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THE FILTRATION INDUCED BY A LOCALLY NILPOTENT
DERIVATION

BACHAR ALHAJJAR

ABSTRACT. We investigate the filtration corresponding to the degree func-
tion induced by a non-zero locally nilpotent derivations 0 and its associated
graded algebra. As an application we provide an efficient method to recover
the Makar-Limanov invariants, isomorphism classes and automorphism groups
of classically known algebras. We also present a new class of examples which
can be fully described with this method.

Introduction

Let k be a field of characteristic zero, and let B be a commutative k-domain. A
k-derivation 0 € Dery(B) is said to be locally nilpotent if for every a € B, there
is an integer n > 0 such that 9"(a) = 0. An important invariant of k-domains
admitting non-trivial locally nilpotent derivations is the so called Makar-Limanov
invariant which was defined by Makar-Limanov as the intersection ML(B) C B of
kernels of all locally nilpotent derivations of B ([2]). This invariant was initially
introduced as a tool to distinguish certain k-domains from polynomial rings but it
has many other applications for the study of k-algebras and their automorphism
groups ([3]). One of the main difficulties in applications is to compute this invariant
without a prior knowledge of all locally nilpotent derivations of a given k-domain.

In [4] S. Kaliman and L. Makar-Limanov developed general techniques to deter-
mine the ML-invariant for a class of finitely generated k-domains B. The idea is
to reduce the problem to the study of homogeneous locally nilpotent derivations
on graded algebras Gr(B) associated to B. For this, one considers appropriate
filtrations F = {F; }icr on B generated by so called real-valued weight degree func-
tions in such a way that every non-zero locally nilpotent derivation on B induces a
non-zero homogeneous locally nilpotent derivation on the associated graded algebra
GY}‘(B).

In particular, every k-domain B admitting a non-zero locally nilpotent deriva-
tion d comes equipped with a natural filtration by the k-sub-vector-spaces F; =
ker(9*1), i > 0, that we call the d-filtration.

In this article we show that this filtration is convenient for the computation of
the ML-invariant, and we give general methods to describe the sub-spaces ker(9+1)
and their associated graded algebra.

Knowing this filtration gives a very precise understanding of the structure of
semi-rigid k-domains, that is,k-domains for which every locally nilpotent derivation
gives rise to the same filtration. For such rings the study of the O-filtration is a
very efficient tool to determine isomorphism types and automorphism groups. We
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illustrate how the computation of ML-invariant of classically known semi-rigid k-
domains can be simplified using these types of filtration. We also present a new
class of semi-rigid k-domains which can be studied with this method.

1. Preliminaries

In this section we briefly recall basic facts on filtered algebra and their relation
with derivation in a form appropriate to our needs.

In the sequel, unless otherwise specified B will denote a commutative domain
over a field k of characteristic zero. The set Z>( of non-negative integers will be
denoted by N.

1.1. Filtration and associated graded algebra.

Definition 1.1. An N-filtration of B is a collection {F; };en of k-sub-vector-spaces
of B with the following properties:

1- F; C Fipp forall i e N .

2- B = UienF; -

3- ]:ij:j C ]:i-l,-j for all 1,7 € N.
The filtration is called proper if the following additional property holds:

4-Ifa € F; \ Fi_1and b € ]'—j \]:j,h then ab € ]:iJrj \]:iJrjfl-

There is a one-to-one correspondence between proper N-filtrations and so called
N-degree functions:

Definition 1.2. An N-degree function on B is a map deg : B — NU{—o00} such
that, for all a,b € B, the following conditions are satisfied:

(1) deg(a) = —o0 < a = 0.

(2) deg(ab) = deg(a) + deg(b).

(3) deg(a + b) < max{deg(a),deg(d)}.
If the equality in (2) replaced by the inequality deg(ab) < deg(a) + deg(b), we say
that deg is an N-semi-degree function.

Indeed, for an N-degree function on B, the sub-sets F; = {b € B | deg(b) < i} are
k-subvector spaces of B that give rise to a proper N-filtration {F;};cn. Conversely,
every proper N-filtration {F;}ien, yields an N-degree function w : B — NU{—o0}
defined by w(0) = —oc0 and w(b) =i if b € F; \ Fi_1.

Definition 1.3. Given a k-domain B = U;enF; equipped with a proper N-filtration,
the associated graded algebra Gr(B) is the k-vector space

Gr(B) = ®ienFi/Fi-1

equipped with the unique multiplicative structure for which the product of the
elements a + F;_1 € F;/Fi—1 and b+ F;j_1 € F;/Fj_1, where a € F; and b € Fj,
is the element

(a + fi_l)(b + .7:]‘_1) =ab+ Fipj_1 € fi+j/fi+j_1.

Property 4 (proper) in Definition [LTlensures that Gr(B) is a commutative k-domain
when B is an integral domain. Since for each a € B the set {n € N|a € F,} has a
minimum, there exists ¢ such that a € F; and a ¢ F;_1. So we can define a k-linear
map gr : B — Gr(B) by sending a to its class in F;/F;_1, i.e a = a + F;—1, and
gr(0) = 0. We will frequently denote gr(a) simply by @. Observe that gr(a) = 0 if
and only if a = 0.
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Denote by deg the N-degree function deg : B — N U {—o0} corresponding to
the proper N-filtration {F;};en. We have the following properties.

Lemma 1.4. Given a,b € B the following holds:

P1) ab=ab, i.e. gr is a multiplicative map.

P2) If deg(a) > deg(b), then a +b =a.

P3) If deg(a) = deg(b) = deg(a +b), then a+b=a+b.

P4) If deg(a) = deg(b) > deg(a + b), then @+ b = 0, in particular gr is not an
additive map in general.

Proof. Let us assume that deg(a) = 7 and deg(b) = j. By definition, deg(ab) = i+j
means that ab € F;; and ab ¢ Fiy;_1, so ab = ab+ Fij_1 := (a + Fi_1)(b +
Fj_1) = ab. Which gives P1. For P2 we observe that since deg(a+b) = deg(a), we
have a——l—b = (CL—I— b) +Fii1 = (CL—F‘/TZ',l) + (b+fi,1), and since ]:j,1 C ]'—j C Fi1
as i > j, we get b+ F;_1 = 0. P3) is immediate, by definition. Finally, assume by
contradiction that @+b # 0, then @+b = (a+F;_1)+(b+F;i—1) = ((a+b)+F;_1) # 0,
which means that a + b ¢ F;_1 and deg(a + b) = 4, which is absurd. So P4
follows. O

1.2. Derivations.

By a k-derivation of B, we mean a k-linear map D : B — B which satisfies the
Leibniz rule: For all a,b € B; D(ab) = aD(b) + bD(a). The set of all k-derivations
of B is denoted by Dery(B).

