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THE FILTRATION INDUCED BY A LOCALLY NILPOTENT DERIVATION

We investigate the filtration corresponding to the degree function induced by a non-zero locally nilpotent derivations ∂ and its associated graded algebra. As an application we provide an efficient method to recover the Makar-Limanov invariants, isomorphism classes and automorphism groups of classically known algebras. We also present a new class of examples which can be fully described with this method.

Introduction

Let k be a field of characteristic zero, and let B be a commutative k-domain. A k-derivation ∂ ∈ Der k (B) is said to be locally nilpotent if for every a ∈ B, there is an integer n ≥ 0 such that ∂ n (a) = 0. An important invariant of k-domains admitting non-trivial locally nilpotent derivations is the so called Makar-Limanov invariant which was defined by Makar-Limanov as the intersection ML(B) ⊂ B of kernels of all locally nilpotent derivations of B ( [START_REF] Makar-Limanov | On the hypersuface x + x 2 y + z 2 + t 3 = 0 in C 4 or a C 3 -like threefold which is not C 3[END_REF]). This invariant was initially introduced as a tool to distinguish certain k-domains from polynomial rings but it has many other applications for the study of k-algebras and their automorphism groups ( [START_REF] Makar-Limanov | On the group of automorphisms of a surfacex n y = P (z)[END_REF]). One of the main difficulties in applications is to compute this invariant without a prior knowledge of all locally nilpotent derivations of a given k-domain.

In [START_REF] Sh | AK-invariant of affine domains[END_REF] S. Kaliman and L. Makar-Limanov developed general techniques to determine the ML-invariant for a class of finitely generated k-domains B. The idea is to reduce the problem to the study of homogeneous locally nilpotent derivations on graded algebras Gr(B) associated to B. For this, one considers appropriate filtrations F = {F i } i∈R on B generated by so called real-valued weight degree functions in such a way that every non-zero locally nilpotent derivation on B induces a non-zero homogeneous locally nilpotent derivation on the associated graded algebra Gr F (B).

In particular, every k-domain B admitting a non-zero locally nilpotent derivation ∂ comes equipped with a natural filtration by the k-sub-vector-spaces F i = ker(∂ i+1 ), i ≥ 0, that we call the ∂-filtration.

In this article we show that this filtration is convenient for the computation of the ML-invariant, and we give general methods to describe the sub-spaces ker(∂ i+1 ) and their associated graded algebra.

Knowing this filtration gives a very precise understanding of the structure of semi-rigid k-domains, that is,k-domains for which every locally nilpotent derivation gives rise to the same filtration. For such rings the study of the ∂-filtration is a very efficient tool to determine isomorphism types and automorphism groups. We illustrate how the computation of ML-invariant of classically known semi-rigid kdomains can be simplified using these types of filtration. We also present a new class of semi-rigid k-domains which can be studied with this method.

Preliminaries

In this section we briefly recall basic facts on filtered algebra and their relation with derivation in a form appropriate to our needs.

In the sequel, unless otherwise specified B will denote a commutative domain over a field k of characteristic zero. The set Z 0 of non-negative integers will be denoted by N.

1.1. Filtration and associated graded algebra. Definition 1.1. An N-filtration of B is a collection {F i } i∈N of k-sub-vector-spaces of B with the following properties:

1-

F i ⊂ F i+1 for all i ∈ N . 2-B = ∪ i∈N F i .
3-F i .F j ⊂ F i+j for all i, j ∈ N . The filtration is called proper if the following additional property holds:

4-If a ∈ F i \ F i-1 and b ∈ F j \ F j-1 , then ab ∈ F i+j \ F i+j-1 .
There is a one-to-one correspondence between proper N-filtrations and so called N-degree functions: Indeed, for an N-degree function on B, the sub-sets

F i = {b ∈ B | deg(b) ≤ i} are k-subvector spaces of B that give rise to a proper N-filtration {F i } i∈N . Conversely, every proper N-filtration {F i } i∈N , yields an N-degree function ω : B -→ N∪{-∞} defined by ω(0) = -∞ and ω(b) = i if b ∈ F i \ F i-1 . Definition 1.3. Given a k-domain B = ∪ i∈N F i equipped with a proper N-filtration, the associated graded algebra Gr(B) is the k-vector space Gr(B) = ⊕ i∈N F i /F i-1
equipped with the unique multiplicative structure for which the product of the elements a

+ F i-1 ∈ F i /F i-1 and b + F j-1 ∈ F j /F j-1 , where a ∈ F i and b ∈ F j , is the element (a + F i-1 )(b + F j-1 ) := ab + F i+j-1 ∈ F i+j /F i+j-1 .
Property 4 (proper) in Definition 1.1 ensures that Gr(B) is a commutative k-domain when B is an integral domain. Since for each a ∈ B the set {n ∈ N | a ∈ F n } has a minimum, there exists i such that a ∈ F i and a / ∈ F i-1 . So we can define a k-linear map gr : B -→ Gr(B) by sending a to its class in F i /F i-1 , i.e a → a + F i-1 , and gr(0) = 0. We will frequently denote gr(a) simply by a. Observe that gr(a) = 0 if and only if a = 0. If so, we define a k-linear map D : Gr(B) -→ Gr(B) as follows: If D = 0, then D = 0 the zero map. Otherwise, if D = 0 then we let d be the least integer such that D(F i ) ⊂ F i+d for all i ∈ N and we define

+ F i-1 = (a + F i-1 ) + (b + F i-1 ), and since F j-1 ⊂ F j ⊆ F i-1 as i > j, we get b + F i-1 = 0. P3) is
D : F i /F i-1 -→ F i+d /F i+d-1
by the rule D(a + F i-1 ) = D(a) + F i+d-1 . One checks that D satisfies the Leibniz rule, therefore it is a k-derivation of the graded algebra Gr(B). Moreover it is homogeneous of degree d, i.e D sends homogeneous elements of degree i to zero or to homogeneous elements of degree i + d .

Observe that D = 0 if and only if D = 0. In addition, gr(ker D) ⊂ ker D.

LND-Filtrations and Associated Graded Algebras

In this section we introduce the ∂-filtration associated with a locally nilpotent derivation ∂. We explain how to compute this filtration and its associated graded algebra in certain situation. Definition 2.1. A k-derivation ∂ ∈ Der k (B) is said to be locally nilpotent if for every a ∈ B, there exists n ∈ N (depending of a) such that ∂ n (a) = 0. The set of all locally nilpotent derivations of B is denoted by LND(B).

