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THE FILTRATION INDUCED BY A LOCALLY NILPOTENT

DERIVATION

BACHAR ALHAJJAR

Abstract. We investigate the filtration corresponding to the degree func-
tion induced by a non-zero locally nilpotent derivations ∂ and its associated
graded algebra. As an application we provide an efficient method to recover
the Makar-Limanov invariants, isomorphism classes and automorphism groups
of classically known algebras. We also present a new class of examples which
can be fully described with this method.

Introduction

Let k be a field of characteristic zero, and let B be a commutative k-domain. A
k-derivation ∂ ∈ Derk(B) is said to be locally nilpotent if for every a ∈ B, there
is an integer n ≥ 0 such that ∂n(a) = 0. An important invariant of k-domains
admitting non-trivial locally nilpotent derivations is the so called Makar-Limanov
invariant which was defined by Makar-Limanov as the intersection ML(B) ⊂ B of
kernels of all locally nilpotent derivations of B ([2]). This invariant was initially
introduced as a tool to distinguish certain k-domains from polynomial rings but it
has many other applications for the study of k-algebras and their automorphism
groups ([3]). One of the main difficulties in applications is to compute this invariant
without a prior knowledge of all locally nilpotent derivations of a given k-domain.

In [4] S. Kaliman and L. Makar-Limanov developed general techniques to deter-
mine the ML-invariant for a class of finitely generated k-domains B. The idea is
to reduce the problem to the study of homogeneous locally nilpotent derivations
on graded algebras Gr(B) associated to B. For this, one considers appropriate
filtrations F = {Fi}i∈R on B generated by so called real-valued weight degree func-
tions in such a way that every non-zero locally nilpotent derivation on B induces a
non-zero homogeneous locally nilpotent derivation on the associated graded algebra
GrF(B).

In particular, every k-domain B admitting a non-zero locally nilpotent deriva-
tion ∂ comes equipped with a natural filtration by the k-sub-vector-spaces Fi =
ker(∂i+1), i ≥ 0, that we call the ∂-filtration.

In this article we show that this filtration is convenient for the computation of
the ML-invariant, and we give general methods to describe the sub-spaces ker(∂i+1)
and their associated graded algebra.

Knowing this filtration gives a very precise understanding of the structure of
semi-rigid k-domains, that is,k-domains for which every locally nilpotent derivation
gives rise to the same filtration. For such rings the study of the ∂-filtration is a
very efficient tool to determine isomorphism types and automorphism groups. We
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illustrate how the computation of ML-invariant of classically known semi-rigid k-
domains can be simplified using these types of filtration. We also present a new
class of semi-rigid k-domains which can be studied with this method.

1. Preliminaries

In this section we briefly recall basic facts on filtered algebra and their relation
with derivation in a form appropriate to our needs.

In the sequel, unless otherwise specified B will denote a commutative domain
over a field k of characteristic zero. The set Z>0 of non-negative integers will be
denoted by N.

1.1. Filtration and associated graded algebra.

Definition 1.1. An N-filtration of B is a collection {Fi}i∈N of k-sub-vector-spaces
of B with the following properties:

1- Fi ⊂ Fi+1 for all i ∈ N .
2- B = ∪i∈NFi .
3- Fi.Fj ⊂ Fi+j for all i, j ∈ N .

The filtration is called proper if the following additional property holds:
4- If a ∈ Fi \ Fi−1 and b ∈ Fj \ Fj−1, then ab ∈ Fi+j \ Fi+j−1.

There is a one-to-one correspondence between proper N-filtrations and so called
N-degree functions:

Definition 1.2. An N-degree function on B is a map deg : B −→ N∪{−∞} such
that, for all a, b ∈ B, the following conditions are satisfied:

(1) deg(a) = −∞ ⇔ a = 0.
(2) deg(ab) = deg(a) + deg(b).
(3) deg(a+ b) ≤ max{deg(a), deg(b)}.

If the equality in (2) replaced by the inequality deg(ab) ≤ deg(a) + deg(b), we say
that deg is an N-semi-degree function.

Indeed, for an N-degree function on B, the sub-sets Fi = {b ∈ B | deg(b) ≤ i} are
k-subvector spaces of B that give rise to a proper N-filtration {Fi}i∈N. Conversely,
every proper N-filtration {Fi}i∈N, yields an N-degree function ω : B −→ N∪{−∞}
defined by ω(0) = −∞ and ω(b) = i if b ∈ Fi \ Fi−1.

Definition 1.3. Given a k-domainB = ∪i∈NFi equipped with a proper N-filtration,
the associated graded algebra Gr(B) is the k-vector space

Gr(B) = ⊕i∈NFi/Fi−1

equipped with the unique multiplicative structure for which the product of the
elements a+ Fi−1 ∈ Fi/Fi−1 and b + Fj−1 ∈ Fj/Fj−1, where a ∈ Fi and b ∈ Fj,
is the element

(a+ Fi−1)(b + Fj−1) := ab+ Fi+j−1 ∈ Fi+j/Fi+j−1.

Property 4 (proper) in Definition 1.1 ensures that Gr(B) is a commutative k-domain
when B is an integral domain. Since for each a ∈ B the set {n ∈ N | a ∈ Fn} has a
minimum, there exists i such that a ∈ Fi and a /∈ Fi−1. So we can define a k-linear
map gr : B −→ Gr(B) by sending a to its class in Fi/Fi−1, i.e a 7→ a+ Fi−1, and
gr(0) = 0. We will frequently denote gr(a) simply by a. Observe that gr(a) = 0 if
and only if a = 0.
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Denote by deg the N-degree function deg : B −→ N ∪ {−∞} corresponding to
the proper N-filtration {Fi}i∈N. We have the following properties.

Lemma 1.4. Given a, b ∈ B the following holds:
P1) a b = a b, i.e. gr is a multiplicative map.
P2) If deg(a) > deg(b), then a+ b = a.
P3) If deg(a) = deg(b) = deg(a+ b), then a+ b = a+ b.

P4) If deg(a) = deg(b) > deg(a + b), then a + b = 0, in particular gr is not an
additive map in general.

Proof. Let us assume that deg(a) = i and deg(b) = j. By definition, deg(ab) = i+j
means that ab ∈ Fi+j and ab /∈ Fi+j−1, so ab = ab + Fi+j−1 := (a + Fi−1)(b +

Fj−1) = a b. Which gives P1. For P2 we observe that since deg(a+ b) = deg(a), we

have a+ b = (a+ b)+Fi−1 = (a+Fi−1)+ (b+Fi−1), and since Fj−1 ⊂ Fj ⊆ Fi−1

as i > j, we get b+ Fi−1 = 0. P3) is immediate, by definition. Finally, assume by

contradiction that a+b 6= 0, then a+b = (a+Fi−1)+(b+Fi−1) = ((a+b)+Fi−1) 6= 0,
which means that a + b /∈ Fi−1 and deg(a + b) = i, which is absurd. So P4
follows. �

1.2. Derivations.

By a k-derivation of B, we mean a k-linear map D : B −→ B which satisfies the
Leibniz rule: For all a, b ∈ B; D(ab) = aD(b) + bD(a). The set of all k-derivations
of B is denoted by Derk(B).
The kernel of a derivation D is the subalgebra kerD = {b ∈ B;D(b) = 0} of B.
The plinth ideal of D is the ideal pl(D) = kerD ∩ D(B) of kerD, where D(B)
denotes the image of B.
An element s ∈ B such that D(s) ∈ ker(D) \ {0} is called a local slice for D.