The kernel of a derivation D is the subalgebra ker D = {b € B; D(b) = 0} of B.
The plinth ideal of D is the ideal pl(D) = ker D N D(B) of kerD, where D(B)
denotes the image of B.

An element s € B such that D(s) € ker(D) \ {0} is called a local slice for D.

Definition 1.5. Given a k-algebra B = U;enF; equipped with a proper N-filtration,
a k-derivation D of B is said to respect the filtration if there exists an integer d
such that D(F;) C Fi4q for all i € N.

If so, we define a k-linear map D : Gr(B) — Gr(B) as follows: If D = 0, then
D = 0 the zero map. Otherwise, if D # 0 then we let d be the least integer such
that D(F;) C Fitq for all ¢ € N and we define

D: Fi/Fi1 — Fiva)Fitd—1

by the rule D(a + F;_1) = D(a) + F;y+q—1. One checks that D satisfies the Leibniz
rule, therefore it is a k-derivation of the graded algebra Gr(B). Moreover it is
homogeneous of degree d, i.e D sends homogeneous elements of degree i to zero or
to homogeneous elements of degree i + d .

Observe that D = 0 if and only if D = 0. In addition, gr(ker D) C ker D.

2. LND-Filtrations and Associated Graded Algebras

In this section we introduce the O-filtration associated with a locally nilpotent
derivation 0. We explain how to compute this filtration and its associated graded
algebra in certain situation.

Definition 2.1. A k-derivation 9 € Dery(B) is said to be locally nilpotent if for
every a € B, there exists n € N (depending of a) such that 9"(a) = 0. The set of
all locally nilpotent derivations of B is denoted by LND(B).
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In particular, every locally nilpotent derivation 9 of B gives rise to a proper N-
filtration of B by the sub-spaces F; = kerd?, i € N, that we call the 0-filtration. It
is straightforward to check (see Prop. 1.9 in [I]) that the O-filtration corresponds
to the N-degree function degy : B — NU {—o00} defined by

degy(a) :== min{i € N | 9""1(a) = 0}, and deg,(0) := —cc.
Note that by definition Fy = ker 9 and that F; \ Fy consists of all local slices for 0.
Let Gry(B) = ®;enFi/Fi—1 denote the associated graded algebra relative to the
d-filtration {F;}ien. Let gry : B — Gra(B); a 2% @ be the natural map between
B and Gry(B) defined in [[33] where @ denote gry(a).

The next Proposition, which is due to Daigle (Theorem 2.11 in [I]), implies in
particular that if B is of finite transcendence degree over k, then every non-zero D €
LND(B) respects the O-filtration and therefore induces a non-zero homogeneous
locally nilpotent derivation D of Gry(B).

Proposition 2.2. (Daigle) Suppose that B is a commutative domain, of finite
transcendence degree over k. Then for every pair D € Dery(B) and 0 € LND(B), D
respects the O-filtration. Consequently, D is a well defined homogeneous derivation
of the integral domain Gry(B) relative to this filtration, and it is locally nilpotent
if D is locally nilpotent.

2.1. Computing the O-filtration.

Here, given a finitely generated k-domain B, we describe a general method which
enables the computation of the O-filtration for a locally nilpotent derivation 0 with
finitely generated kernel. First we consider a more general situation where the
plinth ideal pl(9) is finitely generated as an ideal in ker @ then we deal with the
case where ker 0 is itself finitely generated as a k-algebra.

Let B = k[X1,...,X,]/I = k[z1,...,z,] be a finitely generated k-domain, and
let O € LND(B) be such that pl(9) is generated by precisely m elements f1,..., fim
as an ideal in ker 9. Denote by F = {F;}ien the O-filtration, then:

By definition Fy = ker d. Furthermore, given elements s, € F7 such that 9(s;) =
fi for every i € {1,...,m}, it is straightforward to check that

Fi = Fos1+ ...+ Fosm + Fo-
Letting degy(x;) = d;, we denote by H; the Fp-sub-module in B generated by

elements of degree j relative to degy of the form si* ... s%mzi* ...zl ie.,

-— u U v v
H; = E Fo(sit...spmal* ..oz
Zj u]Jer d;.vi=j

where u;j,v; € N for all 4 and j. The integer > u; + >, d;v; is nothing but
degy(s)t.s5? ... .shm.xit s, .. .. a¥m). Then we define a new N-filration G = {G; }ien

m
of B by setting
g = Z H;.
j<i
By construction G; C F; for all ¢ € N, with equality for ¢ = 0,1. The following
result provides a characterization of when these two filtrations coincide:

Lemma 2.3. The filtrations F and G are equal if and only if G is proper.
4



Proof. One direction is clear since F is proper. Conversely, suppose that G is proper
with the corresponding N-degree function w on B (see §L.)). Given f € F; \ Fi—1,
i > 1, for every local slice s € F; \ Fo, there exist fo # 0,a; # 0,a;—1,...,a9 € Fo
such that fof = a;s' +a;—15° "1+ +ao ( see the proof of Lemma 4 in [7]). Since
w(g) =0 (resp. w(g) = 1) for every g € Fy (resp. g € F1 \ Fo), we obtain

w(f) =w(fof) =w(ais’ +a;_15~ 4+ -+ ap) = max{w(a;s")} = i,
and so f € G;. (]

Next, we determine the J-filtration, for a locally nilpotent derivation 9 with
finitely generated kernel, by giving an effective criterion to decide when the N-
filtration G defined above is proper.

Hereafter, we assume that 0 € Spec(B) and that ker(9) is generated by elements
zi(x1,...,2,) € Bsuchthat z;(0,...,0) = 0,7 € {1,...,r}, which is always possible
since k C ker 0. Since ker(0) is finitely generated k-algebra, the plinth ideal pl(9)
is finitely generated. So there exist s1(x1,...,Zn), - .. Sm(x1,...,2,) € F1 such
that 71 = Fos1 + ...+ Fosm + Fo. We can also assume that s;(0,...,0) = 0.

