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Introduction

Solving the Vlasov-Poisson equation is challenging. Some popular methods for studying this equation are the Particle-In-Cell (PIC) method [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF] or the semi-lagrangian approach [5].

In a previous work [START_REF] Helluy | Space-only hyperbolic approximation of the Vlasov equation[END_REF], we constructed a reduced Vlasov-Poisson model with a velocity basis expansion.

In this paper, we consider a Fourier velocity transformation of the Vlasov equation. We construct a reduced model where the unknown depends on space and time instead of the full phase-space variables. The reduced model is a linear hyperbolic system, with non-linear source terms. We present numerical results for classical plasma physics test cases.

Plasma mathematical model

In our work, we consider the one-dimensional Vlasov equation

∂ t f + v∂ x f + E∂ v f = 0, (1) 
where the unknown distribution function f depends on the space variable x ∈ R/LZ, the velocity variable v ∈ R and the time variable t ∈ R + . The electric eld E depends on x and t and is the solution of the Poisson equation

∂ x E = -1 + ˆv f, ˆL x=0 E = 0. (2) 
The equations (1-2) are supplemented by an initial condition

f (x, v, 0) = f 0 (x, v).
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For practical reasons, we will allow that f and E take complex values, however, of course, only the real parts are physically relevant.

We consider a Fourier transformation with respect to the velocity variable (we denote by

I = √ -1) φ(x, η, t) = ˆ+∞ v=-∞ f (x, v, t) exp(-Iηv)dv.
The Fourier velocity variable is denoted by η ∈ R. 

∂ t φ + I∂ x ∂ η φ + IEηφ = 0. (3) 
In addition, the Poisson equation becomes

∂ x E(x, t) = -1 + φ(x, 0, t). (4) 
We call the new model the Vlasov-Fourier equation.

Discretization of the Vlasov-Fourier equation with respect to the Fourier velocity variable

We will perform a semi-discretization of (3) with respect to the variable η in order to obtain a rst order hyperbolic system set only in (x, t). We shall call this new system of equations the reduced Vlasov-Fourier model. We could expand the function φ on a basis of arbitrary functions depending on η. See for instance [START_REF] Bourdiec | Numerical solution of the Vlasov-Poisson system using generalized Hermite functions[END_REF] and included references. For practical numerical reasons, we decide to choose a classical Lagrange nite element interpolation basis, because it leads to a sparse matrix representation of the hyperbolic system.

Continuous interpolation by the nite element method

In practice, φ almost vanishes at the boundaries η → ±∞. We consider thus a truncated domain η ∈ [-η max , η max ] and the following dissipative boundary conditions at ±η max ∂ x φ(x, ±η max , t) ± Iγφ(x, ±η max , t) = 0, (5) in which γ ≥ 0.

We recall now how the nite element basis is constructed. We consider an arbitrary polynomial degree d. The reference element is dened by

Q = [-1, 1].
We dene the d + 1 reference nodes by

Ni = -1 + 2 i -1 d , i = 1 • • • d + 1.
We mesh the interval [-η max , η max ] with N nite elements

(Q i ) i=1•••N and nodes (N j ) j=1•••P . The total number of nodes in this interval is P = d • N + 1.
In practice, we suppose that the nodes are equally spaced in [-η max , η max ]

N j = -η max + 2η max dN (j -1).
We introduce a connectivity array for detecting that node N j is the k th local node of a given element

Q i j = connec(k, i) = k + (i -1)d, 1 ≤ k ≤ d + 1, 1 ≤ i ≤ N.
We also use the notation

N j = N k,i and then, element Q i has its support in the interval [N 1,i , N d+1,i ].
We construct a transformation τ i that maps element Q onto Q i . For this purpose we consider the Lagrange polynomials on Ê, dened by

Lk (η) = l =k η -Nl Nk -Nl . ( 6 
)
The transformation is then given by

τ i (η) = d+1 k=1 Lk (η)N k,i . (7) 
Because the nodes of the mesh are equally spaced in our application, the transformation τ i is linear. We construct the interpolation basis in such a way that each basis function ϕ j is associated to a node N j of the mesh and satises

ϕ j (N i ) = δ ij ,
where δ ij denotes the Kronecker symbol. We recall how to compute the basis function ϕ

j . Let η ∈ [-η max , η max ].
Necessarily, η belongs at least to one nite element Q i . Two cases are possible

(1) Node N j belongs to nite element Q i , i.e. ∃k,

N j = N k,i , then ϕ j (η) = Lk (η), where η = τ i (η). (8) 
(2) Node N j does not belong to Q i , then ϕ j (η) = 0.