Definition 1.5. Given a k-algebraB = ∪i∈NFi equipped with a properN-filtration,
a k-derivation D of B is said to respect the filtration if there exists an integer d
such that D(Fi) ⊂ Fi+d for all i ∈ N.
If so, we define a k-linear map D : Gr(B) −→ Gr(B) as follows: If D = 0, then
D = 0 the zero map. Otherwise, if D 6= 0 then we let d be the least integer such
that D(Fi) ⊂ Fi+d for all i ∈ N and we define

D : Fi/Fi−1 −→ Fi+d/Fi+d−1

by the rule D(a+Fi−1) = D(a) +Fi+d−1. One checks that D satisfies the Leibniz
rule, therefore it is a k-derivation of the graded algebra Gr(B). Moreover it is
homogeneous of degree d, i.e D sends homogeneous elements of degree i to zero or
to homogeneous elements of degree i+ d .

Observe that D = 0 if and only if D = 0. In addition, gr(kerD) ⊂ kerD.

2. LND-Filtrations and Associated Graded Algebras

In this section we introduce the ∂-filtration associated with a locally nilpotent
derivation ∂. We explain how to compute this filtration and its associated graded
algebra in certain situation.

Definition 2.1. A k-derivation ∂ ∈ Derk(B) is said to be locally nilpotent if for
every a ∈ B, there exists n ∈ N (depending of a) such that ∂n(a) = 0. The set of
all locally nilpotent derivations of B is denoted by LND(B).
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In particular, every locally nilpotent derivation ∂ of B gives rise to a proper N-
filtration of B by the sub-spaces Fi = ker∂i, i ∈ N, that we call the ∂-filtration. It
is straightforward to check (see Prop. 1.9 in [1]) that the ∂-filtration corresponds
to the N-degree function deg∂ : B −→ N ∪ {−∞} defined by

deg∂(a) := min{i ∈ N | ∂i+1(a) = 0}, and deg∂(0) := −∞.

Note that by definition F0 = ker ∂ and that F1 \F0 consists of all local slices for ∂.
Let Gr∂(B) = ⊕i∈NFi/Fi−1 denote the associated graded algebra relative to the

∂-filtration {Fi}i∈N. Let gr∂ : B −→ Gr∂(B); a
gr∂7−→ a be the natural map between

B and Gr∂(B) defined in 1.3, where a denote gr∂(a).
The next Proposition, which is due to Daigle (Theorem 2.11 in [1]), implies in

particular that if B is of finite transcendence degree over k, then every non-zeroD ∈
LND(B) respects the ∂-filtration and therefore induces a non-zero homogeneous
locally nilpotent derivation D of Gr∂(B).

Proposition 2.2. (Daigle) Suppose that B is a commutative domain, of finite
transcendence degree over k. Then for every pair D ∈ Derk(B) and ∂ ∈ LND(B), D
respects the ∂-filtration. Consequently, D is a well defined homogeneous derivation
of the integral domain Gr∂(B) relative to this filtration, and it is locally nilpotent
if D is locally nilpotent.

2.1. Computing the ∂-filtration.
Here, given a finitely generated k-domain B, we describe a general method which
enables the computation of the ∂-filtration for a locally nilpotent derivation ∂ with
finitely generated kernel. First we consider a more general situation where the
plinth ideal pl(∂) is finitely generated as an ideal in ker ∂ then we deal with the
case where ker ∂ is itself finitely generated as a k-algebra.

Let B = k[X1, . . . , Xn]/I = k[x1, . . . , xn] be a finitely generated k-domain, and
let ∂ ∈ LND(B) be such that pl(∂) is generated by precisely m elements f1, . . . , fm
as an ideal in ker ∂. Denote by F = {Fi}i∈N the ∂-filtration, then:

By definition F0 = ker ∂. Furthermore, given elements si ∈ F1 such that ∂(si) =
fi for every i ∈ {1, . . . ,m}, it is straightforward to check that

F1 = F0s1 + . . .+ F0sm + F0.

Letting deg∂(xi) = di, we denote by Hj the F0-sub-module in B generated by
elements of degree j relative to deg∂ of the form su1

1 . . . sum
m xv11 . . . xvnn , i.e.,

Hj :=
∑

∑
j uj+

∑
i di.vi=j

F0 (s
u1

1 . . . sum
m xv11 . . . xvnn )

where uj, vi ∈ N for all i and j. The integer
∑

j uj +
∑

i divi is nothing but

deg∂(s
u1

1 .su2

2 . . . .sum
m .xv11 .x

v2
2 . . . . .x

vn
n ). Then we define a new N-filration G = {Gi}i∈N

of B by setting

Gi =
∑

j≤i

Hj .

By construction Gi ⊆ Fi for all i ∈ N, with equality for i = 0, 1. The following
result provides a characterization of when these two filtrations coincide:

Lemma 2.3. The filtrations F and G are equal if and only if G is proper.
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Proof. One direction is clear since F is proper. Conversely, suppose that G is proper
with the corresponding N-degree function ω on B (see §1.1). Given f ∈ Fi \ Fi−1,
i > 1, for every local slice s ∈ F1 \ F0, there exist f0 6= 0, ai 6= 0, ai−1, . . . , a0 ∈ F0

such that f0f = ais
i+ ai−1s

i−1 + · · ·+ a0 ( see the proof of Lemma 4 in [7]). Since
ω(g) = 0 (resp. ω(g) = 1) for every g ∈ F0 (resp. g ∈ F1 \ F0), we obtain

ω(f) = ω(f0f) = ω(ais
i + ai−1s

i−1 + · · ·+ a0) = max{ω(ais
i)} = i,

and so f ∈ Gi. �

Next, we determine the ∂-filtration, for a locally nilpotent derivation ∂ with
finitely generated kernel, by giving an effective criterion to decide when the N-
filtration G defined above is proper.

Hereafter, we assume that 0 ∈ Spec(B) and that ker(∂) is generated by elements
zi(x1, . . . , xn) ∈ B such that zi(0, . . . , 0) = 0, i ∈ {1, . . . , r}, which is always possible
since k ⊂ ker ∂. Since ker(∂) is finitely generated k-algebra, the plinth ideal pl(∂)
is finitely generated. So there exist s1(x1, . . . , xn), . . ., sm(x1, . . . , xn) ∈ F1 such
that F1 = F0s1 + . . .+ F0sm + F0. We can also assume that si(0, . . . , 0) = 0.

Letting J ⊂ k[r+n+m] = k[Z1, . . . , Zr][X1, . . . , Xn][S1, . . . , Sm] be the ideal gen-
erated by I and the elements Z1 = z1(X1, . . . , Xn), . . . , Zr = zr(x1, . . . , xn), S1 =
s1(X1, . . . , Xn), . . . , Sm = sm(x1, . . . , xn), then we have

B = k[Z1, . . . , Zr][X1, . . . , Xn][S1, . . . , Sm]/J.

