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Abstract: In the frame of a tree species identifying mobile application, designed for a wide scope of users, and with

didactic purposes, we developed a method based on the computation of explicit leaf shape descriptors inspired

by the criteria used in botany. This paper focuses on the characterization of the leaf contour, the extraction

of its properties, and its description using botanical terms. Contour properties are investigated using the

Curvature-Scale Space representation, the potential teeth explicitly extracted and described, and the margin

classified into a set of inferred shape classes. Results are presented for both margin shape characterization,

and leaf classification over nearly 80 tree species.

1 INTRODUCTION

Plants, trees and herbs that used to constitute the

most immediate environment for past generations,

seem somehow disconnected from our everyday life,

in a world of rampant urbanization and invasive

technology. Knowledge of the uses and properties of

numerous species got away, kept only by a handful of

botanists. Even identifying a simple plant has merely

become a case for the specialists.

But the blossoming of mobile technology

curiously offers the opportunity of spreading back

this knowledge into everyone’s pocket. Providing

an intuitive and flexible way to recognize species,

to teach anyone who feels the need how to look at a

plant, is now a possibility. Attempts in this direction

have come to light with great success, being with

user-based (TreeId, Fleurs en Poche) or automatic

recognition (LeafSnap1) on white background

images.

Leaves are a choice target for such application,

present almost all year long, easy to photograph, and

∗This work has been supported by the French National
Agency for Research with the reference ANR-10-CORD-
005 (REVES project).

1http://leafsnap.com : developed by researchers from
Columbia University, the University of Maryland, and the
Smithsonian Institution (Belhumeur et al., 2008)

with well studied geometrical specificities that make

the identification, if not trivial, possible. Our main

objective is to build a system for leaf shape analysis

of photographs in a natural environment, relying on

high-level geometric criteria inspired by those used

by botanists to classify a leaf into a list of species.

In this paper, we focus on the characterization

of the leaf margin shape, introducing a dedicated

description of the shape contour. Section 2 presents

works connected to this matter. The processing

performed on the contour is described in Section

3 and the descriptor we use detailed in Section

4. Section 5 expounds its interest for both margin

shape classification and species identification, and

conclusions are drawn in Section 6.

2 RELATED WORKS

2.1 Leaf Identification

Leaf image retrieval and plant identification have

been a growing topic of interest in the past few

years. Some authors (Belhumeur et al., 2008) also

aim at conceiving a mobile guide, achieving great

performance on plain background images by the

combination of established shape descriptors (Inner-

Distance Shape Context) and classification methods.



Some works tackle the challenge of segmentation

over natural background (Teng et al., 2009; Wang

et al., 2008), but most elude this obstacle, working on

plain background images, where sensitivity to noisy

shapes is less of an issue given the general accuracy

of the obtained contours.

Many methods rely on statistical features such as

moments (Wang et al., 2008), histogram of gradients

or local interest points (Goëau et al., 2011b) or

generic contout descriptors such as the Curvature-

Scale Space (Mokhtarian and Abbasi, 2004). Such

descriptors were not designed to take into account

the nature of the object, but fit quite well with

its specificities. A commonly used geometrical

descriptor for leaf image retrieval is the Centroid-

Contour Distance (CCD) curve (Wang et al., 2000;

Teng et al., 2009) though it can be applied to any type

of object.

On the other hand, some morphological features

explicitly computed on the shape of the object to

model its natural properties have also been used (Du

et al., 2007; Goëau et al., 2011b). Even more

dedicated methods have been designed, basing their

recognition on an explicit representation of the leaf

contour and of its teeth (Im et al., 1998; Caballero and

Aranda, 2010) but suitable only for image retrieval

and applied to a small number of species.

2.2 Curvature for Contour Description

Since the leaf margin shape is a very discriminant

feature for identification, characterizing the contour

of the leaf is a crucial step. The CCD curve provides

an interesting view, but lacks precision, as the curve

for a leaf with small teeth will be very close to a

smooth one. To discriminate such contours, the use

of curvature is very advantageous.

A rich representation of the contour is the

Curvature-Scale Space (CSS), that has already been

used in the context of shape recognition (Mokhtarian

and Mackworth, 1992) and even leaf image retrieval

(Mokhtarian and Abbasi, 2004; Caballero and

Aranda, 2010). It piles up curvature measures at

each point of the contour over successive smoothing

scales, summing up the information into a map where

concavities and convexities clearly appear.