In particular, every locally nilpotent derivation ∂ of B gives rise to a proper Nfiltration of B by the sub-spaces F i = ker∂ i , i ∈ N, that we call the ∂-filtration. It is straightforward to check (see Prop. 1.9 in [START_REF] Freudenburg | Algebraic Theory of Locally Nilpotent Derivation[END_REF]) that the ∂-filtration corresponds to the N-degree function deg The next Proposition, which is due to Daigle (Theorem 2.11 in [START_REF] Freudenburg | Algebraic Theory of Locally Nilpotent Derivation[END_REF]), implies in particular that if B is of finite transcendence degree over k, then every non-zero D ∈ LND(B) respects the ∂-filtration and therefore induces a non-zero homogeneous locally nilpotent derivation D of Gr ∂ (B). Proposition 2.2. (Daigle) Suppose that B is a commutative domain, of finite transcendence degree over k. Then for every pair D ∈ Der k (B) and ∂ ∈ LND(B), D respects the ∂-filtration. Consequently, D is a well defined homogeneous derivation of the integral domain Gr ∂ (B) relative to this filtration, and it is locally nilpotent if D is locally nilpotent.

Computing the ∂-filtration.

Here, given a finitely generated k-domain B, we describe a general method which enables the computation of the ∂-filtration for a locally nilpotent derivation ∂ with finitely generated kernel. First we consider a more general situation where the plinth ideal pl(∂) is finitely generated as an ideal in ker ∂ then we deal with the case where ker ∂ is itself finitely generated as a k-algebra.

Let B = k[X 1 , . . . , X n ]/I = k[x 1 , . . . , x n ] be a finitely generated k-domain, and let ∂ ∈ LND(B) be such that pl(∂) is generated by precisely m elements f 1 , . . . , f m as an ideal in ker ∂. Denote by F = {F i } i∈N the ∂-filtration, then:

By definition F 0 = ker ∂. Furthermore, given elements s i ∈ F 1 such that ∂(s i ) = f i for every i ∈ {1, . . . , m}, it is straightforward to check that

F 1 = F 0 s 1 + . . . + F 0 s m + F 0 . Letting deg ∂ (x i ) = d i , we denote by H j the F 0 -sub-module in B generated by elements of degree j relative to deg ∂ of the form s u1 1 . . . s um m x v1 1 . . . x vn n , i.e., H j := j uj + i di.vi=j F 0 (s u1 1 . . . s um m x v1 1 . . . x vn n )
where u j , v i ∈ N for all i and j. The integer

j u j + i d i v i is nothing but deg ∂ (s u1 1 .s u2 2 . . . .s um m .x v1 1 .x v2 2 . . . . .x vn n ). Then we define a new N-filration G = {G i } i∈N of B by setting G i = j≤i H j .
By construction G i ⊆ F i for all i ∈ N, with equality for i = 0, 1. The following result provides a characterization of when these two filtrations coincide: Lemma 2.3. The filtrations F and G are equal if and only if G is proper.

Proof. One direction is clear since F is proper. Conversely, suppose that G is proper with the corresponding N-degree function ω on B (see [START_REF] Makar-Limanov | Locally nilpotent derivations, a new ring invariant and applications[END_REF]). Since ω(g) = 0 (resp. ω(g) = 1) for every g ∈ F 0 (resp. g ∈ F 1 \ F 0 ), we obtain

§1.1). Given f ∈ F i \ F i-1 , i > 1, for every local slice s ∈ F 1 \ F 0 , there exist f 0 = 0, a i = 0, a i-1 , . . . , a 0 ∈ F 0 such that f 0 f = a i s i + a i-1 s i-1 + • • • + a 0 ( see the proof of Lemma 4 in
ω(f ) = ω(f 0 f ) = ω(a i s i + a i-1 s i-1 + • • • + a 0 ) = max{ω(a i s i )} = i,
and so f ∈ G i .
Next, we determine the ∂-filtration, for a locally nilpotent derivation ∂ with finitely generated kernel, by giving an effective criterion to decide when the Nfiltration G defined above is proper.

Hereafter, we assume that 0 ∈ Spec(B) and that ker(∂) is generated by elements

z i (x 1 , . . . , x n ) ∈ B such that z i (0, . . . , 0) = 0, i ∈ {1, . . . , r}, which is always possible since k ⊂ ker ∂. Since ker(∂) is finitely generated k-algebra, the plinth ideal pl(∂) is finitely generated. So there exist s 1 (x 1 , . . . , x n ), . . ., s m (x 1 , . . . , x n ) ∈ F 1 such that F 1 = F 0 s 1 + . . . + F 0 s m + F 0 .
We can also assume that s i (0, . . . , 0) = 0.

Letting

J ⊂ k [r+n+m] = k[Z 1 , . . . , Z r ][X 1 , . . . , X n ][S 1 , .
. . , S m ] be the ideal generated by I and the elements

Z 1 = z 1 (X 1 , . . . , X n ), . . . , Z r = z r (x 1 , . . . , x n ), S 1 = s 1 (X 1 , . . . , X n ), . . . , S m = s m (x 1 , . . . , x n ), then we have B = k[Z 1 , . . . , Z r ][X 1 , . . . , X n ][S 1 , . . . , S m ]/J.
Note that by construction (0, . . . , 0)

r+n+m times ∈ Spec(k [r+n+m] /J).
We define an N-degree function ω on k [r+n+m] by declaring that ω(Z i ) = 0 = deg ∂ (z i ) for all i ∈ {1, . . . , r}, ω(S i ) = 1 = deg ∂ (s i ) for all i ∈ {1, . . . , m}, and ω(X i ) = deg ∂ (x i ) = d i for all i ∈ {1, . . . , n}. The corresponding proper N-filtration

Q i := {P ∈ k [n] | ω(P ) ≤ i}, i ∈ N, on k [r+n+m] has the form Q i = ⊕ j≤i H j where H j := ⊕ j uj + i divi=j k[Z 1 , . . . , Z r ]S u1 1 . . . S um m X v1 1 . . . X vn n . By construction π (Q i ) = G i where π : k [r+n+m] -→ B denotes the natural projec- tion. Indeed, since π (Q i ) = j≤i π (H j ) and π (H j ) = j uj + i divi=j k[z 1 , . . . , z r ]s u1 1 . . . .s um m x v1 1 . . . x vn n , we get π (H j ) = j uj + i divi=j (ker ∂) s u1 1 . . . . s um m x v1 1 . . . . x vn n which means precisely that π (Q i ) = G i . Let Ĵ ⊂ k [r+n+m]
be the homogeneous ideal generated by the highest homogeneous components relative to ω of all elements in J. Then we have the following result, which is inspired by the technique developed by S. Kaliman and L. Makar-Limanov:

Proposition 2.4. The N-filration G is proper if and only if Ĵ is prime.

