given
state. This local steady-state is the set of processes towards which the sort
tends to evolve to, and stay in, when playing only prioritised actions. We
denote lsts(a) this set of processes for a sort a in state s (Def. 2.12), and we
derive from this the notion of well-formed cooperative sort (Def. 2.13). A
well-formed cooperative sort models a cooperation between sorts as presented
in Subsect. 2.2; therefore, it must be only hit by prioritised actions, in a
way that its local steady-states efficiently represent all configurations of its
neighbouring sorts.

8

Folschette et al.

Definition 2.12 [lst : Σ→ ℘(Proc)] For all a ∈ Σ,

lsts(a) = {ai ∈ La | ∃δ ∈ Sce 1(s), (s · δ)[a] = ai
∧ ∀bi → cj � ck ∈ VH(a), (s · δ)[b] 6= bi ∨ (s · δ)[c] 6= cj}

Of course, if a ∈ Γ, then lsts(a) = {s[a]}.

Definition 2.13 [Well-formed cooperative sorts (∆)] A sort a ∈ Σ is a well-
formed cooperative sort if and only if:

(i) ∃b ∈ Σ,H(b, a) 6= ∅
(ii) ∀s ∈ L, ∃ai ∈ La, lsts(a) = {ai}
(iii) ∀ai ∈ La,∃s ∈ L, lsts(a) = {ai}
We call ∆ the set of well-formed cooperative sorts.

Because of Def. 2.13(ii), we denote in the following: lsts(a) = ai. Further-
more, because of Def. 2.13(iii), we denote procState(ai) the set of sub-states
represented by the process ai of any cooperative sort a (Def. 2.14).

Definition 2.14 [procState : Proc → ℘(Proc)] If a ∈ ∆ and ai ∈ La, we
define:

procState(ai) = {ps ∈ ×
b∈VΣ(a)

Lb | ∀s ∈ L, lstseps(a) = ai}

In the following we simply write “component” (resp. “cooperative sort”)
instead of “well-formed component” (resp. “well-formed cooperative sort”). Fi-
nally, Criterion 2.15 states that the set of sorts of the considered PH must be
divided between components and cooperative sorts.

Criterion 2.15 (Components & cooperative sorts partition)

Σ = Γ ∪∆ ∧ Γ ∩∆ = ∅

Example 2.16 The PH in Fig. 1 contains three components a, b and c and
a cooperative sort ab that models cooperation between sorts a and b.

The criteria given in this subsection allow to define a class of PH models
that is (weakly) bisimilar to Asynchronous Boolean Networks or, more gener-
ally, to the multivalued version of this framework, called Asynchronous Dis-
crete Networks (ADN). A translation of ADN into PH is given in Appendix B,
alongside with a demonstration of the weak bisimulation.

2.4 Consequences of the restrictions

In this subsection, we give several general theorems that can be derived from
the restrictions of Subsect. 2.2, and which will help building the static analysis
of Sect. 3.

9

Folschette et al.

We first denote by update(s) the state equivalent to s but in which all
cooperative sorts are updated (Def. 2.17). This state is unique due to the
properties of lst given in the previous subsection. Then, Theorem 2.18 states
that from any state, there exists a scenario updating the cooperative sorts of
this state.

Definition 2.17 [update : L → L] For all s ∈ L, we define:

update(s) = s e {lsts(a) | a ∈ ∆} .

Theorem 2.18 ∀s ∈ L,∃δ ∈ Sce 1(s), s · δ = update(s)

Proof Let a be a cooperative sort so that s[a] 6= lsts(a). Given the definition
of lsts(a), there exists a scenario δ updating a in s so that ∀δ′ ∈ Sce 1(s · δ),
(s · δ · δ′)[a] = lsts(a). As there is no cycle of actions between the coopera-
tive sorts (Criterion 2.10) and given that an updated cooperative sort cannot
evolve, at most |∆| updates have to be performed. 2

Theorem 2.19 states that for a given state s, and for any action h = ai →
bj � bk where a and b are components, if s[a] = ai and s[b] = bj, then h can
always be played after a series of hits (and these hits do not prevent it to
be fired). Theorem 2.20 states the same if a is a cooperative sort, under the
condition that a is updated in s.

