
HAL Id: hal-00872818
https://hal.science/hal-00872818

Submitted on 5 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational Analysis of Interacting Web Services: a
Logical Approach

Philippe Balbiani, Fahima Cheikh-Alili

To cite this version:
Philippe Balbiani, Fahima Cheikh-Alili. Computational Analysis of Interacting Web Services: a Log-
ical Approach. [Research Report] IRIT : Institut de recherche en informatique de Toulouse. 2010,
pp.1-18. �hal-00872818�

https://hal.science/hal-00872818
https://hal.archives-ouvertes.fr


Computational Analysis of Interacting
Web Services: a Logical Approach

Philippe Balbiani and Fahima Cheikh

Université Paul Sabatier, Institut de recherche en informatique de Toulouse
31062 Toulouse Cedex 9, France

Abstract. Web services composition is the interleaving of actions se-
quences in accordance with a client specification. In this paper we con-
sider a Web services model where services are able to execute actions and
send and receive messages. We define, for this model, the composition
problem and study its decidability.

Keywords Web services, composition problem, decidability issues.

1 Introduction

Service oriented computing [13] is a programming paradigm which considers
services as elementary components. From these components, distributed appli-
cations are realised in accordance with a client specification. To realise some dis-
tributed applications, elementary components have to be composed. The com-
position problem has been investigated since the 2000’s with many solutions
proposed [1, 2, 11, 14]. What is this problem? To answer, we have first to know
about which kind of services we talk. Often, services are seen as finite automata.
In this case, client specification is given by a finite automata which represents
all computations that a client wants to be executed by services. By executing
their transitions, services modify their environment and that of the client. The
problem of combining services becomes that of composing automata. This is the
way followed by [1, 4]. In other cases, services are able to send and to receive
messages. In this case, client specification is given by a logical formula which
represents goals of a client that wants to be reached by services. By communi-
cating together, services modify their knowledge and those of their client. It is
the approach considered by [11, 14]. In all cases, to compose services together
is to interleave their actions sequences in accordance with a client specification.
The composition problem is difficult to solve, as shown by theoretical complexity
results obtained in the papers mentioned above [1, 4, 11, 14]. In this paper, we
present and study a new model where services are able to execute actions and
send and receive messages. The model we present in section 2 is a variant of
the model proposed by [3]. In section 3, we define for this model the composi-
tion problem. We give, in section 4, theoretical results about its decidability. In
section 5, we talk about interesting future works concerning the integration of
security issues into Web services.



2 The model

In this section, we present information systems and Web services. Information
systems are relational structures that allow the representation of a universe.
Web services are conditional transition systems where the transitions correspond
to a command execution, to a message’s reception or to a message’s emission.
In subsection 2.3, we define two important notions: the client service and the
mediator service.

2.1 Information systems

An information system can be seen as a set of objects characterized by a set
of attributes. Formally, an information system is a structure of the form IF =
(Obj, Att, V al, f) where:

– Obj is a finite set of objects,
– Att is a finite set of attributes,
– V al is a nonempty set of values and
– f : Obj ×Att → 2V al is a function which associates, to each object o ∈ Obj

and to each attribute a ∈ Att, a set f(o, a) ⊆ V al of values.

If the value v ∈ V al belongs to the set f(o, a) then we say that v is a possible
value of object o for attribute a.

Example 1. The information system defined by the following table describes in
terms of attributes name, price, composition, size and color a set {o1, o2} of
manufactured goods.

f name price composition size color

o1 {sweater} {40} acrylic {XL} blue

o2 {skirt} {80} {wool, cotton } {S} {black, white}

Table 1. Information system

2.2 Web services

Web services update information systems by executing commands. They also
obtain information by communicating together. In this paper, Web services are
considered as conditional transition systems: the transition from one state to
another is possible only if certain conditions are satisfied. Formally, relatively to
an information system IF = (Obj, Att, V al, f), a Web service is a structure of
the form S = (Q, I, F, V arL, P, δ) where:

– Q is a finite set of states,



– I ⊆ Q is a set of initial states,
– F ⊆ Q is a set of final states,
– V arL is a finite set of local variables,
– P is a finite set of ports and
– δ is a transition function.

We will see, in section 3, how the local variables of S receive elements of V al
as values. We will also see how services operate. V arL variables and V al elements
constitute the terms of S. A port is a structure of the form (M,d, m) where: M
is the port’s name, d ∈ {in, out} is the port’s type and m ∈ IN is the port’s size.
If d = in then (M,d,m) is an input port and if d = out then (M,d, m) is an
output port. The size m of the port indicates the length of messages received or
sent through this port each time it is used. The transition function δ associates,
to each pair (q, q′) of states in S, a finite set δ(q, q′) of possible transitions from
q to q′. These transitions are structures of the form (C,α) where C is a logical
expression and α is a finite sequence of primitive operations. Logical expressions
are defined as follows:

– C := > | (θ1 = θ2) | (θ ∈ f(z, a)) | Empty(M) | ¬C | (C1 ∧ C2) | ∃z C

where θ, θ1 et θ2 are terms of S, z is a variable ranging over Obj, a ∈ Att is
an attribute and M is the name of an input port of S or of the client service.
Empty(M) is satisfied when the port named M is empty, see subsection 2.4 for
more details. Note that, contrary to our model, the transition function of services
is deterministic in [3]. Primitive operations that can be used by S are defined as
follows:

– create object z,
– destroy object z,
– add θ to f(z, a),
– delete θ from f(z, a),
– x := θ,
– ?M(θ1, . . . , θm) and
– !M(θ1, . . . , θm).

