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69621 Villeurbanne, France and

CEA-LETI; MINATEC, 38054 Grenoble, France.

Anabela Da Silva
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Purpose: In the context of fluorescence diffuse optical tomography, determining

the optimal way to exploit the time-resolved information has been receiving much

attention and different features of the time-resolved signals have been introduced. In

this paper, we revisit and generalize the notion of feature, considering the projection

of the measurements onto some basis functions. This leads us to propose a novel

approach based on the wavelet transform of the measurements.

Methods: A comparative study between the reconstructions obtained from the pro-

posed wavelet-based approach and the reconstructions obtained from the reference

temporal moments is provided. An inhomogeneous cubic medium is considered. Re-

constructions are performed from synthetic measurements assuming Poisson noise

statistics. In order to provide fairly comparable reconstructions, the reconstruction

scheme is associated with a particular procedure for selecting the regularization pa-

rameter.

Results: In the noise-free case, the reconstruction quality is shown to be mainly

driven by the number of selected features. In the presence of noise, however, the

reconstruction quality depends on the type of the features. In this case, the wavelets

approach is shown to outperform the moments approach. While the optimal time-

resolved reconstruction quality, which is obtained considering the whole set of time

samples, is recovered using only height wavelets functions, it cannot be attained us-

ing moments. It is finally observed that the time-resolved information is of limited

interest, in terms of reconstruction, when the maximum number of detected photons

is lower that 105.

Conclusions: The wavelet approach allows for better exploiting the time-resolved

information, especially when the number of detected photons is low. However, when

the number of detected photons decreases below a certain threshold, the time-resolved

information itself is shown to be of limited interest.

Keywords: Fluorescence diffuse optical tomography; time-resolved imaging; data

features; wavelets ; multi-resolution.
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I. INTRODUCTION

Traditional approaches in fluorescence diffuse optical tomography (FDOT) can be broadly

classified into three groups: (i) continuous wave (CW), (ii) frequency domain (FD), and (iii)

time-resolved (TR) techniques. These three approaches differ in the modes of excitation

and detection. Specifically, CW-FDOT is based on the measurement of the attenuation of

a steady state excitation light.1–5 Frequency-domain FDOT is based on the measurement of

the phase and demodulation of an amplitude-modulated excitation.6,7 TR FDOT is based

on the temporal measurement of the distortion of an excitation light pulse.8–14 The CW

and FD approaches are inexpensive and easy to develop. TR FDOT, on the other hand,

is more costly and requires careful handling. It, however, allows to separate absorption

and diffusion15, to derive fluorescence lifetime16 and to better reconstruct deeply-embedded

markers8. FD FDOT, unlike CW-FDOT, also offers this possibilities. However, in practice,

the FD measurements can only be performed for few modulation frequencies. Thus, the

information content of the TR measurements, which contains any frequency, is richer than

the FD measurements one.

An important aspect is to know how to select useful information contained in the TR

signals. This issue is more commonly known as the problem of selecting data features or

data types. Initial developments focused on early-arriving photons of temporal signals.9

This approach, however, suffers from low signal-to-noise ratio (SNR) and provides poor

depth resolution. A more recent trend has been to exploit the global features of time-

resolved signals.10–13,17 Specifically, the Laplace transform of the TR signals12 and above

all the temporal moments of the fluorescence signals have been intensively studied and

employed10,11,13,18,19. The moment approach is of particular interest since it allows for a

physical interpretation of the features, in terms of the number of photons and their time of

flight, while being easy to calculate.20 The moments approach is the most studied one and is

therefore often recognized as the gold standard. As an alternative, local features have also

been proposed, with particular attention on photon counts within time windows21,22 as well

as on the photon peak value and time14.

While various types of data features have been introduced and are used in practical applica-

tions, few studies have compared their performances. The first contribution in this direction

is by Grosenick et al. who compared reconstructions from photon counts within different
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time windows in the context of TR-DOT.21 Comparisons of reconstructions obtained from

moments of different orders have been provided by Gao et al. in the context of TR-DOT23

and by Lam et al. in the context of TR-FDOT11. Riley et al. showed that local features

such as the photon peak value and time can be superior to moments in terms of noise

robustness.14 Recently, we established that the domain of interest of the moments approach

in FDOT is mainly determined by the signal-to-noise ratio (SNR) of the measurements.19

When photonic noise is considered, the SNR of a measurement depends on the number of

detected photons; the more photons are detected, the better the SNR. When enough pho-

tons can be detected, the moment-based approach outperforms the classical CW approach.

Below a certain threshold, however, the moment-based approach is severely limited by the

low SNRs of the measurements and it is then comparable to the CW approach in terms of

reconstruction quality. Since it can be experimentally difficult to collect many photons, es-

pecially when think or very absorbing media are considered, features allowing for exploiting

the TR information at lower SNRs are desirable.