Proof. It is enough to show that G = {π (Q i )} i∈N coincides with the filtration corresponding to the N-semi-degree function ω B on B defined by ω B (p) := min P ∈π -1 (p) {ω(P )}. Indeed, if so, the result will follow from Lemma 3.2 in [START_REF] Sh | AK-invariant of affine domains[END_REF] which asserts in particular that ω B is an N-degree function on B if and only if Ĵ is prime. Let {G

′ i } i∈N be the fil- tration corresponding to ω B . Given f ∈ G ′ i there exists F ∈ Q i such that π(F ) = f , which means that G ′ i ⊂ π (Q i ). Conversely, it is clear that ω B (z i ) = ω(Z i ) = 0 for all i ∈ {1, . . . , r}. Furthermore ω B (s i ) = ω(S i ) = 1 for all i ∈ {1, . . . , m}, for oth- erwise s i ∈ ker ∂ which is absurd. Finally, if d i = 0 and ω B (x i ) < ω(X i ) = d i = 0, then x i ∈ π (Q di-1 ) ⊂ ker ∂ di-1 which implies that deg ∂ (x i ) < d i , a contradic- tion. So ω B (x i ) = d i . Thus ω B (f ) ≤ i for every f ∈ π (Q i ) which means that π (Q i ) ⊂ G ′ i .
The next Proposition, which is a reinterpretation of Prop. 4.1 in [START_REF] Sh | AK-invariant of affine domains[END_REF], describes in particular the associated graded algebra Gr ∂ (B) of the filtered algebra (B, F ) in the case where the N-filtration G is proper:

Proposition 2.5. If the N-filtration G is proper then Gr ∂ (B) ≃ k [r+n+m] / Ĵ.
Proof. By virtue of ( Prop. 4.1 in [START_REF] Sh | AK-invariant of affine domains[END_REF]) the graded algebra associated to the filtered algebra (B, G) is isomorphic to k [r+n+m] / Ĵ. So the assertion follows from Lemma 2.3.

Semi-Rigid and Rigid k-Domains

In [START_REF] Finston | Constructing (almost) rigid rings and a UFD having infinitely generated Derksen and Makar-Limanov invariant[END_REF] D. Finston and S. Maubach considered rings B whose sets of locally nilpotent derivations are "one-dimensional" in the sense that LND(B) = ker(∂).∂ for some non-zero ∂ ∈ LND(B). They called them almost-rigid rings. Hereafter, we consider the following definition which seems more natural in our context (see Prop. Proof. Existence: since B is satisfies the ACC on principal ideals, then for every non-zero T ∈ LND(B), there exists an irreducible T 0 ∈ LND(B) and c ∈ ker(T ) such that T = cT 0 . (see [START_REF] Freudenburg | Algebraic Theory of Locally Nilpotent Derivation[END_REF], Prop. 2.2 and Principle 7).

Uniqueness: the following argument is similar to that in [START_REF] Freudenburg | Algebraic Theory of Locally Nilpotent Derivation[END_REF] Prop. 2.2.b, but with a little difference, that is, in [START_REF] Freudenburg | Algebraic Theory of Locally Nilpotent Derivation[END_REF] it is assumed that B itself is an HCF-ring while here we only require that ML(B) is an HCF-ring.

Let D, E ∈ LND(B) be irreducible derivations, and denote A = ML(B). By hypothesis ker(D) = ker(E) = A, so there exist non-zero a, b ∈ A such that aD = bE (see [START_REF] Freudenburg | Algebraic Theory of Locally Nilpotent Derivation[END_REF] Principle 12). Here we can assume that a, b are not units otherwise we are done. Set T = aD = bE. Since A is an HCF-ring, there exists c ∈ A such that aA ∩ bA = cA. Therefore, T (B) ⊂ cB, and there exists T 0 ∈ LND(B) such that T = cT 0 . Write c = as = bt for s, t ∈ B. Then cT 0 = asT 0 = aD implies D = sT 0 , and likewise E = tT 0 . By irreducibility, s and t are units of B, and we are done.

In particular, for a ring B as in 3.2, every D ∈ LND(B) has the form D = f ∂ for some irreducible ∂ ∈ LND(B) and f ∈ ker(∂), and so B is almost rigid in the sense introduced by Finston and Maubach.

Recall that a ring A is called rigid if the zero derivation is the only locally nilpotent derivation of A. Equivalently, A is rigid if and only if ML(A) = A. It is well known that the only non rigid k-domains of transcendence degree one are polynomial rings in one variable over algebraic extensions of k ([1] Corollary 1.24 and Corollary 1.29). In particular, we have the following elementary criterion for rigidity that we will use frequently in the sequel: Lemma 3.3. A domain B of transcendence degree one over a field k of characteristic zero is rigid if one of the following properties hold:

(1) B is not factorial.

(2) Spec(B) has a singular point. We first consider in 4.1.1, certain surfaces in A [3] defined by equations X n Z -P (Y ) where n > 1 and deg Y P (Y ) > 1, which were first discussed by Makar-Limanov in [START_REF] Makar-Limanov | Locally nilpotent derivations, a new ring invariant and applications[END_REF], where he computed their ML-invariants. Later on Poloni [START_REF] Poloni | Sur les plongements des hypersurfaces de Danielewski[END_REF] used similar methods to compute ML-invariants for a larger class. In the second example 4.1.2, we consider certain threefolds whose invariants were computed by S. Kaliman and L. Makar-Limanov [START_REF] Sh | On the Russell-Koras contractible threefolds[END_REF] in the context of the linearization problem for C * -action on C 3 .

In these examples, the use of LND-filtrations is more natural and less tedious than other existing approaches. 

4.1.1. Danielewski hypersurfaces. Let B n,P = k[X, Y, Z]/ X n Z -P (X, Y ) where P (X, Y ) = Y m + f m-1 (X)Y m-1 + • • • + f 0 (X), f i (X) ∈ k[X], n ≥ 2,
F mi+j = k[x]y j z i + F mi+j-1
where i ∈ N and j ∈ {0, . . . m -1}. 2-The associated graded algebra Gr(B n,P ) = ⊕ i∈N B i , where

B i = F i /F i-1
, is generated by x = gr ∂ (x), y = gr ∂ (y), z = gr ∂ (z) as an algebra over k with relation

x n z = y m , i.e. Gr(B n,P ) = k[X, Y , Z]/ X n Z -Y m .
And we have :

B mi+j = k[x]y j z i
where i ∈ N and j ∈ {0, . . . m -1}. (2) is an immediate consequence of Proposition 3.2.

Koras-Russell hypersurfaces of the second type.