Note that by construction (0, . . . , 0)
r+n+m times

∈ Spec(k[r+n+m]/J).

We define an N-degree function ω on k[r+n+m] by declaring that ω(Zi) = 0 =
deg∂(zi) for all i ∈ {1, . . . , r}, ω(Si) = 1 = deg∂(si) for all i ∈ {1, . . . ,m}, and
ω(Xi) = deg∂(xi) = di for all i ∈ {1, . . . , n}. The corresponding proper N-filtration
Qi := {P ∈ k[n] | ω(P ) ≤ i}, i ∈ N, on k[r+n+m] has the form Qi = ⊕j≤iHj where

Hj := ⊕∑
j uj+

∑
i divi=jk[Z1, . . . , Zr]S

u1

1 . . . Sum
m Xv1

1 . . . Xvn
n .

By construction π (Qi) = Gi where π : k[r+n+m] −→ B denotes the natural projec-
tion. Indeed, since

π (Qi) =
∑

j≤i

π (Hj)

and π (Hj) =
∑

∑
j uj+

∑
i divi=j k[z1, . . . , zr]s

u1

1 . . . .sum
m xv11 . . . xvnn , we get

π (Hj) =
∑

∑
j uj+

∑
i divi=j

(ker ∂) su1

1 . . . . sum
m xv11 . . . . x

vn
n

which means precisely that π (Qi) = Gi.

Let Ĵ ⊂ k[r+n+m] be the homogeneous ideal generated by the highest homoge-
neous components relative to ω of all elements in J . Then we have the following
result, which is inspired by the technique developed by S. Kaliman and L. Makar-
Limanov:

Proposition 2.4. The N-filration G is proper if and only if Ĵ is prime.

Proof. It is enough to show that G = {π (Qi)}i∈N coincides with the filtration corre-
sponding to the N-semi-degree function ωB onB defined by ωB(p) := minP∈π−1(p){ω(P )}.
Indeed, if so, the result will follow from Lemma 3.2 in [4] which asserts in particular
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that ωB is an N-degree function on B if and only if Ĵ is prime. Let {G
′

i}i∈N be the fil-

tration corresponding to ωB. Given f ∈ G
′

i there exists F ∈ Qi such that π(F ) = f ,

which means that G
′

i ⊂ π (Qi). Conversely, it is clear that ωB(zi) = ω(Zi) = 0 for
all i ∈ {1, . . . , r}. Furthermore ωB(si) = ω(Si) = 1 for all i ∈ {1, . . . ,m}, for oth-
erwise si ∈ ker ∂ which is absurd. Finally, if di 6= 0 and ωB(xi) < ω(Xi) = di 6= 0,
then xi ∈ π (Qdi−1) ⊂ ker ∂di−1 which implies that deg∂(xi) < di, a contradic-
tion. So ωB(xi) = di. Thus ωB(f) ≤ i for every f ∈ π (Qi) which means that

π (Qi) ⊂ G
′

i . �

The next Proposition, which is a reinterpretation of Prop. 4.1 in [4], describes
in particular the associated graded algebra Gr∂(B) of the filtered algebra (B,F) in
the case where the N-filtration G is proper:

Proposition 2.5. If the N-filtration G is proper then Gr∂(B) ≃ k[r+n+m]/Ĵ .

Proof. By virtue of ( Prop. 4.1 in [4]) the graded algebra associated to the filtered

algebra (B,G) is isomorphic to k[r+n+m]/Ĵ . So the assertion follows from Lemma
2.3. �

3. Semi-Rigid and Rigid k-Domains

In [6] D. Finston and S. Maubach considered rings B whose sets of locally nilpo-
tent derivations are “one-dimensional” in the sense that LND(B) = ker(∂).∂ for
some non-zero ∂ ∈ LND(B). They called them almost-rigid rings. Hereafter, we
consider the following definition which seems more natural in our context (see Prop.
3.2 below for a comparison between the two notions).

Definition 3.1. A commutative domain B over a field k of characteristic zero is
called semi-rigid if all non-zero locally nilpotent derivations of B induce the same
proper N-filtration (equivalently, the same N-degree function).

Recall that the Makar-Limanov invariant of a commutative k-domain B over a
field k of characteristic zero is defined by

ML(B) := ∩D∈LND(B) ker(D).

In particular, B is semi-rigid if and only if ML(B) = ker(∂) for any non-zero
∂ ∈ LND(B). Indeed, given D,E ∈ LND(B)\{0} such that A := ker(D) = ker(E),
there exist non-zero elements a, b ∈ A such that aD = bE (see [1] Principle 12)
which implies that theD-filtration is equal to the E-filtration. So if ML(B) = ker(∂)
for any non-zero ∂ ∈ LND(B) then B is semi-rigid. The other implication is clear
by definition.

Recall that D ∈ Derk(B) is irreducible if and only if D(B) is contained in
no proper principal ideal of B, and that B is said to satisfy the ascending chain
condition (ACC) on principal ideals if and only if every infinite chain (b1) ⊂ (b2) ⊂
(b3) ⊂ · · · of principal ideals of B eventually stabilizes. B is said to be a highest
common factor ring, or HCF-ring, if and only if the intersection of any two principal
ideals of B is again principal.

Proposition 3.2. Let B be a semi-rigid k-domain satisfying the ACC on principal
ideals. If ML(B) is an HCF-ring, then there exists a unique irreducible ∂ ∈ LND(B)
up to multiplication by unit.
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Proof. Existence: since B is satisfies the ACC on principal ideals, then for every
non-zero T ∈ LND(B), there exists an irreducible T0 ∈ LND(B) and c ∈ ker(T )
such that T = cT0. (see [1], Prop. 2.2 and Principle 7).

Uniqueness: the following argument is similar to that in [1] Prop. 2.2.b, but
with a little difference, that is, in [1] it is assumed that B itself is an HCF-ring
while here we only require that ML(B) is an HCF-ring.

Let D,E ∈ LND(B) be irreducible derivations, and denote A = ML(B). By
hypothesis ker(D) = ker(E) = A, so there exist non-zero a, b ∈ A such that aD =
bE (see [1] Principle 12). Here we can assume that a, b are not units otherwise we
are done. Set T = aD = bE. Since A is an HCF-ring, there exists c ∈ A such
that aA ∩ bA = cA. Therefore, T (B) ⊂ cB, and there exists T0 ∈ LND(B) such
that T = cT0. Write c = as = bt for s, t ∈ B. Then cT0 = asT0 = aD implies
D = sT0, and likewise E = tT0. By irreducibility, s and t are units of B, and we
are done. �

In particular, for a ring B as in 3.2, every D ∈ LND(B) has the form D = f∂
for some irreducible ∂ ∈ LND(B) and f ∈ ker(∂), and so B is almost rigid in the
sense introduced by Finston and Maubach.