To this purpose, we introduce in this paper a new kind of localized analysis based on

the wavelet decomposition of the TR-FDOT signal. The success of wavelet algorithms for

a large number of applications in biomedical imaging mainly lies in the multi-resolution

capabilities and the ease with which regularization criteria can be incorporated.24 Specific

applications to the field of DOT/FDOT are that of Zhu et al., who demonstrated a reduction

in the computational costs for the same reconstruction quality,25,26 and Kanmani et al.27

and Frassati et al.28, who employed wavelets in the forward problem of DOT and FDOT,

respectively.

In this paper, we present a novel wavelet-based technique for the exploitation of the TR

information; i.e., primarily as a tool to aid in the choice of the data features. We evaluate,

in terms of reconstructions quality, the benefit of the proposed wavelet-based approach and

provide a comparative study that shows its advantage over the temporal moments.

The paper is organized as follows. In Sec. II, we briefly review the different models

involved in the theory of FDOT. In Sec. III, we introduce a general formalism that describes

the notion of a data feature/type. The wavelet decomposition, which fits naturally in this

formalism, is then introduced as well as the procedure retained to solve the new inverse

problem. Section IV is devoted to the presentation of our numerical simulations. This

presentation comprises the description of the chosen phantom, the setting of the number of
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detected photons as well as the implementation of the forward model, wavelet transform,

and reconstruction procedure. In Sec. V, we present the results of the numerical simulations

for a specific reconstruction configuration. Quantitative criteria are defined to facilitate the

comparison of the different reconstructions. Finally, the influence of the number of detected

photons is evaluated.

A. Notations

We consider real-valued continuously-defined functions f(t), t ∈ R. The time domain

convolution of the two functions f and g is written f ∗ g and is defined as (f ∗ g)(t) =∫ +∞
−∞ f(τ)g(t − τ) dτ . The Fourier transform of f(t) is denoted by f̂(ω) and is defined as

f̂(ω) =
∫ +∞
−∞ f(t) exp(− jωt) dt, j being the square root of −1. The moment of order k of

the function f is given by
∫
f(t)tk dt.

Matrices are denoted in upper-case bold letters while vectors are marked with lower-case

bold letters. Vectors are seen as column-matrices: x = (x1, ..., xn)T . The notation ‖.‖

denotes the discrete `2 norm defined by ‖x‖ = (xTx)1/2. The weighted `2 norm induced by

the positive-definite matrix Q is denoted as ‖x‖Q = (xTQx)1/2.

II. FDOT THEORY

We consider an absorbing and diffusing medium Ω that embeds fluorescence markers. Let

∂Ω be the boundary of Ω. FDOT consists in exciting the medium with a laser beam at some

positions s ∈ ∂Ω and exploiting the fluorescence light measured at some positions d ∈ ∂Ω to

infer the internal structure of the medium. As shown in Fig. 1, the underlying principle of

FDOT can be explained by a three-step process. It involves light propagation at excitation

wavelength λx, fluorescence of the markers, and propagation at fluorescence wavelength λf .

A. Underlying physical models

Light propagation

Light propagation within biological tissues is strongly dominated by absorption and scat-

tering of light. Among the different models of light propagation developed for the so-called
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FIG. 1. The mechanism of FDOT. a) Excitation: The light emitted by the source at position s

propagates through the medium; b) Fluorescence: the fluorescent marker absorbs a fraction of the

excitation light and then emits light at a higher wavelength; c) Emission: The light emitted by

the fluorescent marker at position rn propagates through the medium; the fluorescent marker thus

acts as a secondary source of light.

turbid media, the deterministic models are obtained by solving partial differential equations

(see secs. II.D-F Ref. 29 for an overview of the different models). Although general models

such as the telegraph equation30 or the radiative transfer equation (RTE)31 can be used, the

light propagation in FDOT is classically assumed to follow the diffusion equation. Within

this framework, the photon density φ (photons.s−1.cm−2, refer to Section II.C of Ref. 29 for

the definition) at position r ∈ Ω and time t satisfies the following derivative equation:29[
−∇

(
1

3µ′s(r)
∇
)

+
1

ν

∂

∂t
+ µa(r)

]
φx(r, t) = S(r, t), (1)

where µa (cm−1) is the absorption coefficient, µ′s (cm−1) is the reduced scattering coefficient,

ν (cm.s−1) is the speed of light within the medium and S (photons.s−1.cm−3) is the source

term. Typically, the source model consists in placing a virtual source at position s′ ∈ Ω,

typically chosen at 1/µ′s beneath the physical source position s ∈ ∂Ω.32 Thus, we have

S(r, t) = N0δ(r− s′)δ(t), (2)

where N0 is the number of injected photons.

To complete the description of light propagation, note that boundary conditions must be

incorporated to Eq. (1) (refer to Ref. 29 and Ref. 33 for details on the treatment of bound-

aries).