Here we consider hypersurfaces associated with k-algebras of the form:

B n,e,l,Q = k[X, Y, Z, T ]/ Y (X n + Z e ) l -Q(X, Z, T where Q(X, Z, T ) = T m + f 1 (X, Z)T m-1 + . . . + f m (X, Z) f i (X, Z) ∈ k[X, Z], n > 1, e > 1,
l > 1, and m > 1. We may assume without loss of generality that Q(0, 0, 0) = 0 . A particular case of this family corresponds to the so called Koras-Russell hypersurfaces of the second type considered by S. Kaliman and L. Makar-Limanov ( [START_REF] Sh | On the Russell-Koras contractible threefolds[END_REF]) where they computed their ML-invariants. Here we explain how to apply the LND-filtration method to compute this invariant for all algebras B n,e,l,Q . Let x, y, z, t be the images of X, Y , Z, T in B n,e,l,Q . Define ∂ by 

∂ = ∂Q ∂t ∂ y + (X n + Z e ) l ∂ t We see that ∂ ∈ LND(B n,e,l,Q ) with ker(∂) = k[x, z],
F mi+j = k[x, z]t j y i + F mi+j-1
where i ∈ N, and j ∈ {0, . . . , m -1}. 2-The associated graded algebra Gr(B n,e,l,Q ) = ⊕ i∈N B i , where B i = F i /F i-1 , is generated by x = gr ∂ (x), y = gr ∂ (y), z = gr ∂ (z), t = gr ∂ (t) as an algebra over k with the relation y(

x n + z e ) l = t m , i.e. Gr(B n,e,l,Q ) = k[X, Y , Z, T ]/ Y (X n + Z e ) l -T m .
And we have :

B mi+j = k[x, z]t j y i
where i ∈ N, and j ∈ {0, . . . , m -1}. (2) follows again from Proposition 3.2.

A new class of semi-rigid rings

In this section, we use the LND-filtration method to establish the semi-rigidity of new families of two dimensional domains of the form

R = k[X, Y, Z]/ X n Y -P (X, Q(X, Y ) -X e Z)
for suitable integers n, e ≥ 2 and polynomials P (X, T ), Q(X, T ) ∈ k[X, T ]. They share with Danielewski hypersurfaces discussed in 4.1.1 above, the property to come naturally equipped with an irreducible locally nilpotent derivation induced by a locally nilpotent derivation of k[X, Y, Z]. But in contrast with the Danielewski hypersurfaces case, the corresponding derivation on k[X, Y, Z] are no longer triangular, in fact not even triangulable by virtue of characterization due to Daigle [START_REF] Daigle | A necessary and sufficient condition for triangulability of derivation of k[X, Y, Z][END_REF].

We will begin with a very elementary example illustrating the steps needed to determine the LND-filtration and its associated graded algebra, and then we proceed to the general case.

A toy example.

We let

R = k[X, Y, Z]/ X 2 Y -(Y 2 -XZ) 2
and we let x, y, z be the images of X, Y , Z in R. A direct computation reveals that the derivation

2XS∂ Y + (4Y S -X 2 )∂ Z of k[X, Y, Z]
where S := Y 2 -XZ is locally nilpotent and annihilates the polynomial

X 2 Y -(Y 2 -XZ) 2 . It induces a locally nilpotent derivation ∂ of R for which we have ∂(x) = 0, ∂ 3 (y) = 0, ∂ 5 (z) = 0. Furthermore, the element s = y 2 -xz is a local slice for ∂ with ∂(s) = x 3 . The kernel of ∂ is k[x]
and the plinth ideal is the principal ideal generated by x 3 . We have deg

∂ (x) = 0, deg ∂ (y) = 2, deg ∂ (z) = 4, deg ∂ (s) = 1.
Proposition 5.1. With the notation above, we have:

(1) The ∂-filtration {F i } i∈N is given by :

F 4i+2j+l = k[x]s l y j z i + F 4i+2j+l-1
where i ∈ N, j ∈ {0, 1}, l ∈ {0, 1}.

(2) The associated graded algebra

Gr ∂ (R) = ⊕ i∈N R i , where R i = F i /F i-1
, is generated by x = gr ∂ (x), y = gr ∂ (y), z = gr ∂ (z), s = gr ∂ (s) as an algebra over k with relations x 2 z = s 2 and x z = y 2 , i.e.

Gr ∂ (R) = k[X, Y , Z, S]/ X 2 Z - S 2 , XZ -Y 2 . Furthermore: R 4i+2j+l = k[x]s l y j z i where i ∈ N, j ∈ {0, 1}, l ∈ {0, 1, 2, 3}. Proof. 1) First, the ∂-filtration {F i } i∈N is given by F r = h≤r H h where H h := u+2v+4w=h k[x] (s u y v z w ) and u, v, w, h ∈ N.
To show this, let J be the ideal in k [4] 

= k[X, Y, Z, S] defined by J = X 2 Y -(Y 2 -XZ) 2 , Y 2 -XZ -S .
Define an N-degree function ω on k [4] by declaring that ω(X) = 0, ω(S) = 1, ω(Y ) = 2, and ω(Z) = 4. By Lemma 2.4, the N-filtration {G r } i∈N where G r = h≤r H h is proper if and only if Ĵ is prime. Which is the case since Ĵ = X 2 Y -S 2 , Y 2 -XZ is prime. Thus by Lemma 2.3 we get the desired description.

Second, let l ∈ {0, 1} and j ∈ {0, 1, 2, 3} be such that l := r mod 2, j := r -l mod 4, and i := r-2j-l 4 . Then we get the following unique expression r = 4i + 2j + l. Since F r = u+2v+4w=r k[x] (s u y v z w ) + F r-1 , we conclude in particular that F r ⊇ k[x]s l y j z i + F r-1 . For the other inclusion, the relation x 2 y = s 2 allows to write s u y v z w = x e s l y v0 z w and from the relation y 2 = s + zx we get x e s l y v0 z w = x e s l y j (s + xz) n z w . Since the monomial with the highest degree relative to deg ∂ in (s+xz) n is x n .z n , we deduce that x e s l y j (s+xz) n z w = x e+n s l y j z w+n + M β where M β is monomial in x, y, s, z of degree less than r. Since the expression r = 4i+2j+l is unique, we get w + n = i. So s u y v z w = x e+n s l y j z i + f where

f ∈ F r-1 . Thus k[x] (s u y v z w ) ⊆ k[x]s l y j z i + F r-1 and finally F r = k[x]s l y j z i + F r-1 .
2) By part (1), an element f of degree r can be written as f = g(x)s l y j z i + f 0 where f 0 ∈ F r-1 , l = r mod 2, j = r -l mod 4, i = r-2j-l 4 , and i ∈ N, j ∈ {0, 1}, l ∈ {0, 1}. So by Lemma 1.4, P2, P1, P3 respectively we get f = g(x)s l y j z i + h = g(x)s l y j z i = g(x)s l y j z i = g(x)s l y j z i and therefore B 4i+2j+l = k[x]s l y j z i .

Finally, by Proposition 2.5, Gr

∂ (B) = k[X, Y , Z, S]/ X 2 Z -S 2 , X Z -Y 2 .

A more general family.