In these primitive operations, z is a variable ranging over Obj, a ∈ Att is an
attribute, θ, θ1, . . . , θm are terms of S, x is a local variable of S and M is the
name of a port in S of size m. Of course, the primitive operation ?M(θ1, . . . , θm),
that consists in receiving a package of m values by a port of S named M , has a
meaning for S only if (M, in,m) ∈ P and the primitive operation !M(θ1, . . . , θm),
that consists in sending a package of m values by a port of S named M , has a
meaning for S only if (M,out, m) ∈ P . We assume that for each sequence α of
primitive operations used by S, if α contains a primitive operation of the form
?M(x1, . . . , xm) or of the form !M(θ1, . . . , θm), then this sequence has length
1. Consequently, for each sequence α of primitive operations, one of the three
following conditions is satisfied: (1) α is a sequence of primitive operations with-
out exchange of messages, (2) α is a sequence of primitive operations composed



of only 1 primitive operation of the form ?M(θ1, . . . , θm) and (3) α is a se-
quence of primitive operations composed of only 1 primitive operation of the
form !M(θ1, ..., θm). A transition (C,α) is atomique if the sequence α of its
primitive operations is composed of only 1 primitive operation.

Example 2. The Web service Sgoal = (Qg, Ig, Fg, V arLg, Pg, δg) described in
Fig. 1 performs its computations on the information system IF = (Obj, Att, V al,
f) represented by Table 1. Sgoal allows (1) to obtain the price, the composition,
the size and the color of an object in the information system, (2) to update the
information system by adding a new object under the condition that its price is
equal to 100 and (3) to exchange messages between services.

Fig. 1. Web service Sgoal

In Fig. 1, z ranges over Obj, name ∈ Att is an attribute, n, p, t, cp and cl are
local variables of Sgoal, success and failure are elements of V al and Psearch,
Pinfo, Padd and Pconf are names of ports of Sgoal. Search is the sequence
of primitive operations defined as follows: p := f(z, price); t := f(z, size);
cp := f(z, composition); cl := f(z, color) and Add is the sequence defined
as follows: create object z; add n to f(z, name); add p to f(z, price); add cp
to f(z, composition); add t to f(z, size); add cl to f(z, color). We recall that
price, size, composition and color are attributes in Att. To execute the transi-
tion δ(q1

g , q2
g) is first to check for the existence of an object o ∈ Obj such that

n ∈ f(o, name) and second to execute the sequence Search of primitive opera-
tions. To execute the transition δ(q0

g , q1
g) is to receive a package of one value by

the port Psearch. To execute the transition δ(q2
g , q3

g) is to send a package of four
values by the port Pinfo.

2.3 Clients and mediators

Web services will be used by particular services called client services. Client
services are services whose only purpose is to obtain informations about the
information system. Consequently, two states are sufficient to completely de-
fine them. From the first state, only emission of packages of values can be per-
formed and from the second state, only receptions of packages of values can



be performed. Logical expressions conditioning the client transitions have al-
ways the true value. More precisely, a client service is a Web service of the form
S0 = ({q0

0 , q1
0}, {q0

0}, {q0
0}, ∅, P0, δ0) where the transition function δ0 is as follows:

– δ0(q0
0 , q0

0) = ∅,
– δ0(q1

0 , q1
0) = ∅,

– δ0(q0
0 , q1

0) is a finite set of transitions of the form (>,!M(v1,. . . , vm)), where
(M,out, m) ∈ P0 and v1,. . . ,vm are constants in V al and

– δ0(q1
0 , q0

0) is a finite set of transitions of the form (>,?M(v1,. . . , vm)), where
(M, in,m) ∈ P0 and v1,. . . , vm are constants in V al.

Example 3. In Fig. 2, P0search, P0add, P0confand P0info are names of ports of
S0.

Fig. 2. Client service S0

A mediator service carries out only exchanges of messages. Its role is to interpose
itself between the client service and the available services. More precisely, a
mediator service is a service of the form Smed =(Qmed, Imed, Fmed, V arLmed,
Pmed, δmed) where the transition function δmed is such that δ(q, q′) is a finite set
of transitions of the form (C, !M(θ1, . . . , θm)) or of the form (C, ?M(θ1, . . . , θm)).
The logical expressions conditioning the mediator transitions are as follows:

– C := > | (θ1 = θ2) | ¬C | (C1 ∧ C2)

where θ1 et θ2 are terms of Smed.

Example 4. In Fig. 3, n′, p′, t′, cp′, cl′ and res are local variables of the mediator
service Smed and PMsearch, PM1search, PM1info, PMinfo, PMadd, PM2add,
PM2conf and PMconf are names of ports of Smed.