Curvature has also been used to detect dominant

points on the contour, and provide a compact

description of a contour by its curvature optima.

This is a well studied problem (Teh and Chin,

1989) in which the introduction of the curvature-scale

transform has proved to be beneficial (Pei and Lin,

1992). The detection and characterization of salient

features on a leaf contour is a problem that can be

addressed with a similar perspective.

3 CONTOUR INTERPRETATION

Our starting point is a segmented leaf, from either

a plain or natural background, along with its

preliminary global shape estimation (Cerutti et al.,

2011). This polygonal model conveys interesting

information on the leaf’s geometry, and provides

notably the number of appearing lobes nL and an

estimation of its main axis (possibly more than one

in the case of a palmately lobed leaf). Our frame

of work here comprises only simple and palmately

lobed leaves (nearly 75% of all European tree specie)

species with compound leaves being left aside. Since

our goal is to represent the morphology of the margin,

knowing where to look is important to select the

accurate features and, for instance, not consider the

apex as a simple tooth.

3.1 Leaf Contour Partition

The contour needs then to be divided into areas

corresponding to the apex, to the base, to the potential

lobe tips, and finally to the rest of the margin, so that

the most salient features do not absorb the rest of the

information. Relying on the polygonal leaf model is

here useful to solve what would otherwise be a much

more complicated task. Supposing that the axes of

the polygonal model are accurate, we can use them to

mark off contour points that are in one of these areas

of interest.

Figure 1: Polygonal model and labelling of contour parts
corresponding to leaf areas

To achieve the labelling shown in Figure 1, we

define sets of vertices as the intersection of the

contour with a fixed angular sector, built around the

corresponding axis using the model points, issuing

from the opposite point (base for the apices, and apex

for the base) and with a minimal distance relatively to

this point : A for the apical area (red), B for the basal

area (blue), L for the lobe tips (brown), and the actual

margin area M , divided into for lM the left margin

area and rM for the left margin area (green).

This partition first makes possible the accurate

location of the actual base point B̂ and the apex

point Â of the leaf, as the most salient features in



their respective area B or A , a crucial information

to estimate the local shape of the leaf around them,

a determining feature for botanists. And secondly,

outside of these areas, we can study the properties

of potential teeth, lobes, sinuses and other salient

features in M , and characterize the leaf margin shape,

and only it.

3.2 Curvature-Scale Space Transform

As a matter of fact, the salient features on the contour

appear very clearly on the Curvature-Scale Space

transform of the contour, as shown in Figure 3(b).

The CSS is a very powerful description but is too

informative to be used as a descriptor and to build

class models by averaging several of them. As we

wish to locate and characterize precisely curvature-

defined elements on the contour, it was a more

judicious choice to look, not at zero-curvature points

as the original method would do (Mokhtarian and

Mackworth, 1992), but on the contrary at the maxima

and minima of curvature. These salient points are

the ones that visually stand out in the CSS image and

can be intuitively be matched to existing structures on

the leaf contour, reason why we want to detect them

explicitly.

3.3 Detecting Teeth and Pits

To locate these points, we actually want to detect

dominant points on the leaf contour and to find the

scale of the concave or convex part they correspond

to. The method we use is largely inspired of existing

works (Teh and Chin, 1989; Pei and Lin, 1992) where

the process of detection is performed at each scale

level. Starting with S = 4 (lower scale elements being

arguably indiscernible from noise) the set of dominant

points at each scale D(S) is initialized with all the

contour points and the process is then the following:

1. Extract points for which the curvature value is a

local optimum in a neighbourhood of size S

2. Suppress points the curvature intensity of which

is below a threshold kmin

3. Suppress points that can not be traced to a

dominant point at the previous scale (if S > 4)

4. Keep only the median point of potential remaining

groups of size ≤ S

The result we obtain is a map of the located

dominant points at each scale, as presented in Figure

3(c). This representation reveals the teeth and pits of

the contour in the form of chains of dominant points.

4 LEAF MARGIN DESCRIPTION

Once the salient features are detected on the contour,

it is necessary to interpret this dense information in

order to make the discriminant characteristics of the

margin appear. To know what to look for, we relied

on the distinctions made by botanists to discriminate

the different species.