We now consider more generally rings R of the form

k[X, Y, Z]/ X n Y -P (X, Q(X, Y ) -X e Z)
where 1-The ∂-filtration {F i } i∈N is given by :

P (X, S) = S d + f d-1 (X)S d-1 + • • • + f 1 (X)S + f 0 (X) Q(X, Y ) = Y m + g m-1 (X)Y m-1 + • • • + g 1 (X)Y + g 0 (X) n ≥ 2, d ≥ 2, m ≥ 1,
F mdi+dj+l = k[x]s l y j z i + F mdi+dj+l-1
where i ∈ N, j ∈ {0, . . . , m -1}, l ∈ {0, . . . , d -1}. 2-The associated graded algebra Gr(R) = ⊕ i∈N R i , where (2) follows again from Proposition 3.2. The following Corollary shows a nice property of a semi-rigid ring. That is, every algebraic automorphism α has to preserve the unique filtration induced by any locally nilpotent derivation ∂, i.e. α sends an element of degree i relative to ∂ to an element of the same degree relative to ∂. Which makes the computation of the group of automorphisms easier up to the automorphism group of ker(∂). where Aut k (B, ML(B)) is by definition the sub-group of Aut k (B) consisting of elements whose induced action on ML(B) is trivial. Furthermore, every element of Aut k (B, ML(B)) induces for every i ≥ 1 an automorphism of F 0 -module of each F i . In this section we illustrate how to exploit these information to compute Aut k (B) for certain semi-rigid k-domains B. In [START_REF] Makar-Limanov | Locally nilpotent derivations, a new ring invariant and applications[END_REF] Makar-Limanov computed the k-automorphism group for surfaces in k [3] defined by equation X n Z -P (Y ) = 0 where n > 1 and deg Y P (Y ) > 1. Then Poloni, see [START_REF] Poloni | Sur les plongements des hypersurfaces de Danielewski[END_REF], generalized Makar-Limanov's method to obtained similar results for the rings considered in 4. In addition, x n divides every coefficient of H as a polynomial in y, so x n divides -µ m f m-i (x) + µ m-i f m-i (λx) because coefficients of H(y) are of the form q(x, y)b(x) -µ m f m-i (x) + µ m-i f m-i (λx) and b(x) is divisible by x n . So x n divides -µ i f m-i (x) + f m-i (λx) for every i. And we are done. 6.1.2. Aut k for example 5.2. The same method as in 6.1.1 can be applied to compute automorphism groups of rings R defined as in Theorem 5.2. For simplicity we only deal with the case where Q(X, Y ) = Y m , the general case can be deduced in the same way at the cost of longer and more complicated computation. Again we make a substitution in S as in 6. 

R i = F i /F i-1 ,

Definition 1 . 2 .

 12 An N-degree function on B is a map deg : B -→ N∪{-∞} such that, for all a, b ∈ B, the following conditions are satisfied: (1) deg(a) = -∞ ⇔ a = 0. (2) deg(ab) = deg(a) + deg(b). (3) deg(a + b) ≤ max{deg(a), deg(b)}. If the equality in (2) replaced by the inequality deg(ab) ≤ deg(a) + deg(b), we say that deg is an N-semi-degree function.

Lemma 1 . 4 .

 14 Denote by deg the N-degree function deg : B -→ N ∪ {-∞} corresponding to the proper N-filtration {F i } i∈N . We have the following properties. Given a, b ∈ B the following holds: P1) a b = a b, i.e. gr is a multiplicative map. P2) If deg(a) > deg(b), then a + b = a. P3) If deg(a) = deg(b) = deg(a + b), then a + b = a + b. P4) If deg(a) = deg(b) > deg(a + b), then a + b = 0, in particular gr is not an additive map in general. Proof. Let us assume that deg(a) = i and deg(b) = j. By definition, deg(ab) = i + j means that ab ∈ F i+j and ab / ∈ F i+j-1 , so ab = ab + F i+j-1 := (a + F i-1 )(b + F j-1 ) = a b. Which gives P1. For P2 we observe that since deg(a + b) = deg(a), we have a + b = (a + b)

Definition 1 . 5 .

 15 immediate, by definition. Finally, assume by contradiction that a+b = 0, then a+b = (a+F i-1 )+(b+F i-1 ) = ((a+b)+F i-1 ) = 0, which means that a + b / ∈ F i-1 and deg(a + b) = i, which is absurd. So P4 follows. 1.2. Derivations. By a k-derivation of B, we mean a k-linear map D : B -→ B which satisfies the Leibniz rule: For all a, b ∈ B; D(ab) = aD(b) + bD(a). The set of all k-derivations of B is denoted by Der k (B). The kernel of a derivation D is the subalgebra ker D = {b ∈ B; D(b) = 0} of B. The plinth ideal of D is the ideal pl(D) = ker D ∩ D(B) of kerD, where D(B) denotes the image of B. An element s ∈ B such that D(s) ∈ ker(D) \ {0} is called a local slice for D. Given a k-algebra B = ∪ i∈N F i equipped with a proper N-filtration, a k-derivation D of B is said to respect the filtration if there exists an integer d such that D(F i ) ⊂ F i+d for all i ∈ N.

  ∂ : B -→ N ∪ {-∞} defined by deg ∂ (a) := min{i ∈ N | ∂ i+1 (a) = 0}, and deg ∂ (0) := -∞. Note that by definition F 0 = ker ∂ and that F 1 \ F 0 consists of all local slices for ∂. Let Gr ∂ (B) = ⊕ i∈N F i /F i-1 denote the associated graded algebra relative to the ∂-filtration {F i } i∈N . Let gr ∂ : B -→ Gr ∂ (B); a gr ∂ -→ a be the natural map between B and Gr ∂ (B) defined in 1.3, where a denote gr ∂ (a).

  3.2 below for a comparison between the two notions).Definition 3.1. A commutative domain B over a field k of characteristic zero is called semi-rigid if all non-zero locally nilpotent derivations of B induce the same proper N-filtration (equivalently, the same N-degree function).Recall that the Makar-Limanov invariant of a commutative k-domain B over a field k of characteristic zero is defined byML(B) := ∩ D∈LND(B) ker(D).In particular, B is semi-rigid if and only if ML(B) = ker(∂) for any non-zero ∂ ∈ LND(B). Indeed, given D, E ∈ LND(B) \ {0} such that A := ker(D) = ker(E), there exist non-zero elements a, b ∈ A such that aD = bE (see[START_REF] Freudenburg | Algebraic Theory of Locally Nilpotent Derivation[END_REF] Principle 12) which implies that the D-filtration is equal to the E-filtration. So if ML(B) = ker(∂) for any non-zero ∂ ∈ LND(B) then B is semi-rigid. The other implication is clear by definition.Recall that D ∈ Der k (B) is irreducible if and only if D(B) is contained in no proper principal ideal of B, and that B is said to satisfy the ascending chain condition (ACC) on principal ideals if and only if every infinite chain (b 1 ) ⊂ (b 2 ) ⊂ (b 3 ) ⊂ • • • of principal ideals of B eventually stabilizes. B is said to be a highest common factor ring, or HCF-ring, if and only if the intersection of any two principal ideals of B is again principal. Proposition 3.2. Let B be a semi-rigid k-domain satisfying the ACC on principal ideals. If ML(B) is an HCF-ring, then there exists a unique irreducible ∂ ∈ LND(B) up to multiplication by unit.