Recall that a ring A is called rigid if the zero derivation is the only locally
nilpotent derivation of A. Equivalently, A is rigid if and only if ML(A) = A. It
is well known that the only non rigid k-domains of transcendence degree one are
polynomial rings in one variable over algebraic extensions of k ([1] Corollary 1.24
and Corollary 1.29). In particular, we have the following elementary criterion for
rigidity that we will use frequently in the sequel:

Lemma 3.3. A domain B of transcendence degree one over a field k of character-
istic zero is rigid if one of the following properties hold:

(1) B is not factorial.
(2) Spec(B) has a singular point.

3.1. Elementary examples of semi-rigid k-domains.

The next Proposition, which is due to Makar-Limanov ([7] Lemma 21, also [8]
Theorem 3.1), presents some of the simplest examples of semi-rigid k-domains.

Proposition 3.4. (Makar-Limanov) Let A be a rigid domain of finite transcen-
dence degree over a field k of characteristic zero. Then the polynomial ring A[x] is
semi-rigid.

Proof. For the convenience of the reader, we provide an argument formulated in the
LND-filtration language. Let ∂ be the locally nilpotent derivation of A[x] defined
by ∂(a) = 0 for every a ∈ A and ∂(x) = 1. Then the ∂-filtration {Fi}i∈N is
given by Fi = Axi ⊕ Fi−1 where F0 = ker(∂) = A. So the associated graded
algebra is Gr(A[x]) = ⊕i∈NAx

i, where x := gr(x). By Proposition 2.2, every non-
zero D ∈ LND(A[x]) respects the ∂-filtration and induces a non-zero homogeneous
locally nilpotent derivation D of Gr(A[x]) of a certain degree d.

Let f ∈ ker(D) and assume that f /∈ A. Then x divides f . Since f ∈ ker(D)
and ker(D) is factorially closed ([1] Principle 1), we have x ∈ ker(D). Note that
D sends homogeneous elements of degree i to zero or to homogeneous elements
of degree i + d, therefore D has the form D = axdE, where a ∈ A, d ∈ N, and
E ∈ LND(A) see [1] Principle 7. But since A is rigid, E = 0. Thus D = 0, a
contradiction. This means f ∈ A which implies that ker(D) ⊂ A. Finally, since
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tr.degk(A) = tr.degk(ker(D)) and A is algebraically closed in A[x], we get the
equality ker(D) = A. Hence ML(A[x]) = A. �

4. Computing the ML-Invariant using LND-Filtration

Here we illustrate the use of the ∂-filtration in the computation of ML-invariants,
for classes of already well-studied examples.

4.1. Classical examples of semi-rigid k-domains.

We first consider in 4.1.1, certain surfaces in A[3] defined by equations XnZ−P (Y )
where n > 1 and degY P (Y ) > 1, which were first discussed by Makar-Limanov
in [7], where he computed their ML-invariants. Later on Poloni [10] used similar
methods to compute ML-invariants for a larger class. In the second example 4.1.2,
we consider certain threefolds whose invariants were computed by S. Kaliman and
L. Makar-Limanov [5] in the context of the linearization problem for C∗-action on
C3.

In these examples, the use of LND-filtrations is more natural and less tedious
than other existing approaches.

4.1.1. Danielewski hypersurfaces.
Let

Bn,P = k[X,Y, Z]/〈XnZ − P (X,Y )〉

where

P (X,Y ) = Y m + fm−1(X)Y m−1 + · · ·+ f0(X),

fi(X) ∈ k[X ], n ≥ 2, and m ≥ 2.
Let x, y, z be the images of X , Y , Z in Bn,P . Define ∂ by ∂(x) = 0, ∂(y) = xn,

∂(z) = ∂P
∂y

where

∂P

∂y
= mym−1 + (m− 1)fm−1(x)y

m−2 + . . .+ f1(x)

We see that ∂ ∈ LND(Bn,P ) with ker(∂) = k[x], and y is a local slice for ∂.
Moreover, we have deg∂(x) = 0, deg∂(y) = 1, deg∂(z) = m. The plinth ideal is
pl(∂) = 〈xn〉. Up to a change of variable of the form Y 7→ Y − c where c ∈ k, we
can always assume that 0 ∈ Spec(B). A consequence of Lemma 2.3, Proposition
2.4, and Proposition 2.5 (see the Proof of Prop. 5.1 for more details) is that

1- The ∂-filtration {Fi}i∈N is given by:

Fmi+j = k[x]yjzi + Fmi+j−1

where i ∈ N and j ∈ {0, . . .m− 1}.
2- The associated graded algebra Gr(Bn,P ) = ⊕i∈NBi, where Bi = Fi/Fi−1, is

generated by x = gr∂(x), y = gr∂(y), z = gr∂(z) as an algebra over k with relation

xnz = ym, i.e. Gr(Bn,P ) = k[X,Y , Z]/〈X
n
Z − Y

m
〉. And we have :

Bmi+j = k[x]yjzi

where i ∈ N and j ∈ {0, . . .m− 1}.

Proposition 4.1. With the notation above we have:
(1) ML(Bn,P ) = k[x]. Consequently Bn,P is semi-rigid.
(2) Every D ∈ LND(Bn,P ) has the form D = f(x)∂.
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Proof. (1) By Proposition 2.2 a non-zero D ∈ LND(B) induces a non-zero D ∈
LND(Gr(B)). Let f ∈ ker(D) \ k, then f ∈ ker(D) \ k. There exists i ∈ N such

that f ∈ Bi.
Assume that f /∈ k[x] = B0, then one of the elements y, z must divide f . Which

leads to a contradiction as follows:
If y divides f , then y ∈ ker(D) because ker(D) is factorially closed in Gr(B)

([1] Principle 1). For the same reason x, z ∈ ker(D) because xnz = ym. So D = 0,
a contradiction.

If z divides f , then D(z) = 0. So D extends to a locally nilpotent derivation D̃

of the ring B̃ = k(z)[x, y]/ 〈xnz − ym〉. Since 0 ∈ Spec(B) is a singular point when

n ≥ 2 and m ≥ 2 , B̃ is rigid (Lemma 3.3). Therefore, D̃ = 0 which means D = 0,
a contradiction.

So the only possibility is that f ∈ k[x]. This means that deg∂(f) = 0, and
hence that f ∈ k[x]. So ker(D) ⊂ k[x], and finally k[x] = ker(D) because
tr.degk(ker(D)) = 1 and k[x] is algebraically closed in B. So we get ML(B) = k[x].

(2) is an immediate consequence of Proposition 3.2. �

4.1.2. Koras-Russell hypersurfaces of the second type.
Here we consider hypersurfaces associated with k-algebras of the form:

Bn,e,l,Q = k[X,Y, Z, T ]/〈Y (Xn + Ze)l −Q(X,Z, T 〉

where

Q(X,Z, T ) = Tm + f1(X,Z)T
m−1 + . . .+ fm(X,Z)

fi(X,Z) ∈ k[X,Z], n > 1, e > 1, l > 1, and m > 1. We may assume without loss of
generality that Q(0, 0, 0) = 0 . A particular case of this family corresponds to the
so called Koras-Russell hypersurfaces of the second type considered by S. Kaliman
and L. Makar-Limanov ([5]) where they computed their ML-invariants. Here we
explain how to apply the LND-filtration method to compute this invariant for all
algebras Bn,e,l,Q.