2.4 Links

Let us consider a finite set C = {S0, ..., Sn} of services and let us denote by Pi,
i ∈ {0, ..., n}, the set of ports of Si. A C -link can be seen as a mean to associate



Fig. 3. Mediator service Smed

the input ports and the output ports of different services. Formally, a C -link is
a binary relation L in P0 ∪ ... ∪ Pn such that:

– if (M,d, m) L (M ′, d′,m′) then d = in, d′ = out and m = m′,
– if (M,d,m) L (M ′, d′,m′) and (M,d, m) L (M ′′, d′′,m′′) then M ′ = M ′′ and
– if (M,d, m) L (M ′′, d′′,m′′) and (M ′, d′,m′) L (M ′′, d′′,m′′) then

M = M ′.

Consequently, if (Mi, in, m) ∈ Pi and (Mj , out, m) ∈ Pj are such that
(Mi, in, m) L (Mj , out,m) then Si 6= Sj , Si can only receive, by the port named
Mi, packages of m values from the port (Mj , out,m) whereas Sj can only send,
by the port named Mj , packages of m values to (Mi, in, m). Moreover, we will
see, in section 3, how a queue of packages, denoted EntF (Mi,Mj), contains
packages of values sent by (Mj , out,m) to (Mi, in, m) but not yet received. For
Si, to receive a package of m values on port (Mi, in, m) is to remove a first
package of m values from the queue EntF (Mi,Mj) while, for Sj , to send a
package of m values on port (Mj , out,m) is to add a last package of m values
to the queue EntF (Mi,Mj). Note that if (Mi, in, m)L(Mj , out,m) then we will
say that Empty(Mi) is true iff EntF (Mi,Mj) is empty.

Example 5. We can take as an example a link L for S0 and Sgoal respectively de-
scribed in Fig. 2 and Fig. 1. We consider L = {(Psearch, P0search), (Padd, P0add),
(P0conf , Pconf ), (P0info, Pinfo)}.

3 Execution trees

3.1 Definition

In what follows, we first define the notion of execution tree which allow to
represent all computations performed by services from an information system
and all exchanges of messages between services. Let us consider a finite set
C = {S0, ..., Sn} of Web services and a C -link L. For all i ∈ {0, ..., n}, let us de-
note Si = (Qi, Ii, Fi, V arLi,Pi,δi). A global state for C and L will be a structure
of the form ∆ = (IF, q0, ..., qn, int0, ..., intn, EntF, cl) where:



– IF = (Obj, Att, V al, f), is an information system,
– for any i ∈ {0, ..., n}, qi ∈ Qi,
– for any i ∈ {0, ..., n}, inti associates, to each local variable x ∈ V arLi of Si,

a value inti(x) in V al,
– EntF is a function that associates to each pair ((M, in,m), (M ′, out,m)) of

L, a queue of packages of m values and
– cl is a finite set of values.

Let us note that, unlike [3], we do not limit the length of the queues defined
by EntF . A global state for C and L gives us information about the value of
the information system, the value of the services current states, the value of the
local variables of each service and the value of queues where the packages of
values already sent but not yet received are kept in stock. The field cl contains
the set of all values that have already been received by the client up to now. To
describe the way in which the global state changes, we introduce the concept of
execution tree. An execution tree T for C and L is a tree whose nodes are labelled
by global states and whose edges are labelled by the transitions performed by
services. More precisely, the root of T is labelled by a global state of the form
∆0 = (IF, q0, ..., qn, int0, ..., intn, EntF, cl) such that q0 ∈ I0, ..., qn ∈ In

and for all links ((M, in,m), (M ′, out, ),m′) ∈ L, Ent(M,M ′) = ∅. Moreover if
∆ = (IF, q0, ..., qn, int0, ..., intn, EntF, cl) and ∆′ = (IF ′, q′0, ..., q′n, int′0, ...,
int′n, EntF ′, cl′) are the labels of two consecutive nodes of T , then there exists
i ∈ {0, ..., n} such that for any j ∈ {0, ..., n}, if i 6= j then q′j = qj and int′j = intj
and one of the three following conditions is satisfied:

1. In δi(qi, q
′
i) there exists a transition of the form (C,α) without exchange of

messages and there exists a substitution sub of the variables in (C,α) ranging
over Obj such that:
– sub(C) has the “true” value for IF and inti,
– int′i and IF ′ are obtained from inti and IF by performing primitive

operations of the sequence inti(sub(α)),
– EntF ′ = EntF and
– cl′ = cl,

2. In δi(qi, q
′
i) there exists a transition of the form (C, ?M(θ1, . . . , θm)) and

there exists a substitution sub of the variables in C ranging over Obj such
that:
– sub(C) has the “true” value for IF and inti,
– there exists a port (M ′, out,m) such that ((M, in,m), (M ′, out,m)) ∈ L

and EntF (M,M ′) is nonempty,
– int′i is obtained from inti by unifying θ1, . . . , θm with the m values of

the first package in EntF (M,M ′),
– IF ′=IF ,
– EntF ′ is obtained from EntF by removing from EntF (M,M ′) the first

packages of m values and
– if i = 0 then cl′ is obtained from cl by adding to it the first package of

m values in EntF (M,M ′) else cl′ = cl,



3. In δi(qi, q
′
i) there exists a transition of the form (C, !M(θ1, ..., θm)) and there

exists a substitution sub of the variables in C ranging over Obj such that:
– sub(C) has the “true” value for IF and inti,
– there exists a port (M ′, in, m) such that ((M ′, in, m), (M,out, m)) ∈ L,
– int′i = inti
– IF ′=IF ,
– EntF ′ is obtained from EntF by adding to EntF (M,M ′) a last package

of m values (inti(θ1), ..., inti(θm)) and
– cl′ = cl.