3. 1 . 4 . 4 . 1 .

 1441 Elementary examples of semi-rigid k-domains. The next Proposition, which is due to Makar-Limanov ([START_REF] Makar-Limanov | Locally nilpotent derivations, a new ring invariant and applications[END_REF] Lemma 21, also[START_REF] Crachiola | An algebraic proof of a cancellation theorem for surfaces[END_REF] Theorem 3.1), presents some of the simplest examples of semi-rigid k-domains. Proposition 3.4. (Makar-Limanov) Let A be a rigid domain of finite transcendence degree over a field k of characteristic zero. Then the polynomial ring A[x] is semi-rigid.Proof. For the convenience of the reader, we provide an argument formulated in the LND-filtration language. Let ∂ be the locally nilpotent derivation of A[x] defined by ∂(a) = 0 for every a ∈ A and ∂(x) = 1. Then the ∂-filtration {F i } i∈N is given by F i = Ax i ⊕ F i-1 where F 0 = ker(∂) = A. So the associated graded algebra is Gr(A[x]) = ⊕ i∈N Ax i ,where x := gr(x). By Proposition 2.2, every nonzero D ∈ LND(A[x]) respects the ∂-filtration and induces a non-zero homogeneous locally nilpotent derivation D of Gr(A[x]) of a certain degree d. Let f ∈ ker(D) and assume that f / ∈ A. Then x divides f . Since f ∈ ker(D) and ker(D) is factorially closed ([1] Principle 1), we have x ∈ ker(D). Note that D sends homogeneous elements of degree i to zero or to homogeneous elements of degree i + d, therefore D has the form D = ax d E, where a ∈ A, d ∈ N, and E ∈ LND(A) see [1] Principle 7. But since A is rigid, E = 0. Thus D = 0, a contradiction. This means f ∈ A which implies that ker(D) ⊂ A. Finally, since tr.deg k (A) = tr.deg k (ker(D)) and A is algebraically closed in A[x], we get the equality ker(D) = A. Hence ML(A[x]) = A. Computing the ML-Invariant using LND-Filtration Here we illustrate the use of the ∂-filtration in the computation of ML-invariants, for classes of already well-studied examples. Classical examples of semi-rigid k-domains.

and m ≥ 2 .

 2 Let x, y, z be the images of X, Y , Z in B n,P . Define ∂ by ∂(x) = 0, ∂(y) = x n , ∂(z) = ∂P ∂y where ∂P ∂y = my m-1 + (m -1)f m-1 (x)y m-2 + . . . + f 1 (x) We see that ∂ ∈ LND(B n,P ) with ker(∂) = k[x], and y is a local slice for ∂. Moreover, we have deg ∂ (x) = 0, deg ∂ (y) = 1, deg ∂ (z) = m. The plinth ideal is pl(∂) = x n . Up to a change of variable of the form Y → Y -c where c ∈ k, we can always assume that 0 ∈ Spec(B). A consequence of Lemma 2.3, Proposition 2.4, and Proposition 2.5 (see the Proof of Prop. 5.1 for more details) is that 1-The ∂-filtration {F i } i∈N is given by:

Proposition 4 . 1 .

 41 With the notation above we have: (1) ML(B n,P ) = k[x]. Consequently B n,P is semi-rigid. (2) Every D ∈ LND(B n,P ) has the form D = f (x)∂. Proof. (1) By Proposition 2.2 a non-zero D ∈ LND(B) induces a non-zero D ∈ LND (Gr(B)). Let f ∈ ker(D) \ k, then f ∈ ker(D) \ k. There exists i ∈ N such that f ∈ B i . Assume that f / ∈ k[x] = B 0 , then one of the elements y, z must divide f . Which leads to a contradiction as follows: If y divides f , then y ∈ ker(D) because ker(D) is factorially closed in Gr(B) ([1] Principle 1). For the same reason x, z ∈ ker(D) because x n z = y m . So D = 0, a contradiction. If z divides f , then D(z) = 0. So D extends to a locally nilpotent derivation D of the ring B = k(z)[x, y]/ x n z -y m . Since 0 ∈ Spec(B) is a singular point when n ≥ 2 and m ≥ 2 , B is rigid (Lemma 3.3). Therefore, D = 0 which means D = 0, a contradiction. So the only possibility is that f ∈ k[x]. This means that deg ∂ (f ) = 0, and hence that f ∈ k[x]. So ker(D) ⊂ k[x], and finally k[x] = ker(D) because tr.deg k (ker(D)) = 1 and k[x] is algebraically closed in B. So we get ML(B) = k[x].

Proposition 4 . 2 .

 42 With the notation above we have: (1) ML(B n,e,l,Q ) = k[x, z]. Consequently B is semi-rigid. (2) Every D ∈ LND(B n,e,l,Q ) has the form D = f (x, z)∂. Proof. (1) Given a non-zero D ∈ LND(B). By Proposition 2.2 D induces a nonzero D ∈ LND (Gr(B)). Suppose that f ∈ ker(D) \ k, then f ∈ ker(D) \ k. So there exists i ∈ N such that f ∈ B i . Assume that f / ∈ k[x, z] = B 0 , then one of the elements t, y must divides f (see §4.1.2 above). Which leads to a contradiction as follows: If t divides f , then t ∈ ker(D) as ker(D) is factorially closed, and for the same reason y, (x n + z e ) l ∈ ker(D) due to the relation y(x n + z e ) l = t m . So x n + z e ∈ ker(D) which implies that x, z ∈ ker(D) ([1] Lemma 9.3). This means D = 0, a contradiction. Finally, if y divides f , then D(y) = 0. Choose H ∈ ker(D) which is homogeneous and algebraically independent of y, which is possible, since tr.deg k ker(D) = 2 and ker(D) is generated by homogeneous elements. Then by §4.1.2, H has the form H = h(x, z).y l . By algebraic dependence, we may assume H = h(x, z), which is non-constant, and that h(0, 0) = 0. So D extends to a locally nilpotent derivation D of the ring B = k(y, H)[x, z, t]/ h(x, z) -H, y(x n + z e ) l -t m . But B is of transcendence degree one over the field k(y, H) whose spectrum has a singular point at 0. This means that B is rigid (Lemma 3.3). Thus D = 0, which implies D = 0, a contradiction. So the only possibility is that f ∈ k[x, z], and this means deg ∂ (f ) = 0, thus f ∈ k[x, z] and ker(D) ⊂ k[x, z]. Finally, k[x, z] = ker(D) because tr.deg k (ker(D)) = 2. So we get ML(B) = k[x, z]

and e ≥ 1 .