Application to Vlasov-Fourier discretization

We suppose that the function φ(x, η, t) is well approximated by an expansion on the basis

{ϕ j } j=1•••P φ(x, η, t) = P j=1 w j (x, t)ϕ j (η), (9) 
we shall also use the convention of sum on repeated indices φ(x, η, t) = w j (x, t)ϕ j (η).

(10)

Because of the interpolation property of the basis{ϕ j } j=1

•••P ϕ i (N j ) = δ ij , we have φ(x, N i , t) = P j=1 w j (x, t)ϕ j (N i ) = w i (x, t).
Therefore, we can approximate the initial condition in the following way

w j (x, 0) = φ(x, N j , 0) = φ 0 (x, N j ).
Considering the equation (3) and the boundary condition (5) we can consider the following weak formula of the problem : nd φ(x, η, t) such that for all (continuous) test function ϕ(η) we have

ˆη ∂ t φϕ + ˆη I∂ x ∂ η φϕ + ˆη IEηφϕ - 1 2 ϕ(η max )I∂ x φ(•, η max , •) + 1 2 ϕ(-η max )I∂ x φ(•, -η max , •) + 1 2 ϕ(η max )γφ(•, η max , •) + 1 2 ϕ(-η max )γφ(•, -η max , •) = 0 (11) 
This "semi-weak" formula is equivalent with the initial problem (3) supplemented with the boundary conditions (5).

Indeed, if φ is a solution of (3) with the conditions (5), it is evident that φ is also a solution of (11).

Reciprocally, if we suppose that φ is a solution of (11), because (11) is true for arbitrary test function. Thus for every function ϕ such that ϕ(-η max ) = ϕ(η max ) = 0, we obtain ˆη ∂ t φϕ + ˆη I∂ x ∂ η φϕ + ˆη IEηφϕ = 0 and thus (3).

Then taking test functions ϕ that do not vanish at η = ±η max we obtain the boundary conditions (5).

Morever we show now that the choice of boundary conditions ( 5) ensures the hyperbolicity of the system and ensures that the energy is not increasing.

We can introduce the following matrices of dimension

P × P M = ( ˆη ϕ i ϕ j ), A = I Ã, B = B E + D, (12) 
where

Ãij = ˆη ϕ i ϕ j - 1 2 ϕ i (η max )ϕ j (η max ) + 1 2 ϕ i (-η max )ϕ j (-η max ), (B E ) ij = IE ˆη ηϕ i ϕ j , D ij = 1 2 γ(ϕ i ϕ j (η max ) + ϕ i ϕ j (-η max )).
We obtain the following equation

M ∂ t W + A∂ x W + BW = 0, (13) 
in which W (x, t) is the complex vector of P components W = (w 1 , w 2 , ..., w P ) T .

Obviously, the mass matrix M is positive hermitian. An integration by parts in η shows that A is hermitian. Finally, B E is skew-hermitian and D is diagonal non-negative. It is then classical to prove that system (13) is hyperbolic (i.e. that M -1 A is diagonalizable with real eigenvalues [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]) and energy dissipative.

In practice, to compute the matrices M, A, B we use the Gauss-Legendre integration and sparse matrix representations.

Finite volume schemes

We describe now the numerical approximation. We assume that the spatial domain ]0, L[ is split into N x cells. The cell C i is the interval x i-1/2 , x i+1/2 , i = 1..N x . For practical reasons, we also consider two virtual cells C 0 and C Nx+1 for applying the periodic boundary condition. At the beginning of a time step, we copy the values of the cell C Nx to the cell C 0 , and the values of the cell C 1 to the cell C Nx+1 . The center of the cell C i is

x i = i x -x 2 .
The space step is x = L/N x . We also consider a sequence of times t n , n ∈ N, such that t 0 = 0 and t n = n t, where t satises the following CFL condition

t = α x η 2d , 0 < α ≤ 1.
We consider a nite volume approximation of (13). We denote by W i (t) a piecewise constant approximation of W in each cell W i (t) W (x, t), x ∈ C i .