4.1 Leaf Margin Shapes in Botany

To describe the shape of the leaf margin, botanists

use a terminology that refers both to the properties

of teeth taken separately and to their repartition over

the margin. Some of these terms are shown in Figure

2. For instance a ”doubly serrate” leaf implies two

levels of teeth with different sizes and frequencies,

with bigger teeth divided into smaller sub-teeth. The

words themselves are vague enough so that leaves

with teeth that look rather different may fall inside

the same term.

Figure 2: Examples of leaf margin shapes : Entire,
Denticulate, Dentate, Sinuate, Lobate. Images taken from
(Coste, 1906)

The margin shape constitutes however a very

discriminant criterion for species identification that

generally presents less variability than the global

shape, with the exception of some pathological

species. Our descriptor will have to capture the

differences regarding size, sharpness, orientation,

repartition and variability of the teeth implied in the

botanical terms, but also to benefit from the use of

numerical values to be more precise and discriminate

leaves of different aspect that would be called the

same.

4.2 Margin Interpretation

For the sake of interpretation, we want to use the

representation of the contour by dominant points to

retrieve the properties of every located structure on

the contour. Each chain that appears on the dominant

points map corresponds indeed to a convex or a

concave part, and its actual size, as a human eye

would interpret it, is the scale until which it persists,

that is to say the scale of the chain’s end point.



(a) (b) (c)

Figure 3: Traced dominant points over scale (c) and their curvature, obtained from the curvature-scale space transform (b) of
a leaf contour (a)

We scan the dominant points starting from the

highest scale to keep only these terminal points.

When a dominant point is found at scale S, all the

dominant points of the same curvature sign are simply

suppressed at lower scales, in a neighbourhood of

size S. This way, we ensure that a single structure

is not counted twice, and small structures which are

included in larger ones are merged into one.

Each point kept after this selection step

corresponds to a concave or convex structure of

scale S. To complete this size information, we

estimate the actual curvature K̄ of a dominant point

of scale S belonging to D(S), as the average curvature

of all the dominant points belonging to the same

chain. This computation is done while suppressing

the points at lower scales.

(a) (b) (c)

Figure 4: Various leaf contours with detected base, apex,
teeth and pits ; apex area in red, base area in dark blue
; convexities in orange, concavities in blue, brightness
representing curvature intensity, extent representing scale.

Finally the final set of dominant points is a

semantically rich interpretation of the leaf contour,

where the base and apex points B̂ and Â are

precisely located, and where teeth are detected and

characterized independently in terms of position on

the contour (u), size (S) and curvature (K) : each point

p in then represented by a vector (u(p);S(p);K(p)).
This representation is displayed in Figure 4.

To improve robustness, and avoid that errors

in segmentation or unwanted leaf artefacts (cracks,

holes, spots) are taken into account, we want to keep

only points that can be found on both sides of the

leaf. Here again, the contour partition is very useful

to know on which side lies a given point, and where

to look on the contour to know if a similar one exists

on the opposite side. The matching is performed by

computing a distance term to all the points on the

opposite side of same curvature sign, that takes into

account their scale, curvature, relative position on the

axis
[

B̂Â
]

, and relative distance to this same axis. This

method is somewhat risky but ensures that eccentric

structures as in Figure 5 do not bias the understanding

of the margin.

Figure 5: Suppression of points that can not be matched on
a deteriorated leaf ; only connected points are kept

4.3 Describing the Margin

Even if this explicit representation is full of

information and could be used as such to compare

two leaves, it is still too heavy if we want to average

several of them for classification purposes. It is

necessary to sum it up into a condensed descriptor to

capture the main properties of the margin, and allow

a semantic interpretation of its specificities.

A first characterization consists in measuring how

much of the leaf margin is convex, concave or neither

of the two. Since the detected structures, given their

definition, account for a number of vertices equal

to their scale, we just have to sum the scales of

dominant points and normalize them, to compute 3

parameters w+, w− and w0, corresponding to the

percentage of the set M of margin vertices that belong

respectively to convex structures, concave structures,

and no structure.



To describe teeth properties in a condensed way,

we compute averages and standard deviations for the

properties we extracted on each dominant point. That

gives 8 parameters computed on either concave (-) or

convex (+) points, respectively S̄+, σS+, S̄−, σS− for

scale, and K̄+, σK+, K̄−, σK− for curvature. These

values are computed by weighting the considered

parameter of each point by the point’s scale, so that

each vertex on the margin contributes at the same

level.