In the first case, the edge (∆, ∆′) of T is labelled by inti(sub(α)). In the second
case, it is labelled by ?M(int′i(θ1), ..., int′i(θm)). In the third case, it is labelled
by !M(inti(θ1), ..., inti(θm)).

3.2 Equivalence between execution trees

In order to compare computations performed by two distinct sets of services,
we define the concept of equivalence between execution trees. More particularly,
we are interested by the exchange of messages performed by the client and the
sequences of primitive operations without exchanges of messages performed by
available services. For this reason, we define in this section, the notion of reduced
tree and the notion of equivalence between execution trees. Let us consider an
execution tree T for a set C = {S0, ..., Sn} of Web services containing a unique
client service S0. The reduced tree of T will be the tree obtained from T by
removing edges, in order to keep only edges labelled by transitions concerning
transmissions of messages to a client service, receptions of messages by the client
service and sequences of primitive operations without exchanges of messages per-
formed by available services. Formally, the reduced tree Tr of T is built in the
following way. The root does not change. Its label is (IF, q0, EntF ∗, cl) where
EntF ∗ is the restriction of EntF to ports concerning the client service S0. If v1

is a node in T and in Tr and v1, ..., vn, vn+1, n ≥ 1, is a path in T such that (1)
for any integer i ∈ {1, ..., n−1} labels of edges (vi, vi+1) are send or receptions of
messages that do not concern the client and (2) the label of the edge (vn, vn+1)
is either a sequence of primitive operations without exchange of messages, or a
send of message by the client or a reception of message by the client, then we
add to Tr the node vn+1 with the label (IF ′, q′0, EntF ′∗, cl′) such that IF ′ is the
value of the information system at the node vn+1, q′0 is the state of the client
service at the node vn+1, EntF ′ is the value of EntF at the node vn+1, EntF ′∗

is the restriction of EntF ′ to the ports concerning S0 and cl′ is the value of cl at
the node vn+1. We also add to Tr the edge (v1, vn+1) with the label of (vn, vn+1)
deprived of the primitive operations of the form x := θ.

Now, we define two kinds of equivalence between trees, the embedding equiv-
alence and the weak equivalence. Two execution trees T and T ′ are embedding
equivalent, denoted T ⊆ T ′, when they are defined for sets of services containing
the same client service and when Tr is included in T ′

r. More precisely, if T is a



tree defined by a set of nodes V and a set of edges E and T ′ a tree defined by a
set of nodes V ′ and a set of edges E′ then T is included in T ′ if there exists an
injective function g : E → E′, which associates to each edge of E, an edge of E′

such that:

– for any edge e ∈ E, its label is equal to that of the edge g(e) ∈ E′,
– the label of the initial node of e ∈ E is equal to that of the initial node of

g(e) ∈ E′ and
– the label of the final node of e ∈ E is equal to that of the final node of

g(e) ∈ E′.

Two execution trees T and T ′ are weakly equivalent, denoted T ∼= T ′, when
they are defined for sets of services containing the same client service and when
Tr and T ′

r are similar. More precisely, let T and T ′ be trees, Path be the set of
all finite paths from the root in T , and Path′ be the set of all finite paths from
the root in T ′. Let us define the label of a path to be the concatenation of the
labels of the edges composing this path. T and T ′ are similar if there exists a
functions g : Path → Path′, which associates to each path of Path, a path of
Path′ and a function h : Path′ → Path which associates to each path of Path′,
a path of Path such that:

– for any path p of Path, its label is equal to that of the Path g(p),
– the label of the final node of p ∈ Path is equal to that of the final node of

g(p),
– for any path p′ of Path′, its label is equal to that of the Path h(p′) and
– the label of the final node of p′ ∈ Path′ is equal to that of the final node of

h(p′).

On the set of all trees the reader may easily verify that ∼= is an equivalence
relations whereas ⊆ is reflexive and transitive.

3.3 Web services composition problem

In this section, we define the embedding composition problem and the weak
composition problem. When a client wants to performs computations from the
information system and there is no available service which can performs alone
these calculus, a solution to satisfy the client is to determine if there exists a
composition of services that allows the execution of the computations. Thus,
the Web services composition problem consists to find available services and to
bind these services together. Formally, the embedding (resp. weak) composition
problem is the decision problem defined as follows:

Input: a finite set C = {S1, ..., Sn} of services, a client service S0, a goal service
Sgoal and a link L for S0 and Sgoal,

Output: determine if there exists a mediator service Smed, a subset U of C,
a link L′ for S0 and Smed and a link L′′ for Smed and U such that for any
information system IF , the execution tree for {S0, Sgoal} and L, denoted
tree(S0, Sgoal, L, IF ) is embedding (resp. weakly) equivalent to the execution
tree for {S0, Smed} ∪ U and L′ ∪ L′′, denoted tree(S0, Smed, L

′, U, L′′, IF ).