Let x, y, z, t be the images of X , Y , Z, T in Bn,e,l,Q. Define ∂ by

∂ =
∂Q

∂t
∂y + (Xn + Ze)l∂t

We see that ∂ ∈ LND(Bn,e,l,Q) with ker(∂) = k[x, z], and t is a local slice for ∂.
Moreover, we have deg∂(x) = 0, deg∂(y) = m, deg∂(z) = 0, and deg∂(t) = 1. The
plinth ideal is pl(∂) = 〈(Xn + Ze)l〉. By Lemma 2.3, Prop. 2.4, and Prop. 2.5 we
get the following.

1- The ∂-filtration {Fi}i∈N is given by:

Fmi+j = k[x, z]tjyi + Fmi+j−1

where i ∈ N, and j ∈ {0, . . . ,m− 1}.
2- The associated graded algebra Gr(Bn,e,l,Q) = ⊕i∈NBi, where Bi = Fi/Fi−1,

is generated by x = gr∂(x), y = gr∂(y), z = gr∂(z), t = gr∂(t) as an algebra over

k with the relation y(xn + ze)l = t
m
, i.e. Gr(Bn,e,l,Q) = k[X,Y , Z, T ]/〈Y (X

n
+

Z
e
)l − T

m
〉. And we have :

Bmi+j = k[x, z]t
j
yi

where i ∈ N, and j ∈ {0, . . . ,m− 1}.
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Proposition 4.2. With the notation above we have:
(1) ML(Bn,e,l,Q) = k[x, z]. Consequently B is semi-rigid.
(2) Every D ∈ LND(Bn,e,l,Q) has the form D = f(x, z)∂.

Proof. (1) Given a non-zero D ∈ LND(B). By Proposition 2.2 D induces a non-
zero D ∈ LND (Gr(B)). Suppose that f ∈ ker(D) \ k, then f ∈ ker(D) \ k. So
there exists i ∈ N such that f ∈ Bi. Assume that f /∈ k[x, z] = B0, then one of the
elements t, y must divides f (see §4.1.2 above). Which leads to a contradiction as
follows:

If t divides f , then t ∈ ker(D) as ker(D) is factorially closed, and for the
same reason y, (xn + ze)l ∈ ker(D) due to the relation y(xn + ze)l = t

m
. So

xn + ze ∈ ker(D) which implies that x, z ∈ ker(D) ([1] Lemma 9.3). This means
D = 0, a contradiction.

Finally, if y divides f , then D(y) = 0. Choose H ∈ ker(D) which is homogeneous
and algebraically independent of y, which is possible, since tr.degk ker(D) = 2 and
ker(D) is generated by homogeneous elements. Then by §4.1.2, H has the form
H = h(x, z).yl. By algebraic dependence, we may assume H = h(x, z), which is
non-constant, and that h(0, 0) = 0. So D extends to a locally nilpotent derivation

D̃ of the ring B̃ = k(y,H)[x, z, t]/〈h(x, z) − H, y(xn + ze)l − t
m
〉. But B̃ is of

transcendence degree one over the field k(y,H) whose spectrum has a singular

point at 0. This means that B̃ is rigid (Lemma 3.3). Thus D̃ = 0, which implies
D = 0, a contradiction.

So the only possibility is that f ∈ k[x, z], and this means deg∂(f) = 0, thus f ∈
k[x, z] and ker(D) ⊂ k[x, z]. Finally, k[x, z] = ker(D) because tr.degk(ker(D)) = 2.
So we get ML(B) = k[x, z]

(2) follows again from Proposition 3.2. �

5. A new class of semi-rigid rings

In this section, we use the LND-filtration method to establish the semi-rigidity
of new families of two dimensional domains of the form

R = k[X,Y, Z]/ 〈XnY − P (X,Q(X,Y )−XeZ)〉

for suitable integers n, e ≥ 2 and polynomials P (X,T ), Q(X,T ) ∈ k[X,T ]. They
share with Danielewski hypersurfaces discussed in 4.1.1 above, the property to
come naturally equipped with an irreducible locally nilpotent derivation induced
by a locally nilpotent derivation of k[X,Y, Z]. But in contrast with the Danielewski
hypersurfaces case, the corresponding derivation on k[X,Y, Z] are no longer trian-
gular, in fact not even triangulable by virtue of characterization due to Daigle [9].

We will begin with a very elementary example illustrating the steps needed
to determine the LND-filtration and its associated graded algebra, and then we
proceed to the general case.

5.1. A toy example.

We let

R = k[X,Y, Z]/〈X2Y − (Y 2 −XZ)2〉

and we let x, y, z be the images of X , Y , Z in R. A direct computation reveals
that the derivation

2XS∂Y + (4Y S −X2)∂Z
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of k[X,Y, Z] where S := Y 2−XZ is locally nilpotent and annihilates the polynomial
X2Y − (Y 2 −XZ)2. It induces a locally nilpotent derivation ∂ of R for which we
have ∂(x) = 0, ∂3(y) = 0, ∂5(z) = 0. Furthermore, the element s = y2 − xz is a
local slice for ∂ with ∂(s) = x3. The kernel of ∂ is k[x] and the plinth ideal is the
principal ideal generated by x3. We have deg∂(x) = 0, deg∂(y) = 2, deg∂(z) = 4,
deg∂(s) = 1.

Proposition 5.1. With the notation above, we have:
(1) The ∂-filtration {Fi}i∈N is given by :

F4i+2j+l = k[x]slyjzi + F4i+2j+l−1

where i ∈ N, j ∈ {0, 1}, l ∈ {0, 1}.
(2) The associated graded algebra Gr∂(R) = ⊕i∈NRi, where Ri = Fi/Fi−1, is

generated by x = gr∂(x), y = gr∂(y), z = gr∂(z), s = gr∂(s) as an algebra over

k with relations x2z = s2 and x z = y2, i.e. Gr∂(R) = k[X,Y , Z, S]/〈X
2
Z −

S
2
, XZ − Y

2
〉. Furthermore:

R4i+2j+l = k[x]slyjzi

where i ∈ N, j ∈ {0, 1}, l ∈ {0, 1, 2, 3}.