Letting J C klrtntml = k[Z,, ..., Z,][X1,..., X,][S1, ..., Sm] be the ideal gen-
erated by I and the elements Z; = 21(X1,..., Xn), ..., Zp = 2(21,...,2p), S1 =
s1( X1y, Xn), -y S = Sm(x1,. .., 2y,), then we have

B=k[Z,...,Z][X1,..., Xu][S1,-..,Sm]/J.
Note that by construction (0,...,0) € Spec(klr+m+ml/ ).

r+n+m times
We define an N-degree function w on kl"+7+™ by declaring that w(Z;) = 0 =
degy(z;) for all ¢ € {1,...,7}, w(S;) = 1 = degy(s;) for all ¢ € {1,...,m}, and
w(X;) = degy(z;) = d; for alli € {1,...,n}. The corresponding proper N-filtration
Q, :={P € k" | w(P) <4}, i € N, on k'™ has the form Q; = ©;<;H; where

Hj = B5 w5, dio—gk[ 1, 28 Shn XX,

By construction 7 (Q;) = G; where 7 : klrtntml 5 B denotes the natural projec-
tion. Indeed, since

m(Qi) =) 7 (H;)

J<i
and 7 (H;) = sz w S, divimg Bl2Ls -z ]sy syt we get
m(H;) = Z (ker ) si*....spmat . oxpn

Ej uj +Zi divi=j

which means precisely that 7 (Q;) = G;.

Let J C klrtn+m] be the homogeneous ideal generated by the highest homoge-
neous components relative to w of all elements in J. Then we have the following
result, which is inspired by the technique developed by S. Kaliman and L. Makar-
Limanov:

Proposition 2.4. The N-filration G is proper if and only if J is prime.

Proof. 1t is enough to show that G = {7 (Q;)}ien coincides with the filtration corre-
sponding to the N-semi-degree function wp on B defined by wp(p) := minper—1p){w(P)}.
Indeed, if so, the result will follow from Lemma 3.2 in [4] which asserts in particular
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that wp is an N-degree function on B if and only if Jis prime. Let {g; }ien be the fil-
tration corresponding to wp. Given f € G; there exists F' € Q; such that 7(F) = f,
which means that G, C 7 (Q;). Conversely, it is clear that wp(z) = w(Z;) = 0 for
all i € {1,...,r}. Furthermore wp(s;) = w(S;) =1 for all i € {1,...,m}, for oth-
erwise s; € ker @ which is absurd. Finally, if d; # 0 and wgp(z;) < w(X;) =d; # 0,
then 2; € 7(Q4,—1) C kerd%~! which implies that degy(z;) < d;, a contradic-
tion. So wp(x;) = d;. Thus wg(f) < i for every f € 7(Q;) which means that
7(Qi) C G, 0

The next Proposition, which is a reinterpretation of Prop. 4.1 in [4], describes
in particular the associated graded algebra Gry(B) of the filtered algebra (B, F) in
the case where the N-filtration G is proper:

Proposition 2.5. If the N-filtration G is proper then Gra(B) ~ klrtntml/J,

Proof. By virtue of ( Prop. 4.1 in [4]) the graded algebra associated to the filtered

algebra (B, G) is isomorphic to kl"*m+ml/j So the assertion follows from Lemma
O

3. Semi-Rigid and Rigid k-Domains

In [6] D. Finston and S. Maubach considered rings B whose sets of locally nilpo-
tent derivations are “one-dimensional” in the sense that LND(B) = ker(9).0 for
some non-zero d € LND(B). They called them almost-rigid rings. Hereafter, we
consider the following definition which seems more natural in our context (see Prop.
below for a comparison between the two notions).

Definition 3.1. A commutative domain B over a field k of characteristic zero is
called semi-rigid if all non-zero locally nilpotent derivations of B induce the same
proper N-filtration (equivalently, the same N-degree function).

Recall that the Makar-Limanov invariant of a commutative k-domain B over a
field k of characteristic zero is defined by

ML(B) = ﬂDeLND(B) ker(D)

In particular, B is semi-rigid if and only if ML(B) = ker(d) for any non-zero
0 € LND(B). Indeed, given D, E € LND(B)\ {0} such that A := ker(D) = ker(E),
there exist non-zero elements a,b € A such that aD = bE (see [1] Principle 12)
which implies that the D-filtration is equal to the E-filtration. So if ML(B) = ker(9)
for any non-zero 0 € LND(B) then B is semi-rigid. The other implication is clear
by definition.

Recall that D € Dery(B) is irreducible if and only if D(B) is contained in
no proper principal ideal of B, and that B is said to satisfy the ascending chain
condition (ACC) on principal ideals if and only if every infinite chain (b1) C (b2) C
(bs) C --- of principal ideals of B eventually stabilizes. B is said to be a highest
common factor ring, or HCF-ring, if and only if the intersection of any two principal
ideals of B is again principal.

Proposition 3.2. Let B be a semi-rigid k-domain satisfying the ACC on principal
ideals. If ML(B) is an HCF-ring, then there exists a unique irreducible 0 € LND(B)
up to multiplication by unit.
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Proof. Existence: since B is satisfies the ACC on principal ideals, then for every
non-zero T' € LND(B), there exists an irreducible Ty € LND(B) and ¢ € ker(T)
such that T' = ¢Tp. (see [I], Prop. 2.2 and Principle 7).

Uniqueness: the following argument is similar to that in [I] Prop. 2.2.b, but
with a little difference, that is, in [I] it is assumed that B itself is an HCF-ring
while here we only require that ML(B) is an HCF-ring.

Let D,E € LND(B) be irreducible derivations, and denote A = ML(B). By
hypothesis ker(D) = ker(E) = A, so there exist non-zero a,b € A such that aD =
bE (see [I] Principle 12). Here we can assume that a, b are not units otherwise we
are done. Set T' = aD = bE. Since A is an HCF-ring, there exists ¢ € A such
that aA NbA = cA. Therefore, T(B) C ¢B, and there exists Tp € LND(B) such
that T = cTy. Write ¢ = as = bt for s,t € B. Then Iy = asTy = aD implies
D = sTy, and likewise £ = tTy. By irreducibility, s and ¢ are units of B, and we
are done. (]

In particular, for a ring B as in B2} every D € LND(B) has the form D = f0
for some irreducible 9 € LND(B) and f € ker(9), and so B is almost rigid in the
sense introduced by Finston and Maubach.