Example 6. Let us consider the following instance of the Web services compo-
sition problem. The set C = {S1, S2} where S1 and S2 are described in Fig. 4
and perform their computations on the information system described in Table 1.
, the service Sgoal described in Fig. 1, the service S0 described in Fig. 2 and
the link L considered as an example at the end of subsection 2.4. Let L′ =
{(PMsearch, P0search), (PMadd, P0add), (P0conf , PMconf ), (P0info, PMinfo)}
be a link for S0 and Smed. Let L′′ = {(P1search, PM1search), (PM1info, P1info),
(P2add, PM2add), (PM2conf , P2conf )} be a link for Smed and U . It is easy to
verify that Smed, described in Fig. 3, U = C, L′ and L′′ are a solution to the
problem when the weakly equivalence or the embedding equivalence are consid-
ered.

Fig. 4. Web services S1 and S2

In Fig. 4, n1, p1, t1, cp1 and cl1 are local variables of S1 and P1search,
P1conf and P1info are names of ports of S1. The sequence of primitive op-
erations Search1 is as follows: p1 := f(z1, price); t1 := f(z1, size); cp1 :=
f(z1, composition); cl1 := f(z1, color).

In Fig. 4, n2, p2, t2, cp2 are cl2 are local variables of S2 and P2add and
P2conf are names of ports of S2. The sequence of primitive operations Add2 is
as follows: create object z; add n2 to f(z, name); add p2 to f(z, price); add cp2
to f(z, composition); add t2 to f(z, size); add cl2 to f(z, color).

4 Decidability results

In this section, we give some results about the decidability of the embedding
composition problem and the weakly composition problem. We prove that these
two problems are undecidable in general. However, if some restrictions are con-
sidered, we prove that the weakly composition problem becomes decidable.

Theorem 1. The embedding composition problem is undecidable.

Proof. We prove this theorem by reducing the uniform halting problem of Min-
sky machines [10], which is undecidable, to the embedding composition problem
(see annex for details).



Theorem 2. The weakly composition problem is undecidable.

Proof. The following decision problem, called 0-halting problem, is known [10]
to be undecidable:

Input: a Minsky machine M
Output: does M halt when the initial values of the registers r and s are 0?

As for theorem 1, to prove theorem 2, we reduce the 0-halting problem of
Minsky machines to the weakly composition problem (see annex for details).

Our next goal is to characterize special cases of services such that there is an
algorithm to solve the composition problem. Let us consider the following re-
strictions:

– There is no condition in the transitions of services.
– Length of queues are limited to at most 1 message.
– There is no primitive operations of the form “destroy object z” or “x := θ”.
– Service mediator has at most k states and b ports.

This restrictions are neither stronger nor weaker than the restrictions con-
sidered in [3].

Theorem 3. The weakly composition problroblem is decidable, when the restric-
tions above are considered.

Proof. In order to simplify the proof, we assume that (1) for all ports (M,d, m)
in the considered services, m = 0 and (2) the transitions of services in C and the
transitions of Sgoal are atomic. One could easily show that our line of reasoning
still applies when this assumption is lifted. Let U be a subset of C, Smed be a
mediator service with at most k states and at most b ports, L′ be a link for S0

and Smed and L′′ be a link for Smed and U . Seeing that services in C do not
contain primitive operations of the form “destroy object z” or “x := θ”, the
reader may easily verify that the following conditions are equivalent:

– for all information systems IF , tree(S0, Sgoal, L, IF ) ∼= tree(S0, Smed, L′, U,
L′′, IF ),

– for an arbitrary information system IF containing at least one object, tree(S0,
Sgoal, L, IF ) ∼= tree(S0, Smed, L′, U, L′′, IF ).

Let us consider an arbitrary information system IF containing at least one
object and define T = tree(S0, Sgoal, L, IF ), T ′ = tree(S0, Smed, L′, U, L′′, IF ).
Let L(T ) (resp. L(T ′)) be the set of all finite sequences of labels corresponding
to the ports in T (resp. T ′).

Lemma 1. The languages L(T ) and L(T ′) are rational.

Proof. See annex.

Using the above lemma, one can elaborate a decision procedure solving the
weak composition problem as follows:



1. Given S0, Sgoal, C and L, choose non deterministically a subset U of C, a
mediator service Smed with at most k states and b ports, a link L′ for S0

and Smed and a link L′′ for Smed and U .
2. Choose an arbitrary information system IF containing at least one object.
3. Compute the automata A and A′ recognizing the languages L(T ) and L(T ′)

associated to T = tree(S0, Sgoal, L, IF ) and T ′ = tree(S0, Smed, L′, U, L′′, IF ).
4. Decide if A and A′ recognize the same languages or not.

This completes the proof of theorem 3.