Proof. 1) First, the ∂-filtration {Fi}i∈N is given by Fr =
∑

h≤rHh where Hh :=∑
u+2v+4w=h k[x] (s

uyvzw) and u, v, w, h ∈ N. To show this, let J be the ideal in

k[4] = k[X,Y, Z, S] defined by J =
(
X2Y − (Y 2 −XZ)2, Y 2 −XZ − S

)
. Define an

N-degree function ω on k[4] by declaring that ω(X) = 0, ω(S) = 1, ω(Y ) = 2, and
ω(Z) = 4. By Lemma 2.4, the N-filtration {Gr}i∈N where Gr =

∑
h≤rHh is proper

if and only if Ĵ is prime. Which is the case since Ĵ =
〈
X2Y − S2, Y 2 −XZ

〉
is

prime. Thus by Lemma 2.3 we get the desired description.
Second, let l ∈ {0, 1} and j ∈ {0, 1, 2, 3} be such that l := r mod 2, j := r − l

mod 4, and i := r−2j−l
4 . Then we get the following unique expression r = 4i+2j+

l. Since Fr =
∑

u+2v+4w=r k[x] (s
uyvzw) + Fr−1, we conclude in particular that

Fr ⊇ k[x]slyjzi + Fr−1. For the other inclusion, the relation x2y = s2 allows to
write suyvzw = xeslyv0zw and from the relation y2 = s + zx we get xeslyv0zw =
xeslyj(s+ xz)nzw. Since the monomial with the highest degree relative to deg∂ in
(s+xz)n is xn.zn, we deduce that xeslyj(s+xz)nzw = xe+nslyjzw+n+

∑
Mβ where

Mβ is monomial in x, y, s, z of degree less than r. Since the expression r = 4i+2j+l
is unique, we get w + n = i. So suyvzw = xe+nslyjzi + f where f ∈ Fr−1. Thus
k[x] (suyvzw) ⊆ k[x]slyjzi + Fr−1 and finally Fr = k[x]slyjzi + Fr−1.

2) By part (1), an element f of degree r can be written as f = g(x)slyjzi + f0
where f0 ∈ Fr−1, l = r mod 2, j = r − l mod 4, i = r−2j−l

4 , and i ∈ N, j ∈ {0, 1},
l ∈ {0, 1}. So by Lemma 1.4, P2, P1, P3 respectively we get

f = g(x)slyjzi + h = g(x)slyjzi = g(x)slyjzi = g(x)slyjzi

and therefore B4i+2j+l = k[x]slyjzi.

Finally, by Proposition 2.5, Gr∂(B) = k[X,Y , Z, S]/〈X
2
Z − S

2
, X Z − Y

2
〉. �

5.2. A more general family.

We now consider more generally rings R of the form

k[X,Y, Z]/ 〈XnY − P (X,Q(X,Y )−XeZ)〉
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where

P (X,S) = Sd + fd−1(X)Sd−1 + · · ·+ f1(X)S + f0(X)

Q(X,Y ) = Y m + gm−1(X)Y m−1 + · · ·+ g1(X)Y + g0(X)

n ≥ 2, d ≥ 2, m ≥ 1, and e ≥ 1. Up to a change of variable of the form Y 7→ Y − c
where c ∈ k, we may assume that 0 ∈ Spec(R).

Let x, y, z be the images of X , Y , Z in R. Define ∂ by: ∂(x) = 0, ∂(s) = xn+e

where s := Q(x, y) − xez. Considering the relation xny = P (x,Q(x, y) − xez), a

simple computation leads to ∂(y) = xe ∂P
∂s

,∂(z) = ∂Q
∂y

∂P
∂s

− xn, i.e.

∂ := xe
∂P

∂s
∂y + (

∂Q

∂y

∂P

∂s
− xn)∂z

where ∂P
∂s

= dsd−1 + (d − 1)fd−1(x)s
d−2 + · · · + f1(x), and

∂Q
∂y

= mym−1 + (m −

1)gm−1(x)y
m−2+ · · ·+g1(x). Since ∂(x

ny−P (x,Q(x, y)−xez)) = 0 and ∂d+1(y) =
0, ∂md+1(z) = 0, ∂ is a well-defined locally nilpotent derivation of R. The kernel of
∂ is equal to k[x] and the element s is a local slice for ∂ by construction. One checks
further that the plinth ideal is equal to pl(∂) = 〈xn+e〉. A direct computation shows
that deg∂(x) = 0, deg∂(y) = d, deg∂(z) = md and deg∂(s) = 1. Furthermore:

1- The ∂-filtration {Fi}i∈N is given by :

Fmdi+dj+l = k[x]slyjzi + Fmdi+dj+l−1

where i ∈ N, j ∈ {0, . . . ,m− 1}, l ∈ {0, . . . , d− 1}.
2- The associated graded algebra Gr(R) = ⊕i∈NRi, where Ri = Fi/Fi−1, is gen-

erated by x = gr∂(x), y = gr∂(y), z = gr∂(z), s = gr∂(s) as an algebra over k with

relations xnz = sd and xe z = ym , i.e. Gr(R) = k[X,Y , Z, S]/
〈
X

n
Z − S

d
, X

e
Z − Y

m
〉
.

And we have :

Rmdi+dj+l = k[x]slyjzi

where i ∈ N, j ∈ {0, . . . ,m− 1}, l ∈ {0, . . . , d− 1}.

Theorem 5.2. With the above notation the following hold:
(1) ML(R) = k[x]. Consequently R is semi-rigid.
(2) Every D ∈ LND(R) has form D = f(x)∂, i.e. R is almost rigid.

Proof. (1) Given a non-zero D ∈ LND(R). By Proposition 2.2, D respects the ∂-
filtration and induces a non-zero locally nilpotent derivation D of Gr(R). Suppose
that f ∈ ker(D) \ k, then f ∈ ker(D) \ k is an homogenous element of Gr(R). So

there exists i ∈ N such that f ∈ Ri.
Assume that f /∈ k[x] = R0, then one of the elements s, y, z must divides f by

5.2,2. Which leads to a contradiction as follows :
If s divides f , then s ∈ ker(D) as ker(D) is factorially closed, and for the same

reason x, y ∈ ker(D) due to the relation xny = sd. Then by the relation xe z = ym,
we must have z ∈ ker(D), which means D = 0, a contradiction. In the same way,

we get a contradiction if y divides f .
Finally, if z divides f , then D(z) = 0. So D induces in a natural way a locally

nilpotent derivation D̃ of the ring R̃ = k(z)[x, y, s]/〈xn z−sd, xe z−ym〉. But since

0 ∈ Spec(R̃) is a singular point, R̃ is rigid (Lemma 3.3). So D̃ = 0, which implies
D = 0, a contradiction.
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So the only possibility is that f ∈ k[x], and this means deg∂(f) = 0, thus f ∈ k[x]
and ker(D) ⊂ k[x]. Finally, k[x] = ker(D) because tr.degk(ker(D)) = 1 and k[x] is
algebraically closed in B. So ML(R) = k[x].

(2) follows again from Proposition 3.2. �

6. Further applications of the LND-filtratoin

Given a commutative domain B over an algebraically closed field k of charac-
teristic zero, we denote Autk(B) the group of algebraic k-automorphisms of B.
This group acts by conjugation on LND(B). An immediate consequence is that
α(ML(B)) = ML(B) for every α ∈ Autk(B) which yield in particular an induced
action of Autk(B) on ML(B). Let ∂α = α−1∂α be the conjugate of ∂ by a given
automorphism α of B, it is straightforward to check that α{ker(∂α)} = ker(∂) and
more generally that deg∂α

(b) = deg∂(α(b)) for any b ∈ B. In other words, α re-
spects deg∂ and deg∂α

(i.e. α sends an element of degree n relative to deg∂α
, to an

element of the same degree n relative to deg∂ .