 1 Up to a change of variable of the form Y → Y -c where c ∈ k, we may assume that 0 ∈ Spec(R).Let x, y, z be the images of X, Y , Z in R. Define ∂ by: ∂(x) = 0, ∂(s) = x n+e where s := Q(x, y) -x e z. Considering the relationx n y = P (x, Q(x, y) -x e z), a simple computation leads to ∂(y) = x e ∂P ∂s ,∂(z) = ∂Q ∂y ∂P ∂s -x n , i.e. ∂ := x e ∂P ∂s ∂ y + ( ∂Q ∂y ∂P ∂s -x n )∂ z where ∂P ∂s = ds d-1 + (d -1)f d-1 (x)s d-2 + • • • + f 1 (x), and ∂Q ∂y = my m-1 + (m -1)g m-1 (x)y m-2 + • • •+ g 1 (x). Since ∂(x n y -P (x, Q(x, y)-x e z)) = 0 and ∂ d+1 (y) = 0, ∂ md+1 (z) = 0, ∂ is a well-defined locally nilpotent derivation of R. The kernel of ∂ is equal to k[x]and the element s is a local slice for ∂ by construction. One checks further that the plinth ideal is equal to pl(∂) = x n+e . A direct computation shows that deg ∂ (x) = 0, deg ∂ (y) = d, deg ∂ (z) = md and deg ∂ (s) = 1. Furthermore:
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 52 is generated by x = gr ∂ (x), y = gr ∂ (y), z = gr ∂ (z), s = gr ∂ (s) as an algebra over k with relations x n z = s d and x e z = y m , i.e.Gr(R) = k[X, Y , Z, S]/ X n Z -S d , X e Z -Y m .And we have :R mdi+dj+l = k[x]s l y j z iwhere i ∈ N, j ∈ {0, . . . , m -1}, l ∈ {0, . . . , d -1}. With the above notation the following hold:(1) ML(R) = k[x]. Consequently R is semi-rigid. (2) Every D ∈ LND(R) has form D = f (x)∂, i.e. R is almost rigid. Proof. (1) Given a non-zero D ∈ LND(R). By Proposition 2.2, D respects the ∂filtration and induces a non-zero locally nilpotent derivation D of Gr(R). Suppose that f ∈ ker(D) \ k, then f ∈ ker(D) \ k is an homogenous element of Gr(R). So there exists i ∈ N such that f ∈ R i . Assume that f / ∈ k[x] = R 0 ,then one of the elements s, y, z must divides f by 5.2,2. Which leads to a contradiction as follows : If s divides f , then s ∈ ker(D) as ker(D) is factorially closed, and for the same reason x, y ∈ ker(D) due to the relation x n y = s d . Then by the relation x e z = y m , we must have z ∈ ker(D), which means D = 0, a contradiction. In the same way, we get a contradiction if y divides f . Finally, if z divides f , then D(z) = 0. So D induces in a natural way a locally nilpotent derivation D of the ring R = k(z)[x, y, s]/ x n z -s d , x e z -y m . But since 0 ∈ Spec( R) is a singular point, R is rigid (Lemma 3.3). So D = 0, which implies D = 0, a contradiction. So the only possibility is that f ∈ k[x], and this means deg ∂ (f ) = 0, thus f ∈ k[x] and ker(D) ⊂ k[x]. Finally, k[x] = ker(D) because tr.deg k (ker(D)) = 1 and k[x] is algebraically closed in B. So ML(R) = k[x].

6 .

 6 Further applications of the LND-filtratoin Given a commutative domain B over an algebraically closed field k of characteristic zero, we denote Aut k (B) the group of algebraic k-automorphisms of B. This group acts by conjugation on LND(B). An immediate consequence is that α(ML(B)) = ML(B) for every α ∈ Aut k (B) which yield in particular an induced action of Aut k (B) on ML(B). Let ∂ α = α -1 ∂α be the conjugate of ∂ by a given automorphism α of B, it is straightforward to check that α{ker(∂ α )} = ker(∂) and more generally that deg ∂α (b) = deg ∂ (α(b)) for any b ∈ B. In other words, α respects deg ∂ and deg ∂α (i.e. α sends an element of degree n relative to deg ∂α , to an element of the same degree n relative to deg ∂ . Definition 6.1. We say that an algebraic k-automorphism α preserves the ∂filtration for some ∂ ∈ LND(B) if deg ∂ (α(b)) = deg ∂ (b) for any b ∈ B. Lemma 6.2. Let ∂ ∈ LND(B) and α ∈ Aut k (B). Then ∂ and ∂ α are equivalent, i.e. have the same kernel, if and only if α preserve the ∂-filtration. Proof. Suppose that ∂ and ∂ α are equivalents, then deg ∂ (α(b)) = deg ∂α (b) for every b ∈ B, and by hypothesis ker(∂) = ker(∂ α ), so deg ∂ = deg ∂α . Then we obtain deg ∂ (α(b)) = deg ∂ (b). Thus α preserves the ∂-filtration. Since the other direction is obvious we are done.

Corollary 6 . 3 . 6 . 1 .

 6361 Let B be a semi-rigid k-domain, then every k-automorphism of B preserve the ∂-filtration for every ∂ ∈ LND(B). Proof. A direct consequence of Definition 3.1 and Lemma 6.2. The group of algebraic k-automorphisms of a semi-rigid k-domain. Suppose that B is a semi-rigid k-domain. Then, it has a unique proper filtration {F i } i∈N which is the ∂-filtration corresponding to any non-zero locally nilpotent derivation ∂ of B. Since every algebraic k-automorphism of B preserves this filtration (Corollary 6.3), we obtain an exact sequence 0 → Aut k (B, ML(B)) → Aut k (B) → Aut k (ML(B))

6. 1 . 1 .