Theorem 2.19 ∀s ∈ L,∀a, b ∈ Γ,∀h = ai → bj � bk ∈ H,
(s[a] = ai ∧ s[b] = bj)⇒ (∃δ ∈ Sce 1(s), (s · δ)→PH (s · δ · h))

Proof From Theorem 2.18, there exists a scenario δ with: (s ·δ) = update(s).
As a, b ∈ Γ, ai ∈ (s · δ) and bj ∈ (s · δ). Finally, by definition of update(s), no
prioritised action can be played in (s · δ), thus h can be played in (s · δ). 2

Theorem 2.20 ∀s ∈ L,∀h = ai → bj � bk ∈ H, a ∈ ∆, b ∈ Γ
(s[a] = ai ∧ s[b] = bj ∧ lsts(a) = ai)⇒ (∃δ ∈ Sce 1(s), (s · δ)→PH (s · δ · h))

Proof Similar to the proof of Theorem 2.19; as ai ∈ lsts(a), ai ∈ (s · δ). 2

3 Static Analysis

The aim of this section is to define the problem of reachability in a PH, and
propose an under-approximation allowing to efficiently solve it. The static
analysis presented here is inspired from [11].

3.1 Preliminary definitions

The reachability of a process aj of a given sort a from another process ai is
called an objective and is denoted ai �∗aj (Def. 3.1).

10

Folschette et al.

Definition 3.1 [Objective (Obj)] If a ∈ Γ, the reachability of a process aj
from a process ai is called an objective, noted ai �∗aj. The set of all objectives
is called Obj

∆
= {ai �∗aj | a ∈ Γ ∧ (ai, aj) ∈ L2

a}. For an objective P =
ai �∗aj ∈ Obj, we define: Σ(P) = a, target(P) = ai, bounce(P) = aj, and P
is said trivial if ai = aj.

We define an objective sequence as a sequence of objectives in which each
objective target must be equal to the previous objective bounce of the same
sort, if it exists. The set of all objective sequences is denoted by OS.

A context (Def. 3.2) extends the notion of state to a set of possible initial
states. We also extend the override operator to contexts (Def. 3.3).

Definition 3.2 [Context (Ctx)] A context ς associates to each sort in Σ a
non-empty subset of its processes: ∀a ∈ Σ, ς[a] ⊆ La ∧ ς[a] 6= ∅. Ctx is the
set of all contexts.

Definition 3.3 [e : Ctx × ℘(Proc) → Ctx] For any ς ∈ Ctx and set of
processes ps ∈ ℘(Proc), the override of ς by ps is noted ς e ps and is defined
by:

∀a ∈ Σ, (ς e ps)[a] =

{
{p ∈ ps | Σ(p) = a} if ∃p ∈ ps,Σ(p) = a,

ς[a] else.

For a given context ς, we note ai ∈ ς if and only if ai ∈ ς[a], and for all
ps ∈ ℘(Proc) or ps ∈ L, ps ⊆ ς

∆⇔ ∀ai ∈ ps, ai ∈ ς. A sequence of actions δ
is playable in a context ς if and only if ∃s ⊆ ς, δ ∈ Sce(s). We denote then:
δ ∈ Sce(ς), and the play of δ in ς is ς · δ = ς e end(δ), where end(δ) is the set
containing the last process in the sequence δ (hitter or bounce) of every sort
mentioned in δ.

Finally, a bounce sequence on a sort a (Def. 3.4) is a sequence of actions
hitting a in which the bounce process of each action is the hitter process of
the following action. Bounce sequences are used to find local solutions to a
given objective. A bounce sequence on a can be abstracted into sets of all its
hitters that are not in sort a (Def. 3.5). This abstraction allows to propagate
an objective on the sort a into objectives on other sots. In the following, we
denote: Sol = ℘(Proc).

Definition 3.4 [Bounce sequence (BS)] A bounce sequence ζ is a sequence
of actions so that ∀n ∈ Iζ , n < |ζ|, bounce(ζn) = target(ζn+1). BS denotes the
set of all bounce sequences, and BS(P) denotes the set of bounce sequences
solving an objective P :

BS(ai �∗aj) = {ζ ∈ BS | target(ζ1) = ai ∧ bounce(ζ|ζ|) = aj} .

BS(ai �∗aj) = ∅ if there is no way to reach aj from ai and ε ∈ BS(ai �∗ai).

11

Folschette et al.

Definition 3.5 [BS∧ : Obj→ ℘(Sol)] The abstractions of bounce sequences
of an objective P , denoted by the set BS∧(P), are the sets of hitters of bounce
sequences solving P :

BS∧(P) = {ζ∧ ∈ Sol | ζ ∈ BS(P),@ζ ′ ∈ BS(P), ζ ′∧ (ζ∧} ,

where ζ∧ = {hitter(ζn) | n ∈ Iζ ∧ Σ(hitter(ζn)) 6= Σ(P)}.