5 Conclusion

We have seen how Web services are at the origin of a new paradigm of distributed
programming which modifies the way the applications are specified, implemented
and run. We have defined the problem of their composition and gave its com-
plexity. However, the services oriented applications put challenges which must
be raised, in particular at the level of the data protection [8].What are these
challenges? Generally, in the practice, Web services interact together and with
their clients by means of cryptographic protocols, to obtain their certificates and
characterize their rights. Languages as WS-Policy [7] and WS-Security Policy [6]
allow each Web service to express its safety policies at the level of the exchanged
messages. More exactly, these languages allow to specify which certificates have
to be added to messages and which cryptographic primitive have to be used in
messages. Specification languages for safety policies as Rei [9] allow to specify
standards of behavior by using the deontic concepts of prohibition, obligation
and permission. There are also works which consider the specification of the
composed service [5]. It thus seems interesting to define a high-level language
allowing the expression, in terms of prohibition obligation and permission of
safety policies for Web services. The search for the compatibility between poli-
cies is situated at this highest level. We are thinking of the integration of such
language in our model. This integration will allow the expression of the access
conditions to the information system by the services and their clients. To what
extent these access conditions an influence on the complexity of the composi-
tion problem ? Until which point is it possible to modify these access conditions
only by running the product of Web services composition? Services are inde-
pendent software elements which can be composed in order to make collaborate
distributed applications. In some case this collaboration causes information flow
between services or between services and their client. How is it possible to con-
trol this flow? Is it possible to apply techniques developed in the context of
concurrent programming to our model?

Acknowledgement

We have realised this work within the framework of the project “Composition
des politiques et des services” (Cops) financially supported by the GIP ANR
under the program ARA SSIA.



References

1. D. Berardi. Automatic Service Composition. Models, Techniques and Tools. Phd
La Sapienza University, Roma, 2005.

2. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini and M. Mecella. Syn-
thesis of underspecified composite e-services based on automated reasoning. In
Proc. of the 2nd Int. Conf. on Service Oriented Computing, ICSOC 2004, 105-
114, 2004.

3. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull and M. Mecella. Automatic
composition of transition-based semantic Web services with messaging. In Proc.
31st Int. Conf. Very Large Data Bases, VLDB 2005, 613-624, 2005.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini and M. Mecella. Au-
tomatic services composition based on behavioral descriptions. Int. Journal of
Cooperative Information Systems, 14, 333-376, 2005.

5. A. Charfi and M. Mezini. Using aspects for security engineering of Web service
compositions. In Proc. ICWS 2005, Pages 59-66.

6. IBM and Al. Web Services Security Policy Language (WS-Security Policy).
Décembre 2002.

7. IBM et al. Web Services Policy Frameworck (WS-Policy). Septembre 2002.
8. H. Kadima and V. Monfort. Les Web Services, Techniques, Démarches et Outils,

Dunod, 2003.
9. L. Kagal, T. Finin and A. Joshi. Declarative policies for describing Web ser-

vice capabilities and constraints. In Proc. W3C Workshop on constraintes and
capabilities for Web Services, Octobre 2005.

10. M. Minsky. Computation Finite and Infinite Machines. Prentice-Hall, 1967.
11. M. Pistore, A. Marconi, P. Bertoli and P. Traverso. Automated composition of

Web services by planning at the knowledge level. In Proc. Int. Joint Conf. on
Artificiel Intelligence, IJCAI 2005, 1252-1259, 2005.

12. M. Pistore, P. Traverso and P. Bertoli. Automated composition of Web services
by planning in asynchronous domains. In Proc. Int. Conf. on Automated Plan-
ning and Schedulling, ICAPS 05, 2-11, 2005.

13. M. Singh and M. Huhns. Service-Oriented Computing. Semantics, Process,
Agents. Wiley, 2005.

14. P. Traverso and M. Pistore. Automated composition of semantic Web services
into executable processes. In Proc. 3rd Int. Semantic Web Conf., 2004.



Annex

Proof of theorem 1. We prove this theorem by reducing the uniform halting
problem of Minsky machines [10], which is undecidable, to the embedding com-
position problem. For the sake of completeness, let us say that a Minsky machine
M consists of 2 registers r and s taking their values in IN together with a finite
set {I1, ..., In} of operations of the form:

– r+,
– s+,
– r−(m),
– s−(m),

and a halting operation In+1 = halt. If Ii = r+ (resp. Ii = s+) then to execute
Ii is to increment register r (resp. s) and to go to the next operation Ii+1. If
Ii = r−(m) (rep. Ii = s−(m)) then to execute Ii is to decrement register r
(resp. s) and to go to the next operation Ii+1 if the current value of r (resp.
s) is not equal to 0. In case that the current value of r (resp. s) is 0, then to
execute Ii is simply to go to the next operation Im. M stops when it reaches
operation In+1. The reduction is as follows. Let us consider a Minsky machine
M . The corresponding instance of the embedding composition problem is defined
as follows. Let us consider the information system IF = ({o1}, {a}, {r1, s1, t}, f)
where the set of objects contains 1 object o1, a is an attribute, r1 (resp. s1) is a
value associated to the register r (resp. s) and f(o1, a) is empty. Let S0 be the
client service described in Fig. 5.