 11 Aut k for example 4.1.1.

  1.1 above. Here we briefly indicate how to recover these results using LND-filtrations. So letB n,P = k[X, Y, Z]/ X n Z -P (X, Y ) where P (X, Y ) = Y m + f m-1 (X)Y m-1 + • • • + f 0 (X), f i (X) ∈ k[X], n ≥ 2, and m ≥ 2. Up to change of variable of the form Y by Y -fm-1(X) mwe may assume without loss of generality that f m-1 (X) = 0. Proposition 6.4. Let B n,P be as above. Then every algebraic k-automorphism α of B has the form α(x, y, z) = (λx, µy + x n a(x), µ m λ n z +P (λx, µy + x n a(x)) -µ m P (x, y) λ n x n ) where λ, µ ∈ k * satisfy f m-i (λx) ≡ µ i .f m-i (x) mod x n for all i, and a(x) ∈ k[x].Proof. By Proposition 4.1, (1) and§4.1.1, ML(B) = k[x] and the ∂-filtration {F i } i∈N is given by F im+j = k[x]y im+j + k[x]y im+j-m z + . . . + k[x]y j z i + F im+j-1 , where ∂ = x n .∂ y + ∂P ∂y .∂ z , deg ∂ (x) = 0, deg ∂ (y) = 1, and deg ∂ (z) = m. In particular F 0 = k[x], F 1 = k[x]y + F 0 , and F m = k[x]y m + k[x]z + F m-1 .Now by Corollary 6.3 α preserve deg ∂ , so we must have α(x)∈ F 0 = k[x], α(y) ∈ F 1 = k[x]y + k[x] and α(z) ∈ F m = k[x]y m + k[x].z + F m-1 . Since α is invertible we get α(x) = λx + c, α(y) = µy + b(x), and α(z) = ξz + h(x, y) where λ, µ, ξ ∈ k * , c ∈ k, b ∈ k[x], h(x, y) ∈ k[x, y], and deg y h(x, y) ≤ m. By Proposition 4.1 (2) every D ∈ LND(B) has the form D = f (x)∂. In particular, ∂ α = f (x)∂ for some f (x) ∈ k[x]. Since α∂ α = ∂α we have ∂(α(y)) = α(f (x)∂(y)) = f (α(x))α(x n ) where (∂(y) = x n ). So we get ∂(µy + b(x)) = f (α(x)) (λx + c) n . Since ∂(µy + b(x)) = µx n , x divides (λx + c) n in k[x], and this is possible only if c = 0, so we get α(x) = λx. Applying α to the relation x n z = P (x, y) in B P,n , we get λ n x n α(z) = P (λx, µy + b(x)) = µ m P (x, y) + mµ m-1 y m-1 b(x) + H(x, y) where deg y H ≤ m -2. Since x n divides P = x n z and deg y H ≤ m -2, x n divides mµ m-1 y m-1 b(x) + H(x, y) in k[x, y]. So x n divides b(x), i.e. α(y) = µy + x n a(x).

  1.1 to get relation of the form presented in the following result:Theorem 6.5. Let R denote the ring R = k[X, Y, Z]/ X n Y -P (X, Y m -X e Z) = k[x, y, z] where P (X, S) = S d + f d-2 (X)S d-2 + • • • + f 1 (X)S + f 0 (S), n ≥ 2, d ≥ 2,

  and t is a local slice for ∂. Moreover, we have deg∂ (x) = 0, deg ∂ (y) = m, deg ∂ (z) = 0, and deg ∂ (t) = 1. The plinth ideal is pl(∂) = (X n + Z e ) l. By Lemma 2.3, Prop. 2.4, and Prop. 2.5 we get the following.1-The ∂-filtration {F i } i∈N is given by:

m ≥ 1, and e ∈ N. Then, every algebraic k-automorphism of B has the form α(x, y, z) = (λx, µ d λ n y + F, µ dm λ nm+e .z + ( µ d λ n y + F ) mµ dm λ nm y m + x n+e a(x) λx e )

where: λ, µ ∈ k * verify both µ dm λ nm = µ and f d-i (λx) ≡ µ i f d-i (x) mod x n+e for every i ∈ {2, . . . , d}. s = y m -x e z , and F = P (λx,µs+x n+e a(x))-µ d P (x,s)

Proof. A similar argument as in the proof of Proposition 6.4 leads to α(x) = λx and α(s) = µs + x n a(x) where λ, µ ∈ k * verify f d-i (λx) ≡ µ i f d-i (x) modx n for all i. Now α(x) and α(s) determine

Apply α to x e z = y m -s to get λ e x e α(z) = ( µ h λ n y + F ) m -µs -x n a(x) where F = P (λx,µs+x n a(x))-µ h P (x,s)

Thus x e divides every coefficients of G as a polynomial in y because deg s G ≤ d -1. So x e divides F and µ hm λ nm -µ = 0. This means that x n+e divides f d-i (λx) -µ i f d-i (x) for all i ∈ {2, . . . , d} (see proof of Proposition 6.4), and µ hm λ nm = µ. Finally, by the relation s = y m -x e z, we get

, and we are done.

Isomorphisms.

We are going to use the previous facts about semi-rigid k-domains to give a necessary and sufficient condition for two hypersurfaces of the family 4.1.1 to be isomorphic.

Let Ψ : A -→ B be an algebraic isomorphism, we refer to this by Ψ ∈ Isom k (A, B), between two finitely generated k-domains A = k[y 1 , . . . , y r ], B = k[x 1 , . . . , x r ] where y 1 , . . . , y r and x 1 , . . . , x r are minimal sets of generators. Since Ψ(A) = k[Ψ(y 1 ), . . . , Ψ(y r )] = k[x 1 , . . . , x r ], there exists an automorphism ψ : B -→ B such that for every i ∈ {1, . . . , r} there exists j ∈ {1, . . . , r} such that ψ(x i ) = Ψ(y j ).

Given ∂ ∈ LND(B) and Ψ ∈ Isom k (A, B). For any n ∈ N we have ( 

and f m-i (λx) ≡ µ i g m-i (x) mod x n for every i ∈ {2, . . . , m} .

In addition, every isomorphism between B 1 and B 2 takes the form

where a(x) ∈ k[x] and λ ∈ k * , µ ∈ k * satisfy f m-i (λx) ≡ µ i g m-i (x) mod x n for all i.

Proof. ). This implies that the only possibility for ψ defined as in 6.2 is ψ(x 2 ) = Ψ(x 1 ), ψ(y 2 ) = Ψ(y 1 ) and ψ(z 2 ) = Ψ(z 1 ). Now by Proposition 6.4

where a(x 2 ) ∈ k[x 2 ] and λ ∈ k * , µ ∈ k * such that g m-i (λx) ≡ µ i g m-i (x) mod x n2 for all i. So we get

). By applying Ψ to relation x n1 1 z 1 = Q 1 (x 1 , y 1 ) in B 1 , we obtain

Since deg

Applying the map gr D to the last equation, we get

On the other hand

)), the last two equations give λ n1 µ m 2 λ n 2 x n1 2 = µ m2 x n2 2 which means that n 1 = n 2 . We could have obtained that n 1 = n 2 in this way: from λ n1 x n1 2 Ψ(z 1 ) = Q 1 (λx 2 , µy 2 + x n2 2 a(x 2 )) we conclude that λ n1 x n1 2 ∂(Ψ(z 1 )) = ∂(y 2 )H(x 2 , y 2 ) where deg y2 H < m 2 and x 2 does not divide H. So x n1 2 divides ∂(y 2 ) = x n2 2 where ∂ is defined as in 4.1.1, which mean that n 1 ≤ n 2 . Since B 1 and B 2 play symmetric roles the equality follows.