As recommended in Ref. 34, the photon density will be considered as the measurable quan-

tity.
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Fluorescence

Let us consider a fluorescent marker concentration c(r) (µM) within an infinitesimal vol-

ume d3r centered at position r. The fluorescence marker is characterized by its fluorescence

lifetime τ (ns), quantum yield η (-), and cross section γ (cm2). The fluorescence pulse

response f in both space and time (cm−1.s−1) is given by

f(r, t) = e(t)c(r)δ(r) d3r, where: (3)

e(t) = ηγ/τ exp(−t/τ). (4)

More complicated multi-exponential decays could also be incorporated but this level of

sophistication is generally not necessary in FDOT.

B. Forward model

In what follows, the spatial dependence of a function is systematically indicated as a

subscript. With this convention, the light measured at detection point d resulting from

excitation at source point s is denoted by us,d(t). The medium Ω is discretized into N

voxels of volume vn, centered at positions rn, n ∈ {1, ..., N}. Considering a constant marker

concentration within voxels, we have:

us,d(t) =
N∑
n=1

cnvnNx [gs,rn ∗ e ∗ grn,d] (t), (5)

where cn is the local marker concentration at position rn, and gs,rn and grn,d are the Green’s

function for Eq. (1) at position rn, considering the Dirac source functions located in s and

d, respectively.

Considering a distribution of S source points {s} and D detector points {d}, a set of S×D

measurement pairs {sj,dj}, j ∈ {1, 2, 3, . . . , S×D} is formed. Considering any measurement

on the model of Eq. (5), we obtain the following matrix system:

u(t) = W(t)c. (6)

The vector u(t) = [u1(t), u2(t), .., uSD(t)] is the measurement vector. The vector c =

[c1, c2, . . . , cN ] is the concentration vector. The matrix W(t) of size SD ×N , which maps

the concentration vector onto the measurement vector, is referred to as the weight matrix.
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Its (j, n)th entry is given by: wj,n(t) = vnNx [gsj ,rn ∗ e ∗ grn,dj
](t). Note that the Green’s

functions for any other light propagation equation could have been used the same way in

Eq. (6).

C. Noise model

Due to the quantum nature of light, light measurements are intrinsically corrupted by

Poisson noise. Consequently, the variance of a set of light measurements equals the mean

value of this set. This was observed by Selb et al. in experimental situation.35 However, on

the basis of CW FDOT measurements, Hyde et al. observed the noise variance to be rather

proportional the mean value of the measurement.36 For their part, Riley et al. found the

standard deviations of TR FDOT measurements to be proportional their mean values.14 The

explanation for the two last observation is unclear but has been attributed to the presence

of some non-photonic sources of noise.

In this study, the number of detected photons is hypothesized to be large enough to neglect

any non-photonic sources of noise. Subsequently, the classical Poisson noise model can be

used. Moreover, since the number of detected photons is assumed to be large, the Poisson

distribution is approximated by a Gaussian distribution whose variance equals the mean.

Hence, the noisy version of the measurement us,d(t), denoted ũ, is given by

ũs,d(t) = us,d(t) +N{µ = 0, σ2 = us,d(t)}, (7)

where N (µ, σ2) denotes a Gaussian distribution of mean µ and variance σ2.

III. BASIS FUNCTIONS

In this section, we refer to data types17, which are also referred to as measurement types37

or data features12 in the literature. All these terms are used to describe the transformations

applied to the TR measurements in order to reduce the redundancy, the computational

cost of the inverse problem and possibly the computational cost of the forward model. As

Schweiger et al. already suggested in their pioneering work, a good data type should possess

the following properties:17

• Efficiency: Maximize the information captured from the TR measurements in order to

yield high-accuracy reconstructions, both in terms of sensitivity and resolution;
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FIG. 2. Basis Functions (BFs). Any data type can be conceived as the projection of the measure-

ments on such functions. a) BFs corresponding to the moments; b) BFs corresponding to the Haar

wavelet decomposition. Moments are non-localized data features, whereas the wavelet features are

localized one.

• Sparseness: Provide a parsimonious representation; and

• Robustness: The quality of reconstruction must be robust and any performance degrada-

tion with respect to noise must be at an acceptable level.

Here, the concept of data types is formalized by considering the projections of the TR

measurements on some TR functions, referred to as basis functions (BFs). Let u(t) denote a

TR measurement and p(t) a BF. The data feature of u(t) associated with p(t) is defined by

the dot product: 〈u, p〉 =
∫
u(t)p(t) dt. In the following, we make the distinction between

data features, which are projection coefficients, and data types, which describe a type of

BFs.

Note that within this BF-based framework, the classical kth order temporal moments of

the measurements are easily obtained considering a non-orthonormal basis of monomial, i.e.

choosing p(t) = tk as illustrated in Fig. 2.
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A. Temporal wavelet transform

In this paper, we introduce a new data type choosing the BFs as wavelets bases. The

motivation for this choice is to benefit from the well-known data compression and noise

reduction properties of the wavelet bases. The proposed approach results in a temporal

multi-resolution analysis (MRA) wherein a given function is projected onto translated ver-

sions of the so-called scaling function ϕ(t) (which yield smooth approximations) and wavelet

function ψ(t) (which give rise to the detail coefficients).38

A large number of wavelets bases are available. In this study, the Haar wavelets are con-

sidered. On top of its implementation simplicity, this choice offers a natural link between

the new Haar features and the classical features based on the number of photons detected

within time windows. In the Haar case, the scaling function ϕ is a B-spline of degree zero.