3.2 Under-approximation

We denote γς(ω) the set of scenarios concretising an objective sequence ω in
the context ς. In Def. 3.6, we define `ς(ω) as equal to γς(ω) if and only if
γς(ω) contains scenarios starting from all states s ⊆ ς. Theorem 3.7 is used
to over-approximate the initial context ς.

Definition 3.6 [`ς : OS→ ℘(Sce)]

`ς(ω) =

{
γς(ω) if ∀s ∈ L, s ⊆ ς, ∃δ ∈ γς(ω), δ ∈ Sce(s)

∅ else.

Theorem 3.7 ς ⊆ ς ′ ∧ `ς′(ω) 6= ∅ =⇒ `ς(ω) 6= ∅.

For any objective P and context ς, Def. 3.8 gives the set of processes of
sort Σ(P) that are required to solve P in ς, given by maxContς(Σ(P), P).

Definition 3.8 [maxContς : Σ×Obj→ ℘(Proc)]

maxContς(a, P) = {p ∈ Proc | ∃ps ∈ BS∧(P),∃bi ∈ ps, b = a ∧ p = bi
∨ b 6= a ∧ p ∈ maxContς(a, bj �∗ bi) ∧ bj ∈ ς[b]} .

The graph of local causality dBως e = (V,E) defined in Def. 3.9 is a graph
where V ⊆ Proc∪Obj∪ Sol and E ⊆ V × V . A node in Proc is a required
process, a node in Obj is an objective to reach a given process and a node
in Sol is a set of processes required for the solving. An objective P ∈ Obj
is solvable if the abstractions of bounce sequences BS∧(P) ∈ Sol (Def. 3.5)
can be reached (Eq. (4)), thus leading to several required processes (Eq. (5)).
If a ∈ Γ, the reachability of one of its process ai is approximated by the
ability to solve all objectives aj �∗ai ∈ Obj for all aj in the initial context
(Eq. (6)); if a ∈ ∆, the reachability of ai is simply solved by the set of
processes procState(ai) (Def. 2.14) that it represents (Eq. (7)). The solving
of an objective P may require a process of Σ(P), i.e. maxCont(Σ(P), P) 6= ∅
(Def. 3.8); in this case, P is re-targeted (Eq. (8)). Eq. (1), (2) and (3) ensure
that all required nodes are in V ω

ς . Finally, as the active process of every sort
may evolve, dBως e is obtained by iteratively saturating with every process it

12

Folschette et al.

contains, i.e. by overriding its initial context ς by procs(V,E), defined by:

procs(V,E) = (V ∩Proc) ∪ {target(P), bounce(P) | P ∈ V ∩Obj}

Definition 3.9 The graph of local causality dBως e = (dV ω
ς e, dEω

ς e) is defined
as: dBως e = lfp{Bως }

(
Bως 7→ Bωςeprocs(Bως)

)
, where Bως = (V ω

ς , E
ω
ς) is the smallest

graph with V ω
ς ⊆ Proc ∪Obj ∪ Sol and Eω

ς ⊆ V ω
ς × V ω

ς so that:

ω ⊆ V ω
ς (1)

P ∈ V ∩Proc⇒ bounce(P) ∈ V ω
ς (2)

(x, y) ∈ E ⇒ y ∈ V ω
ς (3)

P ∈ V ∩Obj ∧ ps ∈ BS(P)⇒ (P, ps) ∈ Eω
ς (4)

ps ∈ V ∩ Sol ∧ ai ∈ ps⇒ (ps, ai) ∈ Eω
ς (5)

a ∈ Γ ∧ ai ∈ V ∩Proc ∧ aj ∈ ς ⇒ (ai, aj �∗ai) ∈ Eω
ς (6)

a ∈ ∆ ∧ ai ∈ V ∩Proc ∧ ps ∈ procState(ai)⇒ (ai, ps) ∈ Eω
ς (7)

P ∈ V ∩Obj ∧ q ∈ maxContς(Σ(P), P)⇒ (P, q �∗ bounce(P)) ∈ Eω
ς (8)

In the graph of local causality, an edge (p, ps) ∈ Proc×Sol is said coherent
(Def. 3.10) if none of the processes in ps conflict with the children processes of
ps. Then, Theorem 3.11 gives a sufficient condition for the concretization of a
sequence of objectives in a given context, which is derived immediately from
the graph of local causality. A proof of this theorem is given in Annex A.