Recall that a ring A is called rigid if the zero derivation is the only locally
nilpotent derivation of A. Equivalently, A is rigid if and only if ML(A) = A. It
is well known that the only non rigid k-domains of transcendence degree one are
polynomial rings in one variable over algebraic extensions of &k ([I] Corollary 1.24
and Corollary 1.29). In particular, we have the following elementary criterion for
rigidity that we will use frequently in the sequel:

Lemma 3.3. A domain B of transcendence degree one over a field k of character-
istic zero is rigid if one of the following properties hold:

(1) B is not factorial.

(2) Spec(B) has a singular point.

3.1. Elementary examples of semi-rigid k-domains.
The next Proposition, which is due to Makar-Limanov ([7] Lemma 21, also [§]
Theorem 3.1), presents some of the simplest examples of semi-rigid k-domains.

Proposition 3.4. (Makar-Limanov) Let A be a rigid domain of finite transcen-
dence degree over a field k of characteristic zero. Then the polynomial ring Alx] is
semi-rigid.

Proof. For the convenience of the reader, we provide an argument formulated in the
LND-filtration language. Let 0 be the locally nilpotent derivation of A[z] defined
by d(a) = 0 for every a € A and 9(z) = 1. Then the J-filtration {F;}ien is
given by F; = Ax' @ F;_1; where Fy = ker(9) = A. So the associated graded
algebra is Gr(A[x]) = ©;enAT?, where T := gr(z). By Proposition 22 every non-
zero D € LND(A[x]) respects the O-filtration and induces a non-zero homogeneous
locally nilpotent derivation D of Gr(A[z]) of a certain degree d.

Let f € ker(D) and assume that f ¢ A. Then T divides f. Since f € ker(D)
and ker(D) is factorially closed ([I] Principle 1), we have T € ker(D). Note that
D sends homogeneous elements of degree i to zero or to homogeneous elements
of degree i + d, therefore D has the form D = aZ?E, where a € A, d € N, and
E € LND(A) see [1] Principle 7. But since A is rigid, E = 0. Thus D = 0, a
contradiction. This means f € A which implies that ker(D) C A. Finally, since
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tr.degk(A) = tr.degk(ker(D)) and A is algebraically closed in Alx], we get the
equality ker(D) = A. Hence ML(A[z]) = A. O

4. Computing the ML-Invariant using LND-Filtration

Here we illustrate the use of the O-filtration in the computation of ML-invariants,
for classes of already well-studied examples.

4.1. Classical examples of semi-rigid k-domains.
We first consider in ELIT] certain surfaces in Al®l defined by equations X" Z — P(Y))
where n > 1 and degy P(Y) > 1, which were first discussed by Makar-Limanov
in [7], where he computed their ML-invariants. Later on Poloni [I0] used similar
methods to compute ML-invariants for a larger class. In the second example 1.2
we consider certain threefolds whose invariants were computed by S. Kaliman and
L. Makar-Limanov [5] in the context of the linearization problem for C*-action on
C3.

In these examples, the use of LND-filtrations is more natural and less tedious
than other existing approaches.

4.1.1. Danielewski hypersurfaces.
Let

Bn.p = k[X,Y,2]/(X"Z — P(X,Y))
where
PX,Y) =YY"+ frno1 (XY™ 4o+ fo(X),
fi(X) € k[X], n>2,and m > 2.
Let z, y, z be the images of X, Y, Z in B, p. Define 9 by d(x) =0, d(y) = «",

d(z) = —%I; where
oprP
i =my™ '+ (m = 1) fm1(@)y™ 2+ .+ fi(x)

We see that 9 € LND(B,, p) with ker(9) = k[z], and y is a local slice for 0.
Moreover, we have degy(z) = 0, degy(y) = 1, degy(z) = m. The plinth ideal is
pl(9) = (z™). Up to a change of variable of the form Y — Y — ¢ where ¢ € k, we
can always assume that 0 € Spec(B). A consequence of Lemma [Z3] Proposition
24 and Proposition [ZF] (see the Proof of Prop. 5.1 for more details) is that

1- The O-filtration {F;};en is given by:

]:miJrj = k[:l?]yjzz + fmiJrjfl

where i € N and j € {0,...m — 1}.

2- The associated graded algebra Gr(B,, p) = ®ienB;, where B; = F;/F;_1, is
generated by T = grg(z), 7= gra(y), Z = gra(z) as an algebra over k with relation
Tz =7", ie. Gr(B,p)=k[X,Y,Z]/(X"Z-Y"). And we have :

Bniss = g™
where ¢ € Nand j € {0,...m — 1}.

Proposition 4.1. With the notation above we have:
(1) ML(By,.p) = k[z]. Consequently B, p is semi-rigid.
(2) Every D € LND(B,, p) has the form D = f(x)0.
8



Proof. (1) By Proposition a non-zero D € LND(B) induces a non-zero D €
LND (Gr(B)). Let f € ker(D) \ k, then f € ker(D) \ k. There exists i € N such
that f € B;.

Assume that f ¢ k[T] = By, then one of the elements 7, Z must divide f . Which
leads to a contradiction as follows:

If 7 divides f , then 5 € ker(D) because ker(D) is factorially closed in Gr(B)
(1] Principle 1). For the same reason T,z € ker(D) because 7"z = ™. So D = 0,
a contradiction. _

If Z divides f, then D(Z) = 0. So D extends to a locally nilpotent derivation D
of the ring B = k(2)[Z, 7]/ (T"Z — §™). Since 0 € Spec(B) is a singular point when
n>2andm>2, Bis rigid (Lemma B.3]). Therefore, D = 0 which means D = 0,
a contradiction.

So the only possibility is that f € k[Z]. This means that degy(f) = 0, and
hence that f € k[z]. So ker(D) C k[z], and finally k[z] = ker(D) because
tr.deg(ker(D)) = 1 and k[z] is algebraically closed in B. So we get ML(B) = k[z].