The scaling function ϕi at scale i is given by

ϕi(t) = h(t)− h(t− 2iTe), (8)

where h(t) is the Heaviside unit-step function and Te is the finest time step. Thus, the

analysis performed at a coarser scale as i increases. The finest scale is obtained for i = 0.

The wavelet ψi at scale i is given by

ψi+1(t) = ϕi(t)− ϕi(t− 2iTe). (9)

The approximation coefficients at scale i are given by ai[k] = 〈u(t), ϕi(t − k2iTe)〉 and the

corresponding detail coefficients are given by di[k] = 〈u(t), ψi(t− k2iTe)〉.

B. Inverse problem within the BFs framework

We consider a set of P BFs {p1(t), . . . , pP (t)}. Projecting both sides of the time-resolved

forward model u = Wc (see Eq. (6)) on this set of BFs leads to the following time-featured

forward model:

y = Ac. (10)

In Eq. (10), y is the time-featured measurement vector, of size SDP × 1, such that: y =

[〈ũ1,1, p1〉, . . . , 〈ũ1,1, pP 〉, . . . , 〈ũI,J , pP 〉]T . The matrix A is the featured weight matrix of size

IJP×N . Its nth column is given by an = [〈w(1,1),n, p1〉, . . . , 〈w(1,1),n, pP 〉, . . . , 〈w(I,J),n, pP 〉]T .
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The reconstruction procedure used in this study to inverse the featured forward model

was introduced in a previous work19. It is chosen here for its ability to provide fairly compa-

rable reconstructions. This reconstruction procedure belongs to the Tikhonov regularization

framework.39 The regularized solution c∗α is thus chosen as

c∗α = arg min
c
||y −Ac||2Q + α||c||2, (11)

where Q is matrix that allows for down-weighting some measurements and α is the regu-

larization parameter. The choice of α is crucial since the solution c∗α dramatically depends

on its value. It is even more crucial if, as we intend to do, one is interested in getting fairly

comparable solutions from the inversion of different forward models –i.e. obtained from the

projection of Eq. (6) on different sets of BFs. Here, as justified in Ref. 19, the choice of α

is based on the stability V of the reconstruction, which is defined as

V(α) =
‖σ[c∗α]‖
‖E[c∗α]‖

, (12)

where E[c∗α] and σ[c∗α] are two vectors corresponding to the mean and standard deviation of

the components of c∗α. The regularization parameter α is the chosen such that the stability

V of the solution satisfies a prescribed value.

IV. NUMERICAL SIMULATIONS

A. Description of the phantom

We consider the synthetic phantom depicted in Fig. 3. This synthetic phantom is a cube

of 4× 4× 4 cm3, whose optical properties are inhomogeneous. The background absorption

coefficient µa is set to 0.2 cm−1, the background reduced scattering coefficient µ′s to 10 cm−1,

and the refractive index n to 1.4. The choice of these values is based on experimental

measurements of breast-tissue properties.40. We consider two inhomogeneities the depicted

in Fig. 3. The first inhomogeneity is a cylinder of diameter 1 cm whose absorption coefficient

is 10 % higher than the background. The axis of this cylinder lies in the plane z = 2

cm and intersects the borders of the cube at positions [−2, 0, 2] cm and [0, 2, 2] cm. The

second inhomogeneity is a sphere of diameter 1 cm whose reduced scattering coefficient is

10 % higher than the background. The center of the sphere is located at position [1,−1, 2]

cm. The described optical properties are assumed to be the same at both excitation and
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FIG. 3. Synthesized phantom. The red dots represent the source points, the blue rings the detector

points and the thin black dots the mesh nodes (for clarity, only those at the border are represented).

On the left are represented the optical properties of the medium. The background values are µa

= 0.2 cm−1, µ′s = 10 cm−1, τ = 0.3 ns and n = 1.4. The absorbing homogeneity (δµa = 0.02

cm−1) is depicted in green, the diffusing inhomogeneity (δµ′s = 1 cm−1) in brown. On the right is

represented the marker concentration distribution.

fluorescence wavelengths.

The absorbing and diffusing medium is excited by S = 13 point-sources and probed by

D = 13 detectors. The sources and detectors are uniformly arranged onto two grids of side

3 cm placed 5 cm apart. The medium lies between the detection and the excitation planes,

in the so-called transmission geometry.