Definition 3.10 [Coherent edge] An edge (x, y) ∈ Eω
ς is said coherent if

and only if: (x, y) ∈ dEω
ς e ∩ (Proc × Sol) ⇒ y has no children process

aj ∈ dV ω
ς e ∩Proc so that ∃ai ∈ y, ai 6= aj.

Theorem 3.11 (Under-Approximation) If the graph dBως e contains no cy-
cle, all objectives have at least one solution and all edges are coherent, then
`ς(ω) 6= ∅.

Computing the graph of local causality is polynomial in the number of
sorts in PH and exponential in the number of processes in one sort. Checking
the properties allowing to apply Theorem 3.11 is polynomial in the size of the
graph. Furthermore, it is possible to compute only a subset of V ∩ Sol; in
this case, the overall method turns out to be exponential in the number of
solutions to each objective. Our method can thus be considered as efficient
compared to regular model-checking which is usually PSPACE-complete [6].

Example 3.12 Let PH′ = (Σ,L,H′〈1〉) be the “flattened” version of the PH in
Fig. 1, that is: H′〈1〉 = H(1)∪H(2), which is equivalent to a PH in the semantics
without priorities. Due to spurious behaviours inherent to the cooperative
sorts in this semantics, the original under-approximation developed in [11]
concludes that c1 is reachable in PH′ from ς = 〈a1, b0, c0, ab10〉.

13

Folschette et al.

Such unwanted behaviours are palliated by the semantics of PH with pri-
orities proposed in this paper. Indeed, the under-approximation given in The-
orem 3.11 does not conclude regarding the reachability of c1, as one of the
edges of the resulting graph of local causality is not coherent (Def. 3.10), as
shown in in Fig. 2. (However, from the inconclusiveness of Theorem 3.11,
one cannot conclude about the unreachability of c1. Such analysis should be
driven for instance with over-approximation methods developed in [11].)

However, if a0 → b0 � b1 and b0 → a0 � a1 are replaced by a0 → a0 � a1

and b0 → b0 � b1, then Theorem 3.11 concludes that c1 is reachable from ς.

3.3 Reachability of a state

The semantics of PH with 2 classes of priorities studied in this paper allows
to model cooperative sorts accurately representing a coherent configuration
of a set of sorts. Therefore, we can derive a new method to conclude about
the reachability of a state (considering only components). Indeed, let PH =
(Σ,L, (H(1),H(2))) be a PH and suppose that we want to study the reachability
of a state s ∈ L. Let PH′ = (Σ′,L′, (H′(1),H′(2))) with: Σ′ = Σ ∪ {τ, σ} and
L′ = L × Lτ × Lσ, where τ is a cooperative sort on all components Γ of PH
(thus Lτ = ×

a∈Γ
La) and σ is a component with Lσ = {σ0, σ1}; furthermore,

H′(1) is the set H(1) completed with all actions updating the cooperative sort
τ , and H′(2) = H(2) ∪ {lsts(τ)→ σ0 � σ1}.

Given an initial context ς, the reachability of s in PH is equivalent to the
concretization of σ0 �∗σ1 in PH′ from the initial context ς ∪ {σ0} (the initial
state of τ does not matter), which can be efficiently under-approximated using
Theorem 3.11. Indeed, the additional action lsts(τ)→ σ0 � σ1 in H′(2) allows
to conclude on the reachability of process lsts(τ), that is, on the reachability
of the state s (considering only the components).

It is also possible to compute the reachability of a set of states S ⊆ L by
creating several actions τs → σ0 � σ1 in H(2) for each state s ∈ S.

4 Large-scale Biological Example

In order to support the scalability and applicability of our under-approximation
of reachability, we apply our new approach for the analysis of large-scale model
of the T-cell receptor (TCR) signalling pathway [12]. This model gathers 94
interacting components and is specified as a Boolean network. The under-
approximation presented in this paper has been implemented in the existing
Pint software 2 .

2 Pint is freely available at http://process.hitting.free.fr.

14

http://process.hitting.free.fr

Folschette et al.

The Boolean model has been automatically encoded into a Process Hitting
with 2 classes of priority 3 . Then, we verified the reachability for the inde-
pendent activation of 4 outputs of the signalling cascade (SRE, AP1, NFkB,
NFAT) from all possible input combinations (CD45, CD28, TCRlib) using
our new reachability under-approximation (answering either yes or inconclu-
sive) and a previously defined reachability over-approximation [11] (answering
either no or inconclusive). All result in conclusive decisions, and the under-
approximation has been satisfied in 12 cases (over 32) proving the satisfiability
of the concerned reachability property in the encoded Boolean network (and
non-satisfiability in the other cases).