Even if computing standard deviations provide a

measure for the variability of the properties, such

aggregating representation constitute a loss of spatial

information. To keep a trace of the repartition of teeth

along the margin, we computed the relative distances

d ↑ (p) and d ↓ (p) of each point p, respectively to the

next and previous points of opposite curvature on the

same side M (p), when they exist.

These distances are once again averaged over

points of the same curvature sign to produce 4

additional parameters d ↑+, d ↓+ for convex points,

and d ↑−, d ↓− for concave points, that account for

the spatial repartition of teeth on the margin. What

we finally use to describe the margin is a vector P of

11 parameters :

• S̄++σS+

• S̄+−σS+

• K̄++σK+

• K̄+−σK+

• S̄−+σS−

• S̄−−σS−

• K̄−+σK−

• K̄−−σK−

• w0

• d ↑+/d ↓+

• d ↑−/d ↓−

Taken together, these parameters constitute a

very condensed yet efficient representation of what

is important on a leaf contour, summing up the

properties a botanist would investigate to characterize

the margin. Most of the computational time comes

from the CSS transform, but can be greatly reduced

by computing only a limited number of scales and

interpolating the curvature value for intermediate

scales, leading to an execution time below the second

on a computer processor, and of nearly 3 seconds on

an iPhone 4 processor.

5 CLASSIFICATION & RESULTS

To assess the relevance of our margin descriptors, we

chose to classify leaves in botanical terms. However,

it is impossible to have a database of leaves labelled

with their exact shapes because of the intra-species

variability and the subjectivity and vagueness of those

words. The only way to learn automatically these

shapes was to train a semi-supervised classifier using

the possible shapes for each species and let it infer the

concept represented by the classes.

5.1 Learning Margin Shapes

As a matter of fact, trying to evaluate the concepts

behind the botanical words without exactly labelled

examples is a very challenging issue. Those words

maybe used to cover different shapes that may share

some properties but not all of them. The method

we used to learn these concepts tries to consider

both the theoretical knowledge on leaf shapes and the

uncertainty on the correspondence of one given leaf

to one particular class.

Each considered species s was labelled with one

or more possible margin shapes M(s), according to

a reference botanical description (Coste, 1906). We

retained 12 terms that were applicable to all the

species we considered, namely :

• Entire

• Denticulate

• Undulate

• Crenate

• Serrate

• Dentate

• Doubly Serrate

• Sinuate

• Spiny

• Angular

• Lobate

• Pinnatifid

Then we used a semi-supervised Fuzzy C

Means (FCM) clustering algorithm to learn the

12 centroids representing the shapes. Each

individual i in the database of species s(i) is

represented by a descriptor vector Pi = (Pk,i)k=1..K
and is assigned a membership value (µm,i)m=1..12
representing its degree of belonging to each of the

clusters. The supervising here consists of a constraint

that the membership of an individual to clusters

corresponding to shapes outside of the possible

shapes M(s(i)) of its species must remain zero:

∀i,∀m = 1..12,m /∈ M(s(i)) =⇒ µm,i = 0. The initial

membership values are set to be the same for each

possible shape of the species, and the centroids are

then computed following the regular FCM procedure,

with a parameter β set to 1.8.

Each class is finally represented by its resulting

centroid Cm and by the estimated standard deviation

vector Σm, computed using the memberships of each

individual. A new leaf, represented by its margin

parameter vector P = (Pk) is then classified by

computing its normalized Euclidean distance to all the

class centroids, and assigning it to the closest.

5.2 Species Identification

The database used to test our algorithms is a subset

of the Pl@ntLeaves (Goëau et al., 2011a) database,

keeping only 5668 leaf images (out of 8422) on white,

plain or natural backgrounds of 80 species (out of

126) with non-compound leaves.



Parameters extracted on the images, outside of

the margin descriptors described here [CS], are

parameters from the polygonal leaf model [MP]

(Cerutti et al., 2011) accounting for the global shape

of the leaf, and parameters of Bezier curves based

basal and apical shape models [B/A] estimated around

the located points B̂ and Â.

The data formed by all the parameters from

all the images is first centered and normalized.

Assuming that each parameter simply follows a

Gaussian distribution, we compute class centroids and

standard deviations with examples from the training

dataset. For each species s, and for each possible

number of lobes nL up to 3 we build a class Φs,nL
=

(µs,nL,k,σs,nL,k) if at least 10% of all the species

examples have this value.