We consider a unique fluorescent marker type with a lifetime τ of 0.3 ns. The fluorescent

markers concentrate preferentially around the three positions r1 = [−1.125,−1.125, 2.125],

r2 = [0.875, 0.875, 2.875] and r3 = [0.875, 0.875, 1.125], which are referred to as fluorescence

inclusions 1, 2 and 3, respectively (see Fig. 3 for illustration). The marker concentration is set

to 1µM at the center of the inclusions. Away from the center, the concentration decreases. A

Gaussian distribution, whose standard deviation σ can be adjusted to tune the spatial extent

of the inclusion, is used to account for the decrease of the concentration. Here, the inclusion

1 is chosen to be narrower than the inclusions 2 and 3. Specifically, the standard deviation

of the inclusions 1, 2, and 3 is σ1 = 0.15 cm, σ2 = 0.2 cm and σ3 = 0.2 cm, respectively. To

simulate the autofluorescence of the tissue – natural fluorescence in the absence of markers –
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as well as the unperfect uptake of the marker, a fluorescent background, i.e. a homogeneous

distribution of markers within the medium, is also considered. The concentration of the

background is set to 0.01 µM .

We have chosen this particular configuration of inclusions in order to assess two of the

weaknesses of FDOT: first, the poor ability to detect an inclusion (here, inclusion 1) located

far away from the sources and the detectors41; second, the limited resolution between two

inclusions (here, inclusions 2 and 3) aligned along the z-axis23. It is of interest to analyze

how the TR approaches cope with these situations.

B. Number of detected photons

When Poisson noise is considered, the signal-to-noise ratio (SNR) of a measurement

increases with respect to value measured. Indeed, if few photons are detected the SNR of

the measurement is low, while if many photons are detected, the SNR of the measurement

is high. In the following, the SNR is tuned by rescaling the TR measurements before

applying the Poisson noise. Specifically, we impose the value of the maximum number

of photons detected by one of the measurement pairs. We denote Cmax this number of

photons. Increasing the prescribed value for Cmax is experimentally equivalent to increasing

the integration time until Cmax photons are collected by one of the detectors. In the present

study, Cmax lies in the range [105, 109], which is consistent with the assumption made in

Sec. II C concerning the numbers of detected photons.

C. Computation of TR the weight matrix

The time-varying entries wj,n(t) = vnNx [gsj ,rn ∗ d ∗ grn,dj
](t) of the weight matrix are

computed as follows.

Step 1 : Calculation of the product of the Fourier transform of the Green’s functions:

ĝsj ,r(ω) ĝr,dj
(ω).

The Green’s functions ĝsj ,r(ω) and ĝr,dj
(ω) are computed by solving the Fourier trans-

form of Eq. (1) by means of finite element method. Specifically, i) we used the func-

tion toastSysmat.m (Matlab Package TOAST42, see Ref. 43 for details) to calculate the

propagation operator P(r) = −1

3
∇
[

1

µ′s(r)
∇
]

+
jω

ν
+ µa(r) and then inverse the systems

13



P(r)gr,dj
= δ(r − dj) and P(r)gr,sj = δ(r − sj). This procedure is repeated for Nω = 128

frequencies chosen so as to get a time step Te of 125 ps over an observation range of 16 ns.

For this calculation we used a regular grid of 35937 nodes with a voxel size of 0.125×0.125×

0.125 cm3. For a given frequency, the computation time of the propagation operator is less

than 1 s, the Green’s functions for any source a detector positions are then obtained in 45 s,

and their multiplications finally require about 1 s (Dell precision workstation running Linux

2.6.18 with 2.83 Ghz Intel Xeon processor and 4GB RAM).

Step 2 : The previous results are multiplied by the Fourier transform of the decaying

exponential:

ê(ω) =
ηγ

1 + jωτ
(13)

Step 3 : The ŵj,n’s are inverse-Fourier transformed.

At this point, the weight matrix is of size 169×35937×128. The discretization of the TR

weight matrix along its space and time dimensions has been chosen so as to limit numerical

errors. However, such a precision is no longer necessary for the purpose of forward modeling

and reconstruction. As a result the two following operations were carried out. 1) The TR

weight matrix is subsampled to a coarser grid along its space dimension. The coarser grid,

which is fine enough with regard to the resolution of FDOT, consists of 4096 voxels of

size 0.25×0.25×0.25 cm3. 2) The weight matrix is restricted to the Ne = 32 time samples

covering the range [0.5; 4.5] ns. The value of the lower bound is chosen large enough to

ensure that the light propagation model does not break down. The upper bound is chosen

so as to reject time samples of low value. As a result, the final TR weight matrix is of size

169×4096×32.

D. Computation of the wavelet transforms

The wavelet transform of the measurements along the time axis is performed by means of

the filter-bank implementation described by Mallat et al.44 This choice allows for significantly

alleviating the computational cost of the procedure. The filter-bank implementation of

the wavelet transform relies on the iterative discrete filtering and downsampling of the

input signal. Two filters are used: the first one is a low-pass filter whose outputs are the

approximation coefficients; the second one is a high-pass filter whose outputs are the detail
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coefficients.