Fig. 5. Web service S0

Let Sg be the goal service defined relatively to IF and described in Fig. 6. Let

Fig. 6. Web service Sgoal

L = {(M0g,M
′
g0), (Mg0,M

′
0g)} be a link for S0 and Sg, and C = {S1} be the set

of available services defined relatively to IF , where S1 = (Q1, I1, F1, V arL1, P1, δ1)
is such that:



– Q1 = {q1, ..., qn, qn+1, q
′
1, q

′
n+1},

– I1 = {q′0},
– F1 = ∅,
– V arL1 = ∅,
– P1 = {(M1med, in, 0)},

the transition function δ1 of S1 is defined as follows:

– δ1(q′1, q1) = {(T, ?M1())}
– δ1(qn+1, q

′
n+1) = {(T, add t to f(z, a))}

– for all i ∈ {1, ..., n}:
• if Ii = r+ then δ1(qi, qi+1) = {(T, create object z; add r1 to f(z, a))}

and for all j ∈ {1, ..., n}, if j 6= i + 1 then δ1(qi, qj) = ∅
• if Ii = s+ then δ1(qi, qi+1) = {(T, create object z; add s1 to f(z, a))}

and for all j ∈ {1, ..., n}, if j 6= i + 1 then δ1(qi, qj) = ∅
• if Ii = r−(m) then δ1(qi, qi+1) = {((r1 ∈ f(z, a)), delete r1 from f(z, a))},

δ1(qi, qm) = {(∀z(r1 6∈ f(z, a)), nil)} and for all j ∈ {1, ..., n}\{i+1,m},
δ1(qi, qj) = ∅

• if Ii = s−(m) then δ1(qi, qi+1) = {((s1 ∈ f(z, a)), delete s1 from f(z, a))},
δ1(qi, qm) = {(∀z(s1 6∈ f(z, a)), nil)} and for all j ∈ {1, ..., n}\{i+1,m},
δ1(qi, qj) = ∅

To understand better the reduction, we represent the service S1 by Fig. 7.

Fig. 7. Web service S1

We have to prove now that M halts whatever the initial values of r and s are
iff there exists U ⊆ C, there exists a mediator Smed and links L′, L′′ such that for
all information systems IF ′, tree(S0, Sgoal, L, IF ′) ⊆ tree(S0, Smed, L

′, U, L′′,
IF ′).

For the left to right implication, we suppose that the Minsky machine M
halts whatever the initial values of r and s are. Let us consider U = {S1},
Smed represented by Fig. 8, L′ = {(Mmed0,M

′
0b), (M0b,M

′
med0)} and L′′ =

{(M1med,M
′
med1)}. The intuition here is that, to simulate the execution of its

last command “add t to f(z, a)”, S1 has to be in the state qn+1. Obviously, the
service S1 can reach the state qn+1 from the state q0 only if the the Minsky
machine M can reach the halt instruction from its initial instruction I0. The
service S1 can reach the state q1 only when it receives a message, that is why
we use the mediator service Smed which also sends a message to the service S1

and simulates communications between the client service and the goal service.
Consequently, for an arbitrary IF ′, tree(S0, Sgoal, L, IF ′) ⊆ tree(S0, Smed, L

′,
U, L′′, IF ′).



Fig. 8. Web service Smed

For the right to left implication, suppose that M does not halt for some ini-
tial values n1, n2 of r, s. The two possible cases for U are U = ∅ and U = {S1}.
Let us consider that U = ∅. In this case, let Smed be an arbitrary mediator,
L′ be an arbitrary link for S0 and Smed, L′′ be the empty link and IF ′ be
an information system containing at least one object. Obviously, the edges of
tree(S0, Smed, L

′, U, L′′, IF ′) are labelled only by commands executed by Smed

and by S0. As for tree(S0, Sgoal, L, IF ′), it contains an edge labelled by a com-
mand composed only of the primitive operation “add t to f(z, a)”. Hence, when
U = ∅ there is no Smed and L′ such that for all information systems IF ′,
tree(S0, Sgoal, L, IF ′) ⊆ tree(S0, Smed, L

′, U, ∅, IF ′). Now, let us consider that
U = {S1}. Let IF ′′ be the information system containing n1 objects with the
value r1 for the attribute a and n2 objects with the value s1 for the attribute
a. tree(S0, Sgoal, L, IF ′′) contains an edge labelled by a command composed
only of the primitive operation “add t to f(z, a)”. As for tree(S0, Smed, L

′,
U, L′′, IF ′′), where Smed, L′ and L′′ are arbitray, it contains edges labelled by
commands executed by the mediator service Smed, by the client service S0 and
by the service S1. Among these services, only the service S1 can execute the
primitive operation “add t to f(z, a)”. Thus the service S1 must move from
q1 to qn+1 wich is not possible, seeing that M does not halt when given the
initial values n1, n2. Hence, for any Smed, L′ and L′′, there exits IF ′′ such
that tree(S0, Sgoal, L, IF ′) 6⊆ tree(S0, Smed, L

′, U, L′′, IF ′′)). This completes the
proof of theorem 1.

proof of theorem 2. As for theorem 1, to prove theorem 2, we reduce the
0-halting problem of Minsky machines to the weakly composition problem. The
reduction is as follows. Let us consider a Minsky machine M with a finite set
{I1, ..., In} of operations of the form r+, r+, r−(m), s−(m) and a halting opera-
tion In+1=halt. The corresponding instance of the weakly composition problem
is defined as follows. Let S0 be the client service described in Fig. 1. Let Sg be
the goal service described in Fig. 9.