(2) is an immediate consequence of Proposition (]

4.1.2. Koras-Russell hypersurfaces of the second type.
Here we consider hypersurfaces associated with k-algebras of the form:

Buenq = kXY, Z,TI(Y(X" + Z°) - Q(X, 2, T)
where
QX,Z,T)=T™ + fi(X,Z2) T +... 4+ fu(X, 2)

fi(X,Z) e k[X,Z],n>1,e>1,1>1,and m > 1. We may assume without loss of
generality that Q(0,0,0) = 0 . A particular case of this family corresponds to the
so called Koras-Russell hypersurfaces of the second type considered by S. Kaliman
and L. Makar-Limanov ([5]) where they computed their ML-invariants. Here we
explain how to apply the LND-filtration method to compute this invariant for all
algebras By, ¢1.0-

Let z, y, z, t be the images of X, Y, Z, T in By, ¢ ;.. Define 0 by
_9Q
ot
We see that 0 € LND(B,, ¢,1,0) with ker(9) = k[z, 2], and ¢ is a local slice for 0.
Moreover, we have degy(z) = 0, degy(y) = m, degy(z) = 0, and degy(t) = 1. The
plinth ideal is pl(9) = ((X™ + Z¢)!). By Lemma 23| Prop. 24 and Prop. we
get the following.

1- The O-filtration {F;};cy is given by:

d Dy + (X" + 290,

]:miJrj = k[.I, Z]tjyl + ‘FmiJrjfl

where i € N, and j € {0,...,m — 1}.
2- The associated graded algebra Gr(Bnp,c1,0) = ®ienBi, where B; = Fi/Fi-1,
is generated by T = gry(z), ¥ = gra(y), Z = gra(z), t = grs(t) as an algebra over

k with the relation g(z" + %) = 7", i.e. Gr(Bnerq) = k[X,Y,Z,T]/(Y(X" +

Z) —=T™). And we have :
Brivj = k[T, 207
where i € N, and j € {0,...,m — 1}.



Proposition 4.2. With the notation above we have:
(1) ML(Bp c,1,0) = klx, z]. Consequently B is semi-rigid.
(2) Every D € LND(By, ,1,0) has the form D = f(z,2)0.

Proof. (1) Given a non-zero D € LND(B). By Proposition D induces a non-
zero D € LND (Gr(B)). Suppose that f € ker(D) \ k, then f € ker(D) \ k. So
there exists € N such that f € B;. Assume that f ¢ k[T, z] = By, then one of the
elements 7, 7 must divides f (see §4.1.2 above). Which leads to a contradiction as
follows:

If 7 divides f , then € ker(D) as ker(D) is factorially closed, and for the
same reason 7, (T" + z°)! € ker(D) due to the relation (7" + z¢)! = 7. So
T" +2z° € ker(D) which implies that 7,z € ker(D) ([1I] Lemma 9.3). This means
D =0, a contradiction.

Finally, if 7 divides f, then D(7) = 0. Choose H € ker(D) which is homogeneous
and algebraically independent of 7, which is possible, since tr.degy ker(D) = 2 and
ker(D) is generated by homogeneous elements. Then by §L1.21 H has the form
H = h(Z,%).5'. By algebraic dependence, we may assume H = h(Z,Z), which is
non-constant, and that 2(0,0) = 0. So D extends to a locally nilpotent derivation
D of the ring B = k(7, H)[Z,%,1/(MZ,Z) — H,j(@" +7°) —7"). But B is of
transcendence degree one over the field k(y, H) whose spectrum has a singular
point at 0. This means that B is rigid (Lemma [3.3). Thus D= 0, which implies
D =0, a contradiction.

So the only possibility is that f € k[, Z], and this means degg(f) = 0, thus f €
k[z, z] and ker(D) C k[z, z]. Finally, k[z, z] = ker(D) because tr.degy(ker(D)) = 2.
So we get ML(B) = k[z, 2]

(2) follows again from Proposition O

5. A new class of semi-rigid rings

In this section, we use the LND-filtration method to establish the semi-rigidity
of new families of two dimensional domains of the form

R=k[X,Y,Z]/(X"Y - P(X,Q(X,Y) — X°Z))

for suitable integers n,e > 2 and polynomials P(X,T),Q(X,T) € k[X,T]. They
share with Danielewski hypersurfaces discussed in [£1.I] above, the property to
come naturally equipped with an irreducible locally nilpotent derivation induced
by a locally nilpotent derivation of k[X,Y, Z]. But in contrast with the Danielewski
hypersurfaces case, the corresponding derivation on k[X,Y, Z] are no longer trian-
gular, in fact not even triangulable by virtue of characterization due to Daigle [9].

We will begin with a very elementary example illustrating the steps needed
to determine the LND-filtration and its associated graded algebra, and then we
proceed to the general case.

5.1. A toy example.
We let

R = K[X,Y, /(X2 — (V? = X2)?)
and we let x, y, z be the images of X, Y, Z in R. A direct computation reveals
that the derivation
2X S0y + (4Y S — X?)0,
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of k[X,Y, Z] where S := Y2 — X Z is locally nilpotent and annihilates the polynomial
X?%Y — (Y2 — X Z)?. Tt induces a locally nilpotent derivation 8 of R for which we
have d(z) = 0, 9*(y) = 0,0°(z) = 0. Furthermore, the element s = 3% — 2z is a
local slice for @ with (s) = a®. The kernel of 9 is k[z] and the plinth ideal is the
principal ideal generated by z3. We have degy(x) = 0, degy(y) = 2, degy(z) = 4,
degy(s) = 1.

Proposition 5.1. With the notation above, we have:

(1) The O-filtration {F;}ien is given by :

Fuivojri = k[2]s'y? 2" + Faitoji

where i € N, j € {0,1}, 1 € {0,1}. B B

(2) The associated graded algebra Gry(R) = ®;enR;, where R, = F;/Fi—1, is
generated by T = gra(x), § = gra(y), Z = gra(z), s = gra(s) as an algebra over
k with relations T°%2 = 3 and Tz = ?, i.e. Grg(R) = k[X,Y,Z, ?]/(727 -
§2, X7 — 72>. Furthermore:

Ruitojy1 = k[T)5 57
where i € N, j € {0,1}, 1 € {0,1,2,3}.