Computations times are in the order of a few hundredths of a second on a
2.4GHz processor with 2GB of RAM. To give a comparison, we did the same
experiments with a standard symbolic model-checker, libDDD [9], known for
its good performances, the input model being the Boolean network expressed
as a Petri net. However, due to the large scale of the model, the program runs
out of memory for all the experiments.

While ensuring a low complexity for the analysis of reachability in Boolean
and discrete networks, our under-approximation method reveals to be conclu-
sive in numerous cases when applied to real large-scale biological models, which
were not tractable with exact model-checking.

5 Discussion & Conclusion

We introduced a new semantics to include priorities into the Process Hitting
framework, which prove especially useful to model cooperations. Then, we
developed a method to efficiently perform a reachability analysis of a sequence
of objectives in a restricted class of Process Hitting models, but it is also useful
to establish the reachability of a partial state. This analysis is based on an
under-approximation of the true reachability solutions.

We showed that the class of Process Hitting models that can be handled
by the aforementioned method are equivalent to Asynchronous Discrete Net-
works, and therefore to Asynchronous Boolean Networks. This allows to effi-
ciently compute reachability results on large biological models provided that
they are equivalent to Asynchronous Discrete Networks and that a translation
from the original framework into a Process Hitting model is possible. Such a
translation for interaction graphs of Thomas modelling was proposed in [10].

Further work can be derived from what have been presented in this paper.
The over-approximation on Process Hitting models without priorities proposed
in [11] is still accurate in the framework with priorities (by “flattening” all ac-

3 Model and scripts are available at http://www.irccyn.ec-nantes.fr/~folschet/
underapprox-tcrsig94.zip.

15

http://www.irccyn.ec-nantes.fr/~folschet/underapprox-tcrsig94.zip
http://www.irccyn.ec-nantes.fr/~folschet/underapprox-tcrsig94.zip

Folschette et al.

tions), but may be refined given the restrictions proposed in this paper, and
a specific search of key processes or cut sets may be derived. Furthermore,
a more general under-approximation could be developed in order to handle
a larger class of Process Hitting models, that is, models with more than two
classes of priorities, that do not only contain components of cooperative sorts,
or whose behaviour may contain cycles or cyclic attractors. Finally, in order
to take into account quantitative data in transition delays, the overall approx-
imation method could be extended to handle evolutions that are chronometric
instead of only chronologic.

References

[1] Bause, F., Analysis of Petri nets with a dynamic priority method, in: P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, Lecture Notes in Computer Science 1248,
Springer Berlin Heidelberg, 1997 pp. 215–234.

[2] Cleaveland, R. and M. Hennessy, Priorities in process algebras, Information and Computation
87 (1990), pp. 58–77, special Issue: Selections from 1988 IEEE Symposium on Logic in
Computer Science.

[3] Cleaveland, R., G. Lüttgen and V. Natarajan, Priority and abstraction in process algebra,
Information and Computation 205 (2007), pp. 1426–1458.

[4] Cleaveland, R., G. Lüttgen and V. Natarajan, Priorities in process algebra (1999).

[5] De Jong, H.,Modeling and simulation of genetic regulatory systems: a literature review, Journal
of computational biology 9 (2002), pp. 67–103.

[6] Harel, D., O. Kupferman and M. Y. Vardi, On the complexity of verifying concurrent transition
systems, Information and Computation 173 (2002), pp. 143–161.

[7] John, M., C. Lhoussaine, J. Niehren and A. Uhrmacher, The attributed pi-calculus with
priorities, in: C. Priami, R. Breitling, D. Gilbert, M. Heiner and A. Uhrmacher, editors,
Transactions on Computational Systems Biology XII, Lecture Notes in Computer Science 5945,
Springer Berlin Heidelberg, 2010 pp. 13–76.

[8] Kauffman, S. A., Metabolic stability and epigenesis in randomly constructed genetic nets,
Journal of theoretical biology 22 (1969), pp. 437–467.

[9] LIP6/Move, the libDDD environment (libDDD), http://ddd.lip6.fr.

[10] Paulevé, L., M. Magnin and O. Roux, Refining dynamics of gene regulatory networks in a
stochastic π-calculus framework, in: Transactions on Computational Systems Biology XIII,
Springer, 2011 pp. 171–191.