Definition 6.1. We say that an algebraic k-automorphism α preserves the ∂-
filtration for some ∂ ∈ LND(B) if deg∂(α(b)) = deg∂(b) for any b ∈ B.

Lemma 6.2. Let ∂ ∈ LND(B) and α ∈ Autk(B). Then ∂ and ∂α are equivalent,
i.e. have the same kernel, if and only if α preserve the ∂-filtration.

Proof. Suppose that ∂ and ∂α are equivalents, then deg∂(α(b)) = deg∂α
(b) for

every b ∈ B, and by hypothesis ker(∂) = ker(∂α), so deg∂ = deg∂α
. Then we

obtain deg∂(α(b)) = deg∂(b). Thus α preserves the ∂-filtration. Since the other
direction is obvious we are done. �

The following Corollary shows a nice property of a semi-rigid ring. That is,
every algebraic automorphism α has to preserve the unique filtration induced by
any locally nilpotent derivation ∂, i.e. α sends an element of degree i relative to ∂
to an element of the same degree relative to ∂. Which makes the computation of
the group of automorphisms easier up to the automorphism group of ker(∂).

Corollary 6.3. Let B be a semi-rigid k-domain, then every k-automorphism of B
preserve the ∂-filtration for every ∂ ∈ LND(B).

Proof. A direct consequence of Definition 3.1 and Lemma 6.2. �

6.1. The group of algebraic k-automorphisms of a semi-rigid k-domain.

Suppose that B is a semi-rigid k-domain. Then, it has a unique proper filtration
{Fi}i∈N which is the ∂-filtration corresponding to any non-zero locally nilpotent
derivation ∂ of B. Since every algebraic k-automorphism of B preserves this filtra-
tion (Corollary 6.3), we obtain an exact sequence

0 → Autk (B,ML(B)) → Autk(B) → Autk (ML(B))

where Autk (B,ML(B)) is by definition the sub-group of Autk(B) consisting of
elements whose induced action on ML(B) is trivial. Furthermore, every element of
Autk (B,ML(B)) induces for every i ≥ 1 an automorphism of F0-module of each Fi.
In this section we illustrate how to exploit these information to compute Autk(B)
for certain semi-rigid k-domains B.
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6.1.1. Autk for example 4.1.1.
In [7] Makar-Limanov computed the k-automorphism group for surfaces in k[3]

defined by equation XnZ − P (Y ) = 0 where n > 1 and degY P (Y ) > 1. Then
Poloni, see [10], generalized Makar-Limanov’s method to obtained similar results
for the rings considered in 4.1.1 above. Here we briefly indicate how to recover
these results using LND-filtrations. So let

Bn,P = k[X,Y, Z]/ 〈XnZ − P (X,Y )〉

where P (X,Y ) = Y m + fm−1(X)Y m−1 + · · · + f0(X), fi(X) ∈ k[X ], n ≥ 2, and

m ≥ 2. Up to change of variable of the form Y by Y − fm−1(X)
m

we may assume
without loss of generality that fm−1(X) = 0.

Proposition 6.4. Let Bn,P be as above. Then every algebraic k-automorphism α
of B has the form

α(x, y, z) = (λx, µy + xna(x),
µm

λn
z +

P (λx, µy + xna(x))− µmP (x, y)

λnxn
)

where λ, µ ∈ k∗ satisfy fm−i(λx) ≡ µi.fm−i(x) mod xn for all i, and a(x) ∈ k[x].

Proof. By Proposition 4.1, (1) and §4.1.1, ML(B) = k[x] and the ∂-filtration
{Fi}i∈N is given by Fim+j = k[x]yim+j +k[x]yim+j−mz+ . . .+k[x]yjzi+Fim+j−1,

where ∂ = xn.∂y+
∂P
∂y
.∂z , deg∂(x) = 0, deg∂(y) = 1, and deg∂(z) = m. In particular

F0 = k[x], F1 = k[x]y + F0, and Fm = k[x]ym + k[x]z + Fm−1.
Now by Corollary 6.3 α preserve deg∂ , so we must have α(x) ∈ F0 = k[x],

α(y) ∈ F1 = k[x]y + k[x] and α(z) ∈ Fm = k[x]ym + k[x].z + Fm−1. Since α is
invertible we get α(x) = λx + c, α(y) = µy + b(x), and α(z) = ξz + h(x, y) where
λ, µ, ξ ∈ k∗, c ∈ k, b ∈ k[x], h(x, y) ∈ k[x, y], and degy h(x, y) ≤ m.

By Proposition 4.1 (2) every D ∈ LND(B) has the form D = f(x)∂. In par-
ticular, ∂α = f(x)∂ for some f(x) ∈ k[x]. Since α∂α = ∂α we have ∂(α(y)) =
α(f(x)∂(y)) = f(α(x))α(xn) where (∂(y) = xn). So we get ∂(µy + b(x)) =
f(α(x)) (λx + c)

n
. Since ∂(µy + b(x)) = µxn, x divides (λx + c)n in k[x], and

this is possible only if c = 0, so we get α(x) = λx.
Applying α to the relation xnz = P (x, y) in BP,n, we get λ

nxnα(z) = P (λx, µy+
b(x)) = µmP (x, y) +mµm−1ym−1b(x) +H(x, y) where degyH ≤ m − 2. Since xn

divides P = xnz and degyH ≤ m − 2, xn divides mµm−1ym−1b(x) + H(x, y) in
k[x, y]. So xn divides b(x), i.e. α(y) = µy + xna(x).

In addition, xn divides every coefficient of H as a polynomial in y, so xn di-
vides −µmfm−i(x) + µm−ifm−i(λx) because coefficients of H(y) are of the form
q(x, y)b(x)−µmfm−i(x)+µ

m−ifm−i(λx) and b(x) is divisible by x
n. So xn divides

−µifm−i(x) + fm−i(λx) for every i. And we are done. �

6.1.2. Autk for example 5.2.
The same method as in 6.1.1 can be applied to compute automorphism groups of
rings R defined as in Theorem 5.2. For simplicity we only deal with the case where
Q(X,Y ) = Y m, the general case can be deduced in the same way at the cost of
longer and more complicated computation. Again we make a substitution in S as
in 6.1.1 to get relation of the form presented in the following result:

Theorem 6.5. Let R denote the ring R = k[X,Y, Z]/ 〈XnY − P (X,Y m −XeZ)〉 =
k[x, y, z] where P (X,S) = Sd+ fd−2(X)Sd−2+ · · ·+ f1(X)S+ f0(S), n ≥ 2, d ≥ 2,
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m ≥ 1, and e ∈ N. Then, every algebraic k-automorphism of B has the form

α(x, y, z) = (λx,
µd

λn
y + F,

µdm

λnm+e
.z +

(µ
d

λn y + F )m − µdm

λnm y
m + xn+ea(x)

λxe
)

where:
λ, µ ∈ k∗ verify both µdm

λnm = µ and fd−i(λx) ≡ µifd−i(x) mod xn+e for every

i ∈ {2, . . . , d}. s = ym − xez , and F = P (λx,µs+xn+ea(x))−µdP (x,s)
λnxn , a(x) ∈ k[x].