Proof. 1) First, the O-filtration {F;}ien is given by F,. = 3, .. Hy where Hy, :=
> ut2vrawen k[#] (s"y°2") and u,v,w, h € N. To show this, let J be the ideal in
kW = k[X,Y, Z, 5] defined by J = (X?Y — (Y2 — XZ)%,Y? — XZ — S). Define an
N-degree function w on k% by declaring that w(X) = 0, w(S) = 1, w(Y) = 2, and
w(Z) = 4. By Lemma 2.4 the N-filtration {G, };en where G, =", . H} is proper
if and only if J is prime. Which is the case since J = <X2Y - S2Yy? - XZ> is
prime. Thus by Lemma 23] we get the desired description.

Second, let | € {0,1} and j € {0,1,2,3} be such that [:=r mod 2, j :=r —1
mod 4, and 7 := %j_l. Then we get the following unique expression r = 4¢+ 25 +
l. Since Fr = > 1 ovtaw—r F[z] (s"y"2") + Fr—1, we conclude in particular that
Fr D klx]sty’ 2" + F._1. For the other inclusion, the relation 2%y = s2 allows to
write s%yVz% = 2°s'yY0 2% and from the relation y? = s + zz we get 2°sly?02V =
2¢slyd (s + x2)"2". Since the monomial with the highest degree relative to degy in
(s+x2)™ is 2™.2", we deduce that x¢s'y? (s+x2)" 2% = x¢+nslyd 2T+ 3~ Mg where
Mg is monomial in , y, s, z of degree less than r. Since the expression r = 4i+2j+1
is unique, we get w +n = i. So s%y?z" = x¢t"slyiz’ + f where f € F,_;. Thus
k[x] (styV2") C k[z]s'y? 2" + F,_1 and finally F,. = k[z]s'y? 2" + F,_1.

2) By part (1), an element f of degree r can be written as f = g(x)s'y72" + fo
where fo € Fr_1, l=rmod 2, j =r—1lmod 4, i= %H, and i € N, j € {0,1},
1 €{0,1}. So by Lemma [[4, P2, P1, P3 respectively we get

and therefore §41-+2j+l = k[EE 7.
Finally, by Proposition 25, Gro(B) = k[X,Y,Z,5|/(X' Z -5, XZ-Y"). O

5.2. A more general family.
We now consider more generally rings R of the form

kXY, Z]/ (XY — P(X,Q(X,Y) - X°Z))
11



where

P(X,8) = 8"+ fa_1(X)S" 4+ f1(X)S + fo(X)
QX,Y)=Y" 4 g1 (X)Y" 1 4o + g1 (X)Y + go(X)

n>2d>2,m2>1,and e > 1. Up to a change of variable of the form Y — Y —¢
where ¢ € k, we may assume that 0 € Spec(R).

Let z, y, z be the images of X, Y, Z in R. Define 9 by: d(z) = 0, 9(s) = 2" +¢
where s := Q(x,y) — 2°z. Considering the relation z"y = P(z,Q(z,y) — 2°2), a
edP a( ):@8_P_In ;

simple computation leads to d(y) = 25 , Oy 35 ,i.e.
LOP oQ oP
0:=a°—0y + (=— — —2")0,
2 T G, a5 )

where %—5 =ds? + (d—1)fa_1(2)s2 4+ -+ + f1(z), and %—3 =my™ 1+ (m—
Dgm—1(x)y™ 2+ -+ g1 (). Since d(z"y— P(z,Q(z,y) —2°2)) = 0 and 9%+ (y) =
0,0™m4+1(2) = 0, 0 is a well-defined locally nilpotent derivation of R. The kernel of
d is equal to k[x] and the element s is a local slice for @ by construction. One checks
further that the plinth ideal is equal to pl(9) = (z"¢). A direct computation shows
that degy(z) = 0, degy(y) = d, degy(z) = md and degy(s) = 1. Furthermore:

1- The O-filtration {F;};en is given by :

Fumditvdj+1 = k2897 2" + Faivajri—
where i €N, j € {0,...,m—1},1€{0,...,d—1}.

2- The associated graded algebra Gr(R) = @®;enR;, where R; = F;/F;_1, is gen-
erated by T = gro(z), T = gra(y), Z = gra(z), s = gra(s) as an algebra over k with
relations 7" = 59 and 7° % = ™ , i.e. Gr(R) = k[X,Y,Z, 5]/ <7’7 -5 X7z~ 7’”>.
And we have :

Runditajr1 = k[T5 77
wherei € N, 7€ {0,...,m—1},1€0,...,d—1}.

Theorem 5.2. With the above notation the following hold:
(1) ML(R) = k[z]. Consequently R is semi-rigid.
(2) Fvery D € LND(R) has form D = f(z)0, i.e. R is almost rigid.

Proof. (1) Given a non-zero D € LND(R). By Proposition [22] D respects the 0-
filtration and induces a non-zero locally nilpotent derivation D of Gr(R). Suppose
that f € ker(D) \ k, then f € ker( )\ k is an homogenous element of Gr(R). So
there exists i € N such that f € R;.

Assume that f ¢ k[T] = Ro, then one of the elements 3, 7, Z must divides f by
B.212. Which leads to a contradiction as follows :

If 5 divides f , then 3 € ker(D) as ker(ﬁ) is factorially closed, and for the same
reason Z,7 € ker(D) due to the relation Z"7 = 5¢. Then by the relation 7€z = 5™,
we must have Z € ker(D), which means D = 0, a contradiction. In the same way,
we get a contradiction if 7 divides f.

Finally, if Z divides f, then D(Z ) = 0. So D induces in a natural Way a locally
nilpotent derivation D of the ring | R=k(z)[z,7,5]/(@"z—35% 7 Z—7™). But since
O S Spec( ) is a singular point, R is rigid (Lemma [B3). So D= 0, Wthh implies

=0, a contradiction.
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So the only possibility is that f € k[Z], and this means degy(f) = 0, thus f € k[]
and ker(D) C k[z]. Finally, k[z] = ker(D) because tr.degk(ker(D)) = 1 and k[z] is
algebraically closed in B. So ML(R) = k[x].

(2) follows again from Proposition [3.2] O

6. Further applications of the LND-filtratoin

Given a commutative domain B over an algebraically closed field & of charac-
teristic zero, we denote Auty(B) the group of algebraic k-automorphisms of B.
This group acts by conjugation on LND(B). An immediate consequence is that
a(ML(B)) = ML(B) for every o € Autk(B) which yield in particular an induced
action of Autyx(B) on ML(B). Let 9, = a~'da be the conjugate of 9 by a given
automorphism « of B, it is straightforward to check that a{ker(9,)} = ker(9) and
more generally that deg, (b) = degy((b)) for any b € B. In other words, « re-
spects degy and deg,_(i.e. « sends an element of degree n relative to deg,_, to an
element of the same degree n relative to degj.