When Haar wavelets are considered, the wavelet coefficient at scale i reduces to sums and

differences of the approximations coefficients at scale i− 1. Specifically, the approximation

and detail Haar wavelet coefficients at scale i are given by:

ai[q] =
1

2
(ai−1[2q − 1] + ai−1[2q]) , q ∈ {1, ..., 2−iNe}, and (14a)

di[q] =
1

2
(ai−1[2q − 1]− ai−1[2q]) , q ∈ {1, ..., 2−iNe} (14b)

To initialize the algorithm, the approximation coefficients at scale 0 are chosen to equal the

time samples. Thus: a0[q] = u(qTe). The wavelet decomposition of the TR weight matrix

up to scale 5 is performed in 2 s.

E. Computation of the solution of the inverse problem

The reconstructed concentration c∗α is calculated for 50 noise realizations of the measure-

ments u(t). So as to down-weight measurements the resulting features with low SNR, Q is

chosen as a diagonal matrix whose jth component is the inverse of the variance of the jth

component of y. This is equivalent to choosing Q as the inverse of the covariance matrix of

the featured measurements y, keeping only the diagonal entries. The retained α is chosen

so as to respect a stability of 10 % (V = 0.1), which is observed to be an acceptable level.

The regularization parameter α is calculated iteratively. The variability V is first evaluated

for α = 10 and α = 1000. Then, α is obtained by the bisection method since the variability

is monotonically decreasing with respect to the regularization parameter. Typically, this

iterative process converges to the prescribed value of V , with an accuracy of 0.01 %, in less

than 20 iterations.

The reconstruction time mainly depends on the size of the featured weight matrix, i.e. on

the number of chosen BFs. For only one BF the reconstruction time is 1.6 s, for two BFs

2.7 s, for four BFs 6.3 s, for eight BFs 25 s, for sixteen BFs 201 s, and for thirty two BFs

1675 s.
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V. RESULTS

We present now fluorescence marker concentrations reconstructed from the following data

features.

• Moments up to order k ∈ {0, 1, 3, 7}. Higher orders are sensitive to noise and of limited

use in reconstruction.18 Hence, reconstructions obtained from moment up to order 7 can

be considered as the best reconstructions achievable with moments. In the following, we

note m0→k the set of moments from order 0 to order k.

• Haar MRA from scale i = 0 (the finest) to scale i = 5 (the coarsest). Precisely, the Haar

MRA at scale i consists of the set of Haar approximation coefficients at scale i, i.e. the

set hi = {ai[q]}, q ∈ {1, ..., 2−iNe}.

The three following remarks are important for interpreting the results. (1) The Haar MRA

at scale i = 5 is equivalent to the moment at order n = 0. Thus m0 = h5. (2) When the

TR signals are restricted to their Haar MRA at scale i = 5 (or equivalently to their 0th

order moments) the TR FDOT reduces to CW FDOT. (3) The Haar MRA at scale i = 0

is equivalent to directly considering the TR signal (all the samples are regarded). Thus,

reconstructions based on Haar MRA at scale i = 0 are considered as the best reconstructions

achievable with TR measurements.

A. Performance metrics

In order to quantitatively characterize the quality of a reconstruction c∗, we use the

following performance metrics:

• Reconstruction error εr: This is a global measure that depends on the distance between

the phantom concentration cp and the reconstructed concentration c∗. The normalized

definition of this metric is:

εr =
||c∗ − cp||22
||cp||22

. (15)

The closer to zero this metric is, the better is the quality of reconstruction.

• Reconstruction energy Er: This global measure accounts for the ability of preserving the

energy of the concentration during the reconstruction process. Indeed, because of the
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ill-posedness of the inverse problem, the energy of the reconstructed concentration can

be severely reduced so as to preserve its stability. The reconstruction energy is defined

by:

Er =
||c∗||22
||cp||22

. (16)

The closer to one this metric is, the better the reconstruction.

We also introduce local criteria, based on the reconstruction accuracy of the three inclu-

sions. Specifically, the reconstructed inclusion concentrations c∗1, c
∗
2, and c∗3 are calculated,

by searching the positions of the local maximum concentrations r∗1, r∗2, and r∗3 in the vicin-

ity of the three ground-truth positions r1, r2, and r3, respectively. The three reconstructed

inclusion concentrations are then defined by: c∗i = c(ri
∗), i ∈ {1, 2, 3}. After that, the two

following criteria can be evaluated.

• z-axis sensitivity zS. This criterion assesses the ability of reconstructing an inclusion

located far away from sources and detectors. This criterion is important since inclusions

are hardly detectable in such zones. The z-axis sensitivity zS is defined by:

zS =
c∗1

cp(r∗1)
, (17)

The closer to one the z-axis sensitivity is, the better the reconstruction.

• z-axis contrast zC . This is a measure of the ability to resolve two adjacent inclusions

along the z-axis. It is defined as:

zC =
cpeak − cvalley

(c2peak + c2valley)
1/2
, (18)

where cpeak is the peak concentration chosen as the mean of the concentration of the

inclusions 2 and 3, thus cpeak = [c∗2 + c∗3]/2; cvalley is the valley concentration chosen as

the minimum concentration among the voxels joining the inclusion positions r2 and r3.

The closer to one the z-axis contrast is, the better the reconstruction.