Proof. A similar argument as in the proof of Proposition 6.4 leads to α(x) = λx
and α(s) = µs+ xna(x) where λ, µ ∈ k∗ verify fd−i(λx) ≡ µifd−i(x) modxn for all
i. Now α(x) and α(s) determine

α(y) =
µd

λn
y +

P (λx, µs+ xna(x)) − µdP (x, s)

λnxn
.

Apply α to xez = ym − s to get λexeα(z) = (µ
h

λn y + F )m − µs − xna(x) where

F = P (λx,µs+xna(x))−µhP (x,s)
λnxn ∈ k[x, s]. So we have λexeα(z) = [µ

hm

λnm y
m − µhm

λnm s] +

(µ
hm

λnm − µ)s+m(µ
h

λn y)
m−1F + . . .+ Fm − xna(x). Since µhm

λnm y
m − µhm

λnm s =
µhm

λnmx
ez,

we see that xe divides G := (µ
hm

λnm − µ)s +m(µ
h

λn y)
m−1F + . . . + Fm − xna(x) in

k[x, s, y] ⊂ B because F ∈ k[x, s]. Thus xe divides every coefficients of G as a

polynomial in y because degsG ≤ d − 1. So xe divides F and µhm

λnm − µ = 0. This

means that xn+e divides fd−i(λx) − µifd−i(x) for all i ∈ {2, . . . , d} (see proof of

Proposition 6.4), and µhm

λnm = µ. Finally, by the relation s = ym − xez, we get

α(z) = µhm

λnm+e z +
m( µh

λn y)m−1F+...+Fm+xna(x)

λxe , and we are done. �

6.2. Isomorphisms.

We are going to use the previous facts about semi-rigid k-domains to give a neces-
sary and sufficient condition for two hypersurfaces of the family 4.1.1 to be isomor-
phic.

Let Ψ : A −→ B be an algebraic isomorphism, we refer to this by Ψ ∈ Isomk(A,B),
between two finitely generated k-domains A = k[y1, . . . , yr], B = k[x1, . . . , xr]
where y1, . . . , yr and x1, . . . , xr are minimal sets of generators. Since Ψ(A) =
k[Ψ(y1), . . . ,Ψ(yr)] = k[x1, . . . , xr], there exists an automorphism ψ : B −→ B such
that for every i ∈ {1, . . . , r} there exists j ∈ {1, . . . , r} such that ψ(xi) = Ψ(yj).

Given ∂ ∈ LND(B) and Ψ ∈ Isomk(A,B). For any n ∈ N we have (Ψ−1∂Ψ)n =
Ψ−1∂nΨ. So we see that Ψ−1∂Ψ ∈ LND(A). An immediate result is Ψ(ML(A)) =
ML(B) for any Ψ ∈ Isomk(A,B). Denote ∂Ψ := Ψ−1∂Ψ, we have the following
properties

(1) Ψ{ker(∂Ψ)} = ker(∂).
(2) deg∂Ψ

(a) = deg∂(Ψ(a)) for all a ∈ A.

In [10], Poloni obtained similar results to the next Proposition.

Proposition 6.6. Let B1 = k[x1, y1, z1] and B2 = k[x2, y2, z2] be as in 4.1.1 where

P1 = ym1

1 + fm1−2(x1)y
m1−2
1 + · · ·+ f0(x1)

P2 = ym2

2 + gm2−2(x2)y
m2−2
2 + · · ·+ g0(x2)

fi(x1) ∈ k[x1], gi(x2) ∈ k[x2] and ni > 1,mi > 1. Then
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B1 and B2 are isomorphic if and only if n = n1 = n2, m = m1 = m2, and
fm−i(λx) ≡ µigm−i(x) mod xn for every i ∈ {2, . . . ,m} .

In addition, every isomorphism between B1 and B2 takes the form

Ψ(x1, y1, z1) = (λx2, µy2 + x
n

2a(x2),
µm

λn

z2 +
P1(λx2, µy2 + xn

2a(x2))− µmP2(x2, y2)

λnxn

2

),

where a(x) ∈ k[x] and λ ∈ k∗, µ ∈ k∗ satisfy fm−i(λx) ≡ µigm−i(x) mod xn for all
i.

Proof. Let D ∈ LND(B2), and let Ψ ∈ Isomk(B1, B2). By property 2, degDΨ
(x1) =

degD(Ψ(x1)), but we saw before that degE(x1) = 0 for all E ∈ LND(B1), so we
get degDΨ

(x1) = 0 = degD(Ψ(x1)) and Ψ(x1) ∈ F0 = k[x2]. The same argument
shows that degDΨ

(y1) = 1 = degD(Ψ(y1)), Ψ(y1) ∈ F1 − F0, and degDΨ
(z1) =

m1 = degD(Ψ(z1)). This implies that the only possibility for ψ defined as in 6.2 is
ψ(x2) = Ψ(x1), ψ(y2) = Ψ(y1) and ψ(z2) = Ψ(z1).

Now by Proposition 6.4

ψ(x2, y2, z2) = (λx2, µy2+x
n2

2
a(x2),

µm2

λn2
z2+

Q2(λx2, µy2 + x
n2

2
a(x2))− µm2Q2(x2, y2)

λn2x
n2
2

),

where a(x2) ∈ k[x2] and λ ∈ k∗, µ ∈ k∗ such that gm−i(λx) ≡ µigm−i(x) mod
xn2 for all i. So we get

Ψ(x1, y1, z1) = (λx2, µy2+x
n2
2
a(x2),

µm2

λn2
z2+

Q2(λx2, µy2 + x
n2
2
a(x2))− µm2Q2(x2, y2)

λn2x
n2
2

).

Since degD(z2) = m2 for any non-zero D ∈ LND(B2), and since ψ preserves
degD, we get m2 = degD(z2) = degD(ψ(z2)) = degD(Ψ(z1)) = degDΨ

(z1) = m1,
i.e. m1 = m2.

By applying Ψ to relation xn1

1 z1 = Q1(x1, y1) in B1, we obtain

λ
n1x

n1
2

(
µm2

λn2
z2 +

Q2(λx2, µy2 + x
n2
2
a(x2))− µm2Q2(x2, y2)

λn2x
n2
2

) = Q1(λx2, µy2 + x
n2
2
a(x2)).

Applying the map grD to the last equation, we get

λn1
µm2

λn2
xn1

2 z2 = µm2y2
m2 .

On the other hand xn2

2 z2 = ym2

2 (apply grD to xn2

2 z2 = Q2(x2, y2)), the last two

equations give λn1 µm2

λn2
xn1

2 = µm2xn2

2 which means that n1 = n2. We could have
obtained that n1 = n2 in this way: from λn1xn1

2 Ψ(z1) = Q1(λx2, µy2 + xn2

2 a(x2))
we conclude that λn1xn1

2 ∂(Ψ(z1)) = ∂(y2)H(x2, y2) where degy2
H < m2 and x2

does not divide H . So xn1

2 divides ∂(y2) = xn2

2 where ∂ is defined as in 4.1.1, which
mean that n1 ≤ n2. Since B1 and B2 play symmetric roles the equality follows. �
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