To classify a new example, we will simply have

to compare its descriptors with the centroids of the

classes sharing the same number of lobes nL. For

each one of the 3 sets of parameters, we compute

a Euclidean distance to the surface of the ellipsoid

defined by means and standard deviations :

D(P,Φs,nL
) = ‖P− µS ,nL

‖
2

max

(

1−
1

‖P− µS ,nL
‖M

,0

)

‖P− µS ,nL
‖M =

√

∑
k

(Pk − µs,nL,k)
2

σs,nL,k
2

Each one of these terms is then weighted

differently after having learned the classes, dividing

it by the average distance of the correct class over

the training base, which weights it accordingly to

its significance. The final distance we use for

classification is simply the sum of these weighted

terms, and the classes are then ordered accordingly

to their distance, producing an ranked list of species.

5.3 Experimental Results

To evaluate the classification into botanical shapes,

we performed a cross validation on the training base,

learning the classes by FCM on two thirds of the

database, and classifying the remaining third. A

classification is assessed to be correct if the returned

shape is one of the possible shapes taken by the leaf

species. Results show a correct classification in 65%

of cases, climbing up to 76% if we take into account

the two first ranked classes.

We tried to refine this evaluation by building a

confusion matrix for the shapes. It is not an easy

task since the examples are not labelled by their

actual shape, but by their species and thus their

possible shapes. We decided to put a weight of 1

per example in the matrix, placing it in the diagonal

cell if the classification was considered as correct, and

splitting it among the theoretical possible classes in

the recognized class column if not. The percentages

are then obtained by dividing those weights by the

total weight of each theoretical class.

Table 1: Confusion Matrix for Leaf Margin Classification

The matrix we obtain is displayed in Table 1 and

provides a good light on what our descriptors are

good at discriminating or not. It appears clearly

that margins with larger structures are easier to

differentiate than smaller ones. It is difficult to

capture the differences between for instance Serrate

and Dentate leaves especially since the small scale we

are looking at makes errors more common. Dentate

is visibly a very variable class, making it more easily

detected given the classification distance we use. Very

small teeth of Denticulate leaves seem also hard to

represent, such leaves being regularly seen as without

teeth or with regular ones.

Concerning the species classification, results

were evaluated following the same cross validation

process. We computed classification rates for

the different types of images in the Pl@ntLeaves

Database (Scan, Pseudoscan and Photograph) and

measured the presence of the true species among the

top k answers (k going from 1 to 10) returned by the

classification algorithm.

Figure 6 presents the results obtained with

the global, base and apex shape descriptors only

[MP+B/A] and with the addition of the margin

descriptors [MP+B/A+CS], underlining the interest

of considering the contour in a very specific way,

with an average recognition score of 53%, and a

presence of the correct species in the 5 first answers

of 85%. The great improvement induced by the use



(a) (b)

(c)

Figure 6: Classification rates on the Pl@ntLeaves Database
on scan (a) pseudoscan (b) and photograph (c) images

of curvature-based descriptors is here clearly visible.

The enhancement is less important on photographs

given the hardness of the task of retrieving the

exact leaf contour, which obviously deteriorates the

relevance of the contour description.

These scores may be compared to the results of

the 2011 ImageCLEF Plant Identification task (Goëau

et al., 2011a) concerning a very similar database, and

where the best participants reached an average score

of 45%.

6 CONCLUSION

The method presented in this article constitutes an

interesting step towards an explicative system of leaf

classification for an independent mobile application.

Being able to place high-level semantic concepts over

the values extracted from an image gives the user a

feedback that may prove of great usefulness for both

interactive and educational purposes.

A first implementation of the recognition process

on mobile devices is engaged with very satisfactory

results, but not yet with the nearly 150 native

European tree species we aim at recognizing. With

the number of potential classes increasing, it will

become a necessity to reduce the scope of the search,

by including geographical information linked to the

GPS system present in every smartphone. Knowing

in advance which species are likely to be found in

the geographical area where the user stands may be

a decisive step towards a truly reliable identification.

However, what we have now is a good base

structure for a new tree identification application,

designed to be functional in a natural environment,

and destined to anyone with interest in plants

but without the otherwise compulsory botanical

background.
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Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthelemy,
D., Molino, J.-F., Birnbaum, P., Mouysset, E., and
Picard, M. (2011a). The clef 2011 plant images
classification task. In CLEF Working Notes.
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