B. Noise-free case

We first consider noise-free scenario and present the 3-D reconstructed concentrations

obtained from the different data features. The reconstructions obtained from moments and
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FIG. 4. 3-D representation of the reconstructed fluorescence marker concentrations. No noise was

considered. On the upper row moments up to orders 0, 1, 3, and 7 considered. On the bottom row

Haar MRA at scales i from 1 to 5 are considered. In a given column, reconstructions are obtained

from the same number of BFs (from left to right: 1, 2, 4, and 8)

Haar MRA are depicted on Fig. 4. To facilitate the comparison of reconstructions obtained

from the same number of data features, the latter are placed along the same column. The

four performance metrics, evaluated for every data features, are shown in Fig. 5a. In this

representation, the results are grouped depending on the number of BFs used. For the Haar

MRA, the scale i = 0 involves 32 BFs; the scale i = 1, 16; the scale i = 2, 8; the scale i = 3,

4; the scale i = 4, 2; and the scale i = 5 only 1.

C. Noisy case

We next present the reconstruction results obtained from the different data features in

the presence of noise. The maximum number of detected photons is first set to Cmax = 107.

A quantitative evaluation, based on the performance metrics defined in Sec. V A, is available

in Fig. 5.

Moreover, the reconstruction profiles along the z-axis, when the moments are considered

and when the Haar MRA is considered are plotted in Fig. 6a and in Fig. 6b, respectively.
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FIG. 5. Performance metrics for both moment-based and Haar-MRA-based reconstructions. The

red dash-line bars indicate the metrics of the moments; the blue solid-line bars the metrics of the

Haar MRA. Cmax is set to 107 photons. The performance metrics are plotted with respect to the

number of BFs used for the reconstruction. The use of 1 BF corresponds to either m0 or h5; 2 BFs

to either m0→1 or h4; 4 BFs to either m0→3 or h3; 8 BFs to either m0→7 or h2; 16 BFs to h1; 32

BFs to h0.

The influence of noise on the reconstructed concentration is investigated next. To this

end, we consider a maximum number of detected photons Cmax varying from 105 to 1010.

The results are plotted in Fig. 7. The analysis focuses on the z-axis sensitivity and contrast
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FIG. 6. Fluorescence marker concentration profiles reconstructed from a) moments up to orders 0

to 3; b) Haar MRA at scales 0 to 5. In both case the maximum counts number Cmax is set to 107

photons.

since these two local metrics are of particular interest in practical applications. Moreover,

for clarity, the investigated data features are restricted to the moments up to orders from 0

to 3 and to the Haar MRA at scales for which the number of BFs is the same that for the

moments, i.e. scales i = 3, 4, 5.
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FIG. 7. Evaluation of the z-axis contrast and sensitivity for maximum numbers of detected photons

ranging from 105 to 1010. The solid lines indicate the use of Haar MRA while the dashed lines

indicate the use of moments. The gray solid line without marker is the reference reconstruction

obtained from all the TR samples. The number of BFs employed can be 1 (blue line marked with

4), 2 (green line marked with �), 4 (pink line marked with ◦), or 8 (black line marked with ×).

VI. DISCUSSION

The discussion of the results presented in Sec. V is divided into two parts. First, we

compare and analyze the reconstructions obtained from noise-free measurements. Then, we

focus on the reconstructions in the presence of noise.

A. Noise-free case

In the noise-free case, the number of BFs used for the reconstruction has a significant

impact on the quality of reconstruction. As can be observed on the 3-D fluorescence marker

reconstructions of Fig. 4, the reconstruction quality is enhanced for increasing numbers of

BFs. For instance, inclusion 1 gets better resolved when more moments are considered.

The separation between inclusions 2 and 3 also gradually improves. The same trend can be
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observed for Haar MRA at finer scales. However, for a given number of BFs, the reconstruc-

tions obtained from different types of BFs are hardly distinguishable.

These visual observations are confirmed by the performance metrics shown in Fig. 5a. The

global performance metrics as well as the local one indicate a significant improvement of the

reconstruction quality for increasing numbers of BFs. All the previously mentioned points

suggest that, in the absence of noise, the TR information is able to significantly improve the

reconstruction quality, regardless of the type of BFs chosen to analyze the signals.

B. Noisy case

Comparing the performance metrics of the noisy reconstructions to those of the noise-

free reconstructions (compare Fig. 5a to Fig. 5b), it can be readily seen that the presence of

noise on the measurements significantly degrades the quality of reconstruction. This is not

surprising since the inverse problem is ill-posed and thus the reconstruction can be highly

sensitive to noise. As a result, the conclusions derived from the noise-free case must be

carefully rechecked in the presence of noise.