Fig. 9. Web service Sgoal



Let L = {(M0g,M
′
g0), (Mg0,M

′
0g)} be a link of S0 and Sg and C = {S1} be

a set of available services, where S1 = (Q1, I1, F1, V arL1, P1, δ1) such that:

– Q1 = {q1, ..., qn, qn+1, q
′
1, q

′
n+1, q

′′
n+1, q

′′′
n+1},

– I1 = {q′1},
– F1 = ∅,
– V arL1 = ∅,
– P1 = {(M1med, in, 0), (M ′

1med, out, 0), (M1, in, 0), (M ′
1, out, 0), (M2, in, 0),

(M ′
2, out, 0)},

the transition function δ1 of S1 is defined as follows:

– δ1(q′1, q1) = {(T, ?M1med())}
– δ1(qn+1, q

′
n+1) = {(T, !M ′

1med())}
– δ1(qn+1, q

′
n+1) = {(T, ?M1med())}

– δ1(qn+1, q
′
n+1) = {((Empty(M0g)), !M ′

1med())}
– for all i ∈ {1, ..., n}:

• if Ii = r+ then δ1(qi, qi+1) = {(T, !M ′
1())} and for all j ∈ {1, ..., n}, if

j 6= i + 1 then δ1(qi, qj) = ∅
• if Ii = s+ then δ1(qi, qi+1) = {(T, !M ′

2())} and for all j ∈ {1, ..., n}, if
j 6= i + 1 then δ1(qi, qj) = ∅

• if Ii = r−(m) then δ1(qi, qi+1) = {(T, ?M1())}, δ1(qi, qm) = {(Empty(M1)),
nil)} and for all j ∈ {1, ..., n} \ {i + 1,m}, δ1(qi, qj) = ∅

• if Ii = s−(m) then δ1(qi, qi+1) = {(T, ?M2())}, δ1(qi, qm) = {(Empty(M2),
nil)} and for all j ∈ {1, ..., n} \ {i + 1,m}, δ1(qi, qj) = ∅

To understand better the reduction, we represent the service S1 by Fig. 10.
Following the live of reasoning suggested in the proof of the theorem 1, we may

Fig. 10. Web service S1

show that when the initial values of r and s are 0, M halts iff there exists
U ⊆ C, there exists a mediator Smed and links L′, L′′ such that for all informa-
tion systems IF ′, tree(S0, Sgoal, L, IF ′) ∼= tree(S0, Smed, L′, U, L′′, IF ′). This
completes the proof of theorem 2.

proof of lemma 1. Let WL = {0, 1}|L| where | L |= card(L). Each element

in L is denoted Lj , j = 1, ..., | L |. Let wL \ j = (w1
L
′
, ..., w

|L|
L

′
) be associated

to wL ∈ WL as follows: wL \ j has the same value as wL for all its components
except for the jth component. More precisly, if wj

L = 0 then wj
L

′
= 1 and if

wj
L = 1 then wj

L

′
= 0. Let us consider the finite automaton A = (Σ, Q, I, F, δ)

defined as follows.



– Σ = {create object z, add v to f(z, a), delete v from f(z, a), ?M(), !M ′()},
– Q = Q0 ×Qg ×WL,
– I = (q0

0 , q0
g , (0, ..., 0)),

– F = Q,
– ∀a ∈ Σ \ {?M(), !M ′()}:

δa(q0, qg, wL) = (q0, q
′
g, wL) if δg(qg, q

′
g) = (T, a),

– δ?M()(q0, qg, (w1
L, ..., wj

L, ..., w
|L|
L )) is defined if wj

L = 1 and Lj = (M,M ′) in
which case it is equal to (q′0, qg, wL \ j) if M is an input port of S0 such that
δ0(q0, q

′
0) = (T, ?M()) or it is equal to (q0, q

′
g, wL \ j) if M is an input port

of Sgoal such that δg(qg, q
′
g) = (T, ?M())

– δ!M ′()(q0, qg, (w1
L, ..., wj

L, ..., w
|L|
L )) is defined if wj

L = 0 and Lj = (M,M ′) in
which case it is equal to (q′0, qg, wL \ j) if M ′ is an output port of S0 such
that δ0(q0, q

′
0) = (T, !M ′()) or it is equal to (q0, q

′
g, wL \ j) if M ′ is an output

port of Sgoal such that δg(qg, q
′
g) = (T, !M ′()).

We recall that Q0 and Qg are respectively sets of states in S0 and Sgoal, q0
0 and

q0
g are respectively initial states in S0 and Sgoal, L is a link for S0 and Sgoal,

v ∈ V al, M is an input port in P0 ∪ Pg, M ′ is an output port in P0 ∪ Pg. The
reader may easily verify that L(T ) is equal to the language recognized by A. A
similar construction can be obtained for L(T ′). This ends the proof of lemma 1.