[11] Paulevé, L., M. Magnin and O. Roux, Static analysis of biological regulatory networks
dynamics using abstract interpretation, Mathematical Structures in Computer Science 22
(2012), pp. 651–685.

[12] Saez-Rodriguez, J., L. Simeoni, J. A. Lindquist, R. Hemenway, U. Bommhardt, B. Arndt, U.-U.
Haus, R. Weismantel, E. D. Gilles, S. Klamt and B. Schraven, A logical model provides insights
into t cell receptor signaling, PLoS Comput Biol 3 (2007), p. e163.

[13] Thomas, R., Boolean formalization of genetic control circuits, Journal of Theoretical Biology
42 (1973), pp. 563 – 585.

[14] Wagler, A. and J.-T. Wegener, On minimality and equivalence of Petri nets, in: L. Popova-
Zeugmann, editor, CS&P, CEUR Workshop Proceedings 928 (2012), pp. 382–393.

[15] Wagler, A. and R. Weismantel, The combinatorics of modeling and analyzing biological systems,
Natural Computing 10 (2011), pp. 655–681.

16

http://ddd.lip6.fr

Folschette et al.

A Proof of Under-approximation (Theorem 3.11)

In the following, we denote: dEω
ς eXY = dEω

ς e ∩ (X × Y), with X, Y amongst
Proc, Obj and Sol.

Proof We note maxς = ς e procs(dBως e) the context supported by dBως e.
Let (ai, ps) ∈ dEω

ς eProc
Sol be an edge linking the required process of a co-

operative sort to a solution set and suppose all children of ps are concreti-
sable. We label all processes of ps by an integer: ps = {pn}n∈Ips . Let us
prove by induction that for all n ∈ Ips, there exists a scenario δn so that:
∀i ∈ J1;nK, (s · δn)[Σ(pi)] = pi.
• It is straightforward for δ0 = ε.
• Suppose such δn exists and let q = (s · δn)[Σ(pn+1)]. By hypothesis, (ai, ps)
is coherent (Def. 3.10) and all processes of ps are processes of components;
this means that none of the processes needed to solve pn+1 is another process
of the same sort than another process of ps. Therefore, there exists δ′ ∈
`s·δn(q �∗ pn+1), so that ∀i ∈ J1;n + 1K, (s · δn · δ′)[Σ(pi)] = pi. Finally, by
Theorem 2.18, there exists a scenario δ′′ ∈ Sce 1(s · δn · δ′) so that, if we
denote δn+1 = δn · δ′ · δ′′, we have: update(s · δn · δ′) = s · δn+1 and the same
property about processes (by Theorem 2.20).

Therefore, δ = δ|ps| exists, and given its properties, we have: (s · δ)[a] = ai
and update(s · δ) = s · δ.

As there is no cycle in dBως e, we show by induction that ∀s ∈ L, s ⊆ maxς,
for all objective P in dV ω

ς e ∩Obj so that target(P) ∈ s, ∃δ ∈ `s(P).

• If (P, ∅) ∈ dEω
ς e

Obj
Sol , either target(P) = bounce(P) and δ = ε; or ∀ζ ∈

BS(P), ζ ∈ Sce(s) ∧ Σ(ζ) = {Σ(P)} and δ = δ1 · ζ1 · . . . · δ|ζ| · ζ|ζ| is a valid
sequence given by Theorem 2.19.

• Suppose all children objectives of P are concretizable. If ∃(P,Q) ∈ dEω
ς e

Obj
Obj,

then by hypothesis, `s(target(P)�∗target(Q) ::Q) 6= ∅, thus `s(P) 6= ∅. Else,
by Def. 3.8, the concretizations of the children of P require no process of
sort Σ(P). Furthermore, there exists ζ ∈ BS(P) so that (P, ζ∧) ∈ dEω

ς e
Obj
Sol .

We show by induction that for all n ∈ Iζ , there is a scenario δn so that
(s · δn)[Σ(P)] = bounce(ζn).
◦ Suppose that δn exists and let ζn = bi → aj � ak. By hypothesis there

exists δ′ ∈ `s·δn(? �∗ bi) with Σ(P) /∈ Σ(δ′) (by Def. 3.8). By Theorem 2.18
there exists δ′′ ∈ Sce 1(s ·δ′) so that update(s ·δ′) = s ·δ′ ·δ′′. Furthermore,
(s · δ′ · δ′′)[b] = bj (by Theorem 2.19 if b ∈ Γ or Theorem 2.20 if b ∈ ∆).
Therefore, δn+1 = δn · δ′ · δ′′ · ζn.