Definition 6.1. We say that an algebraic k-automorphism « preserves the 0-
filtration for some 0 € LND(B) if degy(a(b)) = degy(b) for any b € B.

Lemma 6.2. Let 9 € LND(B) and o € Autk(B). Then 0 and 0, are equivalent,
i.e. have the same kernel, if and only if « preserve the O-filtration.

Proof. Suppose that 0 and 0, are equivalents, then degy(a(b)) = degy (b) for
every b € B, and by hypothesis ker(d) = ker(0a), so degy = degy . Then we
obtain degy(a(b)) = degy(b). Thus « preserves the O-filtration. Since the other
direction is obvious we are done. g

The following Corollary shows a nice property of a semi-rigid ring. That is,
every algebraic automorphism « has to preserve the unique filtration induced by
any locally nilpotent derivation 0, i.e. a sends an element of degree i relative to 0
to an element of the same degree relative to 9. Which makes the computation of
the group of automorphisms easier up to the automorphism group of ker(9).

Corollary 6.3. Let B be a semi-rigid k-domain, then every k-automorphism of B
preserve the O-filtration for every 0 € LND(B).

Proof. A direct consequence of Definition B.I] and Lemma O

6.1. The group of algebraic k-automorphisms of a semi-rigid k-domain.
Suppose that B is a semi-rigid k-domain. Then, it has a unique proper filtration
{F:}ien which is the O-filtration corresponding to any non-zero locally nilpotent
derivation 0 of B. Since every algebraic k-automorphism of B preserves this filtra-
tion (Corollary [6:3)), we obtain an exact sequence

0 — Auty (B, ML(B)) — Auti(B) — Auti (ML(B))

where Auty (B, ML(B)) is by definition the sub-group of Auty(B) consisting of
elements whose induced action on ML(B) is trivial. Furthermore, every element of
Auty (B, ML(B)) induces for every ¢ > 1 an automorphism of Fyp-module of each F;.
In this section we illustrate how to exploit these information to compute Auty(B)
for certain semi-rigid k-domains B.
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6.1.1. Auty for example[{.1.]]

In [7] Makar-Limanov computed the k-automorphism group for surfaces in kl*!
defined by equation X"Z — P(Y) = 0 where n > 1 and degy P(Y) > 1. Then
Poloni, see [10], generalized Makar-Limanov’s method to obtained similar results
for the rings considered in 1.1l above. Here we briefly indicate how to recover
these results using LND-filtrations. So let

Bup = KX,Y, 2/ (X"Z — P(X,Y))
where P(X,Y) = Y™ + fr_1(X)Y™ 1 4+ - + fo(X), fi(X) € k[X], n > 2, and

m > 2. Up to change of variable of the form Y by ¥ — % we may assuime
without loss of generality that f,,,—1(X) = 0.

Proposition 6.4. Let B, p be as above. Then every algebraic k-automorphism o
of B has the form

P(Az, py + a"a(x)) — p™ P(x, y)>
Al
where A\, pu € k* satisfy fm—i(Ax) = p*. fr—i(x) mod x™ for all i, and a(z) € k[x].

Proof. By Proposition ], (1) and §LT.I ML(B) = k[z] and the O-filtration
{Fi}ien is given by Fipy; = k[z]y™7 + k[z]y™ ="z + .+ k[z]y/ 2° + Fimtj-1,
where 0 = a:".ay—k%—];.ﬁz, degy(x) =0, degy(y) = 1, and degy(z) = m. In particular
Fo = klz], F1 = k[z]y + Fo, and Fy, = klz]y™ + k[x]z + Fm-1.

Now by Corollary a preserve degy, so we must have a(z) € Fy = k[z],
aly) € Fi = klz]y + k[z] and a(z) € F, = k[z]y™ + klz].z2 + Fin—1. Since « is
invertible we get a(x) = Az + ¢, a(y) = py + b(z), and a(z) = £z + h(z,y) where
A€ ek, cek, bekz], h(z,y) € k[z,y], and deg, h(z,y) < m.

By Proposition 1] (2) every D € LND(B) has the form D = f(z)d. In par-
ticular, 0, = f(2)0 for some f(z) € k[z]. Since ad, = Oa we have da(y)) =
o(f(@)0(y) = fla(z)a@") where (3(y) = 2"). So we get Ay + blz)) =
fla(z)) (A +¢)". Since d(uy + b(x)) = pa™, z divides (Ax + ¢)" in k[z], and
this is possible only if ¢ = 0, so we get a(x) = Az.

Applying « to the relation 2"z = P(x,y) in Bp,, we get A"z"a(z) = P(Azx, py+
b(x)) = p™P(x,y) + mp™ 'y™'b(x) + H(z,y) where deg, H < m — 2. Since z"
divides P = 2"z and deg, H < m — 2, 2" divides mu™ 'y™ 'b(x) + H(z,y) in
klz,y]. So ™ divides b(z), i.e. a(y) = py + z"a(z).

In addition, =™ divides every coefficient of H as a polynomial in y, so 2™ di-
vides —p™ frm—i(z) + p™ " fn_i(Ax) because coefficients of H(y) are of the form
q(z,y)b(x) — ™ frn—i(x) + ™ fr_i(Ax) and b(z) is divisible by 2". So 2™ divides
— 1 frn—i(x) + fm—i(Ax) for every i. And we are done. O

a(z,y.2) = O, py +a"ale), Sz +

6.1.2. Auty for example [7.2

The same method as in [6.1.1] can be applied to compute automorphism groups of
rings R defined as in Theorem 5.2l For simplicity we only deal with the case where
Q(X,Y) = Y™, the general case can be deduced in the same way at the cost of
longer and more complicated computation. Again we make a substitution in S as
in to get relation of the form presented in the following result:

Theorem 6.5. Let R denote the ring R = k[X,Y, Z]/ (XY — P(X, Y™ — X°Z)) =
K, y, 2] where P(X,S) = S+ fa-2(X) S 44 1(X)S+ fo(S), n 2 2, d = 2,
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m > 1, and e € N. Then, every algebraic k-automorphism of B has the form

m

d d
p pr Gry+ F)" — Smmy™ + 2" a(x)

— F .
)\ny+ ? Anm+e z+ e

a(z,y, z) = (Az,

where: .