We obtain the following semi-discrete (in space) approximation

M ∂ t W i = - F (W i , W i+1 ) -F (W i-1 , W i ) x -BW i .
where

(W L , W R ) → F (W L , W R ) denotes the numerical ux.
We then introduce a time discretization to compute

W n i W n i W (x, t n ), x ∈ C i .
We use a time second order scheme given by the following algorithm

M W n+1/2 i -W n i t/2 = - F (W n i , W n i+1 ) -F (W n i-1 , W n i ) x -BW n i , M W n+1 i -W n i t = - F (W n+1/2 i , W n+1/2 i+1 ) -F (W n+1/2 i-1 , W n+1/2 i ) x -BW n+1/2 i . ( 14 
)
We consider several choices for the numerical ux F (W L , W R ). We consider the centered ux or a numerical ux with small numerical viscosity ("slightly upwinded ux"). The centered ux is given by

F (W L , W R ) = A W L + W R 2 ,
and the slightly upwinded ux with δ > 0

F (W L , W R ) = A W L + W R 2 - δ 2 (W R -W L ). (15) 
In practice, for saving CPU time and memory, we use two subroutines for computations with the sparse matrices in skyline format. The rst one computes the product of a sparse matrix and a vector. The other one is used to solve a linear system (by the LU method).

Test cases

In this section, we will apply our numerical scheme, (14-15) and ( 12), on two test cases: the Landau damping and the two stream instability. The electric eld, solution of the Poisson equation ( 4), is computed with the FFT (Fast Fourier Transform) algorithm.

We will compute the electric energy dened by

E(t) = ˆL 0 E(x, t) 2 dx.
We are also interested in the distribution function in physical variable (x, v). The formula of the inverse Fourier transform reads

f (x, v, t) = 1 2π ˆ+∞ -∞ φ(x, η, t)e Iηv dη 1 2π ˆηmax -ηmax φ(x, η, t)e Iηv dη. (16) 
We apply the rectangle method with oversampling for computing (16), in order to avoid Shannon aliasing. For this computation we can use a naive DFT computation instead of the FFT algorithm, because this step is applied only at the beginning and the end of the simulation.

In our numerical experiments, the discretization parameters are N = 40, d = 5, N x = 256, γ = 0. Numerical investigations for γ > 0 will be carried out in future work.

The Landau damping

In this test case, the initial distribution function and the initial electric eld are given by

f 0 (x, v) = (1 + ε cos(kx)) 1 √ 2π e -v 2 2 , E 0 (x) = ε k sin(kx),
where ε > 0 and k ∈ N * , and the domain size is L = 2π/k.

So, the initial distribution function in velocity Fourier variable writes For small ε, thanks to a linear approximation of the non-linear Vlasov-Poisson system, it is possible to compute an approximate analytical solution of the electric eld. The details of the computation are given in [START_REF]Sonnendrücker Approximation numerique des equations de Vlasov-Maxwell[END_REF].

In addition, the distribution function can be computed by a well-validated method, such as the PIC method. Let us take the values of parameter k = 0.2 and ε = 5 × 10 -2 . We compare our numerical results with the PIC results and also with the analytical solution.

We compare the distribution function and the electric energy of the Vlasov-Fourier method and of the PIC method (taken from [3]), for example at time t = 100 on Figure 1. We also compare the time evolution of the electric energy in the domain obtained by our method with the analytical solution (see Figure 2). The value of parameters for this test case are k = 0.2, ε = 5 × 10 -3 δ = 0.05 and v 0 = 3. The distribution function is plotted at times t = 25 and t = 50 in Figures 3 and4. We compare the PIC method and the Vlasov-Fourier method with the centered ux. At time t = 50, we remark small oscillations, which are maybe due to the fact that we have almost no upwind mechanism in the resolution of the transport equation. In order to remove these oscillations, we use the slightly upwinded ux (15) with parameter δ = 0.05 instead of the centered ux and we obtain the results of Figure 5 in which the oscillations have disappeared.
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 1 Figure 1. The distribution function of the Landau damping test case at time t = 100. Left: Vlasov-Fourier method. Right: the PIC method.

Figure 2 .

 2 Figure 2. The electric energy of the Landau damping test case up to time t = 100, the green curve asymptotic is the analytical solution and the red curve energy is computed with the Vlasov-Fourier method.

  x, v)e -Iηv dv = (1 + ε cos(kx))e -η 2 2 .

Figure 3 .

 3 Figure 3. The distribution function of the two-stream test case at time t = 25. Left: Vlasov-Fourier method (with the centered ux). Right: the PIC method.
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 42212 Figure 4. The distribution function of the two-stream test case at time t = 50. Left: Vlasov-Fourier method (with the centered ux). Right: the PIC method.

  The distribution function φ(x, η, t) satises the Fourier trans-

	formed Vlasov equation [9]