Thus, δ|ζ| ∈ `s(P).

Finally, as `maxς(ω) 6= ∅, `ς(ω) 6= ∅ (Theorem 3.7). 2

17

Folschette et al.

B Weak Bisimulation of Asynchronous Discrete Networks
(Subsect. 2.2)

We exhibit an encoding of Asynchronous Discrete Networks (ADN) with the
Process Hitting using two classes of priorities, and prove a weak bisimulation
relation.

A Discrete Network gathers a finite number of components i ∈ J1;nK having
a discrete finite domain Fi that we note Fi = J1; liK. For each component i ∈
J1;nK, a map F→ Fi is defined, where F = F1×· · ·×Fn, giving the next value
of the component with respect to the global state of the network. Typically
f i depends on a subset of components that we denote dep(f i). In the case of
Asynchronous Discrete Networks (ADN), a transition relation →ADN⊆ F× F
is defined such that x →ADN x′ if and only if there exists a unique i ∈ J1;nK
such that x′[i] = f i(x) and ∀j ∈ J1;nK, j 6= i, x′[j] = x[j], i.e. one and only
one component has been updated. This is formalised in Def. B.1.

Definition B.1 [Asynchronous Discrete Network (ADN)] An ADN is defined
by a couple (F, 〈f 1, . . . , fn〉) where F = F1 × · · · × Fn, and ∀i ∈ J1;nK, f i :
F → Fi with Fi = J1; liK. Given two states x, x′ ∈ F, the transition relation
→ADN is given by

x→ADN x′ ⇐⇒ ∃i ∈ J1;nK, f i(x) = x′[i] ∧ ∀j ∈ J1;nK, j 6= i, x[j] = x′[j] ,

where x[i] is the i-th component of x. We note dep(f i) ⊆ J1;nK the set of
components on which the value of f i depends: ∀x, x′ ∈ F such that ∀j ∈
dep(f i), x[j] = x′[j], necessarily f i(x) = f i(x′).

Let us denote the encoding of the ADN (F, 〈f 1, . . . , fn〉) in Process Hitting
with 2 classes of priorities by PH(F, 〈f 1, . . . , fn〉) (Def. B.2). For each com-
ponent i ∈ J1;nK of the ADN, two sorts are built: ai acting for the component
value, and f i acting for a cooperative sort between the components dep(f i).
Sorts ai have one process aik per element in k ∈ Fi. Sorts f i have one process
f iς per state ς ∈ ×

j∈dep(f i)
Laj . Two classes of actions are then defined: H(1) is

the set of actions updating the cooperative sorts according to the current state
of the components: if j ∈ dep(f i), ajk hits each process f iς where ς[aj] 6= ajk to
make it bounce to the process f i

ςeajk
. H(2) is the set of actions encoding the

transitions in the ADN: f iς hits the processes of sort ai to make them bounce
to the process aik′ if and only if k′ = f i(JςK); JςK being the ADN state corre-
sponding to the PH (partial) state ς (note that f i(JςK) is fully defined because
JςK specifies the state for all the components in dep(f i)).

Definition B.2 PH(F, 〈f 1, . . . , fn〉) = (Σ,L, (H(1),H(2))) is the Process Hit-
ting with 2 classes of priority encoding the ADN (F, 〈f 1, . . . , fn〉), with:

18

Folschette et al.

• Σ = {a1, . . . , an} ∪ {f 1, . . . , fn}, the sorts for components (ai) and cooper-
ative sorts (f i);

• L = ×
i∈J1;nK

Lai × ×
i∈J1;nK

Lf i , where Lai = {ai0, . . . , aili}, and Lf i = {f iς | ς ∈

×
j∈dep(f i)

Lai} if dep(f i) 6= ∅, otherwise Lf i = {f i∅};

• H(1) = {ajk → f iς � f
i
ς′ | i ∈ J1;nK∧j ∈ dep(f i)∧ajk ∈ Laj ∧f iς ∈ Lf i∧ς[aj] 6=

ajk ∧ ς ′[aj] = ajk ∧ (ς ′[al] = ς[al],∀l ∈ J1;nK, l 6= j)}, the set of actions with
priority 1 that update cooperative sorts;

• H(2) = {f iς → aik � a
i
k′ | i ∈ J1;nK∧f iς ∈ Lf i∧aik ∈ Lai∧k 6= k′∧f i(JςK) = k′},

the set of actions with priority 2 for updating the components using their
respective discrete maps. JςK is defined below.