A p € k* wverify both 50 = p and fa_i(Ax) = p' fa—i(x) mod x"T¢ for every
i€{2,...,d}. s=y™—z°2, and F = PQwpste" “a(@))—p"Plz.s) , a(z) € klz].

A

Proof. A similar argument as in the proof of Proposition leads to a(z) = Az
and a(s) = s+ z"a(z) where \, u € k* verify fi—;(A\z) = p'fa—;(z) modz™ for all
i. Now a(z) and a(s) determine

pl P, ps +a"a(x) — u'Pla,s)

ay) = Y + N
Apply «a to z°z = y™ — s to get \°zfa(z) = (‘/\‘—:y + F)™ — us — 2"a(x) where
F— P()\ac,Hs-i—ac’;tjl(zz)—uhP(m,s) € klz, s]. So we have A\°z°a(z) = [é\t:: Y™ — %3] +

hm hm

(QLZ—: —u)s+ m(i—:y)m_lF +...+ F™ —z"a(x). Since %ym — s = Gz,
we see that z¢ divides G := (% — p)s + m(‘)\‘—:y)m_lF + ...+ F™ —2"a(z) in
k[z,s,y] C B because F € k[z,s]. Thus z¢ divides every coeflicients of G as a
polynomial in y because deg, G < d — 1. So z¢ divides F' and ‘;Z—: — = 0. This
means that z""¢ divides fq—;(A\z) — p'fa—i(x) for all i« € {2,...,d} (see proof of
Proposition [6.4]), and f\‘:—: = p. Finally, by the relation s = y™ — x°z, we get

h
hm m(En )" P4+ F "z a(x
oz) = sz + (5 y) e ( ), and we are done. O

6.2. Isomorphisms.

We are going to use the previous facts about semi-rigid k-domains to give a neces-
sary and sufficient condition for two hypersurfaces of the family L.1.1] to be isomor-
phic.

Let ¥ : A — B be an algebraic isomorphism, we refer to this by ¥ € Isomy(A, B),
between two finitely generated k-domains A = k[y1,...,y.], B = k[z1,...,x,]
where y1,...,y, and z1,...,2, are minimal sets of generators. Since ¥(A) =
E®(y1),...,¥(yr)] = klx1, ..., 2], there exists an automorphism ¢ : B — B such
that for every i € {1,...,7} there exists j € {1,...,r} such that ¥(x;) = U(y;).

Given d € LND(B) and ¥ € Isomy (A, B). For any n € N we have (¥ ~100)" =
U~19"W. So we see that U190 € LND(A). An immediate result is ¥(ML(A)) =
ML(B) for any ¥ € Isomy(4, B). Denote dy := ¥~19V¥, we have the following
properties

(1) U{ker(dy)} = ker(0).
(2) degy, (a) = degy(¥(a)) for all a € A.
In [I0], Poloni obtained similar results to the next Proposition.

Proposition 6.6. Let By = k[x1,y1, 21] and By = k[z2,y2, 22| be as in[{-11] where
Pr=y{" + fon,—2(z)y™ 2+ -+ fo(n)

Py = Y5 + gma—2(22)y5" "> + -+ go(x2)
fi(z1) € k1], gi(z2) € klx2] and n; > 1,m; > 1. Then
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By and Bs are isomorphic if and only if n = ny = ny, m = my = me, and
fn—iOAx) = pigm_i(x) mod x™ for everyi € {2,...,m} .
In addition, every isomorphism between Bi and Bs takes the form
p" Pi(Awa, py2 + x5a(x2)) — p™ Pa (w2, y2)
22 + )7
An ATl

where a(x) € k[z] and X\ € k*, p € k* satisfy fum—i(A\x) = p'gm—i(x) mod x™ for all
7.

\I’(xhyhzl) = ()‘:C27 Hy2 + :Cga($2)7

Proof. Let D € LND(Bs), and let ¥ € Isomy(B1, B). By property 2, degp,, (v1) =
degp (¥ (x1)), but we saw before that degp(x1) = 0 for all E € LND(By), so we
get degp, (1) = 0 = degp(V(z1)) and ¥(x1) € Fo = k[za]. The same argument
shows that degp_ (y1) = 1 = degp(¥(y1)), ¥(y1) € F1 — Fo, and degp, (21) =
my = degp(¥(z1)). This implies that the only possibility for ¢ defined as in is

Y(z2) = V(21), ¥(y2) = Y(y1) and P(z2) = V(21).
Now by Proposition [6.4]

pr Q2w pya + zy?a(z2)) — p™? Qa(x2, yz))

1/}(1’2,y2,212) = ()\1’2, :Lty2+x;2a(x2)7 "2 )\n2x32

where a(z2) € klxs] and X € k*, u € k* such that g,,—;(Az) = plgm—i(z) mod
"2 for all i. So we get

nre +Q2()\$27 py2 + xya(xe)) — 2 Q2 (x2, yg))
P 2 2 A2 g ]2 .

U(z1,y1,21) = (Az2, py2+25°a(x2)

Since degp(z2) = me for any non-zero D € LND(Bz), and since 1 preserves
deg, we get ms = degp(z3) = degp((z2)) = degp (¥ (1)) = degp, (21) = ma,
i.e. mi1 = ma.

By applying ¥ to relation x7'z1 = Q1(z1,y1) in By, we obtain

(7 Q0w s+ Pa(r)) — p™Qa(e 12)

n ng "2
An2 An2g)

Applying the map grp to the last equation, we get

ni ,.ni
At

) = Q1(Ax2, iy + x5 a(x2)).

e
Ay Ty E = R
On the other hand T52Z2 = 752 (apply grp to x522e = Q2(x2,y2)), the last two
equations give A™! *)‘\n; Ty = p™75? which means that n; = no. We could have

obtained that ny = ng in this way: from A\"125' U(z1) = Q1(Az2, py2 + 25%a(x2))
we conclude that A"1x5'0(¥(21)) = 9(y2)H (2,y2) where deg,, H < ma and w3
does not divide H. So z5* divides d(y2) = x5? where 9 is defined as in fLT.T] which
mean that n; < ny. Since By and B play symmetric roles the equality follows. [
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