First of all, it can be seen that the reconstructions obtained from many BFs are severely

penalized by the presence of noise on the measurements, which limits the benefit of using

the TR information. A more accurate analysis, in terms of the influence of the data type,

can be carried out from performance metrics given by Fig. 5b together with the reconstruc-

tion profiles of Fig. 6. Let us compare how the quality of reconstructions is improved by

incrementing the number of BFs. The color code in Fig. 6a and Fig. 6b is the same when

the same number of BFs is considered, facilitating the comparison. Let us start with the

reconstruction profiles obtained from m0 and h5 that required the projection onto only one

BF and let us increase the number of BFs to two. Comparing m0→1 to m0 and h4 to h5,

an improvement of the reconstruction quality is observed, notably for the reconstruction

contrast zC . A further improvement is observed increasing the number of BFs to four. In-

terestingly, the benefit is higher with the Haar MRA approach (in Fig. 5 compare εr and zC

for h3, h4, m0→3, and m0→1). While the quality of the Haar MRA-based reconstruction is

still improved using eight BFs, the moment approach provide very little improvement (com-

pare for instance m0→7 to m0→3 on the reconstruction profiles of Fig. 6). The reconstruction

quality is not further improved considering more BFs (Haar MRA with i < 2).
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We observe that the optimal TR reconstruction quality, which is obtained considering the

Haar MRA at scale i = 0, is attained using a Haar MRA at scales i ≤ 2. Therefore, it

can be concluded that the whole TR information is compressed, in the reconstruction sense,

using a Haar MRA at scale i = 2. However, the optimal TR reconstruction quality cannot

be reached using the moment approach.

Now, let us inspect how the total number of detected photons Cmax –equivalently the

level of noise– affects the previous conclusions. In Fig. 7, we plot the z-axis contrast zC and

sensitivity zS with respect to Cmax ranging from 105 to 1010 photons . Both performance

metrics exhibit almost the same pattern.

First, we observe that the Haar MRA approach outperforms the moments approach, regard-

less of the number of chosen BFs, on the whole range of Cmax even though the benefit is

more limited in terms of sensitivity for Cmax < 107 photons. Second, the Haar MRA at

scale i = 2 is shown to provide reconstructions very close to those obtained from the full

TR signals within the whole range of Cmax, which allows for substantially alleviating in the

reconstruction cost. Third, it can be seen that the TR information is increasingly more

beneficial than the CW information for increasing Cmax. The larger Cmax –and thus the

better the signal-to-noise ratio of the measurements– the more beneficial the TR informa-

tion is. However, the TR information is found to be of limited interest in terms of contrast

for Cmax < 105 photons, and in terms of sensitivity for Cmax < 106.

It should be noted that the provided domains of interest a priori depend on different factors

such as the optical properties of the medium, the geometry of the medium, or the acquisition

configuration.

VII. CONCLUSION

In this paper, we have addressed the problem of choosing the best data features in

time-resolved fluorescence diffuse optical tomography. The data feature problem has been

reinterpreted from the point of view of the projection of measurements onto some basis

functions and a wavelet approach has been proposed. A time-resolved forward model and

its projection onto wavelet basis functions have been implemented. For reconstruction pur-

pose, multi-resolution approximations of the time-resolved signals have been considered at

different scales. The reference temporal moments of the signal, up to order three, have also
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been considered. Then, the reconstruction of the marker concentration from the different

data features has been performed with a methodology that ensures the comparability of the

reconstructions.

For the particular configurations investigated in this paper, our conclusions are the fol-

lowing:

• In the noise-free case, the reconstruction quality is improved with respect to the number

of basis functions, regardless of the type of basis functions.

• In the noisy case, the number of basis functions is still an important aspect but the type

of basis function becomes important.

• In terms of reconstruction, the wavelet approach outperforms the moment approach for

maximum number number of detected photons ranging from 105 to 1010. In particular,

the wavelet approach allows for extending the domain of interest of the TR approach

down to 105 photons in terms of reconstruction contrast, and down to 106 photons in

terms of reconstruction sensitivity.

• The TR information is compressed with very limited reconstruction degradation using

only few basis functions. The TR information cannot be compressed, in terms on recon-

struction quality, using only temporal moments.

• Whatever the chosen basis functions, the TR approach provides a reconstruction quality

equivalent to the CW one if the maximum number of detected photons remains below

105.

With these conclusions, we provide theoretical domains of interest for the use of the

wavelet transforms of TR measurements. We also derive the domain of interest of the TR

modality with respect the CW modality. Since the domains of interest are expressed in

terms of numbers of detected photons, they can be of interest from the experimental point

of view. In an experimental context, indeed, no benefit of the wavelet or TR approaches

can be expected if the number of detected photons remains below the provided thresholds.

It should be noted that the experimental domains of interest are most likely to be shifted

to larger values of detected photons, due to the unavoidable presence of model mismatch
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and/or extra sources of noise.

Finally, it is important to note that the domains of interest derived here are not universal.

Indeed, they have been obtained for a particular acquisition geometry (the so-called trans-

mission geometry) and for a particular reconstruction approach (the Tikhonov framework).

Evaluating the domain of interest of the wavelet approach, which comprises the full TR ap-

proach, for other acquisition geometries (such as the reflexion geometry or the transmission

geometry rotating the medium) and within other reconstruction frameworks (notably the

sparse reconstruction one) could be some relevant directions for further studies.
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