Given a state s ∈ L of the Process Hitting, JsK = x is the corresponding state
in the ADN: ∀i ∈ J1;nK, s[ai] = aik ⇒ x[i] = k.
Given a state x ∈ F of the ADN, LxM = s is the corresponding state in the
Process Hitting: ∀i ∈ J1;nK, x[i] = k ⇒ s[ai] = aik and ∀i ∈ J1;nK, s[f i] = f iς
with f iς ∈ Lf i and ∀j ∈ dep(f i), ς[j] = s[aj].

Theorem B.3 states the weak bisimulation relation between an ADN and
its encoding in PH with 2 classes of priorities. Intuitively, actions updating
cooperative sorts being prioritised, actions updating component sorts follow
strictly the possible transitions of the ADN.

Theorem B.3 ((F, 〈f 1, . . . , fn〉) ≈ PH(F, 〈f 1, . . . , fn〉))
(i) ∀x, x′ ∈ F, x→ADN x′ =⇒ LxM→∗PH Lx′M, where→∗PH is a finite sequence

of →PH transitions.
(ii) ∀s, s′ ∈ L, s→PH s′ =⇒ JsK = Js′K ∨ JsK→ADN Js′K .

Proof (i) From Def. B.1, x →ADN x′ ⇒ ∃i ∈ J1;nK, f i(x) = x′[i] ∧ ∀j ∈
J1;nK, i 6= j, x[j] = x′[j]. Let us assume (without loss of generality) that
f i(x) = k′, x[i] = k and ς ∈ ×

j∈dep(f i)
Laj such that ∀j ∈ dep(f i), ς[j] = ajx[j].

From Def. B.2, h = f iς → aik � a
i
k′ ∈ H(2). From the definition of LxM, aik ∈ LxM

and f iς ∈ LxM; moreover, as there is no action in H(1) applicable in LxM, h is
applicable in LxM: LxM →PH LxM · h. In LxM · h, the only applicable actions of
priority 1 are those having aik′ as hitter and hitting cooperative sorts, giving
a finite number of transitions towards Lx′M.

(ii) s →PH s′ only if there exists an action h applicable in s such that
s · h = s′. If prio(h) = 1, then, by definition of H(1), JsK = Js′K. If prio(h) = 2,
then ∀i ∈ J1;nK, if s[f i] = f iς , then, ∀j ∈ dep(f i), ς[aj] = s[aj]. Let i ∈ J1;nK
such that s[ai] 6= s′[ai] (i is unique for this transition). By Def. B.2, if s′[ai] =
aik′ , necessarily f i(JsK) = k′, hence JsK→ADN Js′K. 2

19

Folschette et al.

a

0

1

b

0

1

c

0

1

ab

00

01

10

11

Figure 1. An example of PH with 2 classes of priorities. Sorts are represented as labelled boxes
and processes as circles with their identifier on the side. Actions of H(1) are represented by thick
arrows and actions of H(2) are represented by single arrows; the hit part of each action in drawn
in plain line and the bounce part is in dotted line. Greyed processes stand for a possible state
s = 〈a1, b0, c0, ab10〉.

20

Folschette et al.

c1

c0 �∗ c1

ab11

a1

a1 �∗a1

a0 �∗a1

b0

b0 �∗ b0

b1 �∗ b0

b1

b1 �∗ b1

b0 �∗ b1

a0

a0 �∗a0

a1 �∗a0

Figure 2. The graph of local causality of the PH model in Fig. 1. Rectangular nodes containing
a single process are elements in Proc, nodes containing a couple of processes are elements in
Obj and circle nodes are elements in Sol. Theorem 3.11 is inconclusive on this example as edge
(ab11, {a1, b1}) ∈ Proc × Sol (here represented with a double line) is not coherent (Def. 3.10).
Indeed, a0 ∈ Proc is a child of {a1, b1}, but a0 6= a1 (and the same also stands for b0).

21

	Introduction
	The Process Hitting Framework
	Definition of the Process Hitting with k classes of priorities
	Modelling cooperation
	Restrictions
	Consequences of the restrictions

	Static Analysis
	Preliminary definitions
	Under-approximation
	Reachability of a state

	Large-scale Biological Example
	Discussion & Conclusion
	References
	Proof of Under-approximation (Theorem 3.11)
	Weak Bisimulation of Asynchronous Discrete Networks (Subsect. 2.2)

