
HAL Id: hal-00872792
https://hal.science/hal-00872792v1

Submitted on 14 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic Parallel (DP)2LL
Youssef Hamadi, Said Jabbour, Cédric Piette, Lakhdar Saïs

To cite this version:
Youssef Hamadi, Said Jabbour, Cédric Piette, Lakhdar Saïs. Deterministic Parallel (DP)2LL. 2011.
�hal-00872792�

https://hal.science/hal-00872792v1
https://hal.archives-ouvertes.fr

Deterministic Parallel DPLL (DP 2LL)

MSR-TR-2011-47

Youssef Hamadi1,2, Said Jabbour3, Cédric Piette3, and Lakhdar Saïs3

1 Microsoft Research, Cambridge United Kingdom
2 LIX École Polytechnique, F91128 Palaiseau, France

youssefh@microsoft.com
3 Université Lille-Nord de France, Artois,
CRIL, CNRS UMR 8188, F-62307 Lens

{jabbour,piette,sais}@cril.fr

Abstract. Parallel Satisfiability is now recognized as an important research area.
The wide deployment of multicore platforms combined with the availability of
open and challenging SAT instances are behind this recognition. However, the
current parallel SAT solvers suffer from a non-deterministic behavior. This is
the consequence of their architectures which rely on weak synchronizing in an
attempt to maximize performance. This behavior is a clear downside for practi-
tioners, who are used to both runtime and solution reproducibility. In this paper,
we propose the first Deterministic Parallel DPLL engine. It is based on a state-
of-the-art parallel portfolio architecture and relies on a controlled synchronizing
of the different threads. Our experimental results clearly show that our approach
preserves the performance of the parallel portfolio approach while ensuring full
reproducibility of the results.

Keywords: SAT solving, Parallelism

1 Introduction

Parallel SAT solving has received a lot of attention in the last three years. This comes
from several factors like the wide availability of cheap multicore platforms combined
with the relative performance stall of sequential solvers. Unfortunately, the demon-
strated superiority of parallel SAT solvers comes at the price of non reproducible results
in both runtime and reported solutions. This behavior is the consequence of their archi-
tectures which rely on weak synchronizing in an attempt to maximize performance.
Today SAT is the workhorse of important application domains like software and hard-
ware verification, theorem proving, computational biology, and automated planning.
These domains need reproducibility, and therefore cannot take advantage of the im-
proved efficiency coming from parallel engines. For instance, a software verification
tool based on a parallel SAT engine can report different bugs within different runtimes
when executed against the same piece of code; an unacceptable situation for a software
verification engineer. More broadly in science and engineering, reproducibility of the

results is fundamental, and in order to benefit to a growing number of application do-
mains parallel solvers have to be made deterministic. More specifically, evaluating or
comparing highly non-deterministic SAT solvers is clearly problematic. This problem
led the organizers of the recent SAT race and competitions to explicitly mention their
preferences for deterministic solvers and to introduce specific rules for the evaluation
of parallel SAT solvers. For example, we can find the following statement at the SAT
race 2008 "In order to obtain reproducible results, SAT solvers should refrain from us-
ing non-deterministic program constructs as far as possible. For many parallel solver
implementations it is very hard to achieve reproducible runtimes. Therefore, this re-
quirement does not apply to the parallel track. As runtimes are highly deviating for
parallel SAT solvers, each solver was run three times on each instance. An instance
was considered solved, if it could be solved in at least one of the three runs of a solver".
For the parallel track, different evaluation rules are used in the SAT 2009 competition
and SAT race 2010, illustrating the recurring problems of the evaluation of parallel SAT
solvers.

In this work, we propose a deterministic parallel SAT solver. Its results are fully
reproducible both in terms of reported solution and runtime, and its efficiency is equiv-
alent to a state-of-the-art non-deterministic parallel solver. It defines a controlled en-
vironment based on a total ordering of solvers’ interactions through synchronization
barriers. To maximize efficiency, information exchange (conflict-clauses) and check for
termination are performed on a regular basis. The frequency of these exchanges greatly
influences the performance of our solver. The paper explores the trade off between fre-
quent synchronizing which allows the fast integration of foreign conflict-clauses at the
cost of more synchronizing steps, and infrequent synchronizing which avoids costly
synchronizing at the cost of delayed foreign conflict-clauses integration.

The paper is organized as follows. We detail the main features of modern sequential
and parallel SAT solvers in Section 2 and provides motivation of this work in Section 3.
Our main contribution is depicted in Section 4. In Section 5, our implementation is fully
evaluated. Before the conclusive discussion in Section 7, a comprehensive overview of
previous works is given in Section 6.

2 Technical Background

2.1 Modern SAT solvers

The SAT problem consists in finding an assignment to each variable of a propositional
formula expressed in conjunctive normal form (CNF). Most of the state-of-the-art SAT
solvers are based on a reincarnation of the historical Davis, Putnam, Logemann, and
Loveland procedure, commonly called DPLL [1]. A modern sequential DPLL solver
performs a backtrack search; selecting at each node of the search tree, a decision vari-
able which is set to a Boolean value. This assignment is followed by an inference step
that deduces and propagates some forced unit literal assignments. This is recorded in
the implication graph, a central data-structure, which records the partial assignment to-
gether with its implications. This branching process is repeated until finding a feasible
assignment (model), or reaching a conflict. In the first case, the formula is answered to
be satisfiable, and the model is reported, whereas in the second case, a conflict clause

(called asserting clause) is generated by resolution following a bottom-up traversal of
the implication graph [2,3]. The learning process stops when a conflict clause contain-
ing only one literal from the current decision level is generated. Such a conflict clause
(or learnt clause) expresses that such a literal is implied at a previous level. The solver
backtracks to the implication level and assigns that literal to true. When an empty con-
flict clause is generated, the literal is implied at level 0, and the original formula can be
reported unsatisfiable.

In addition to this basic scheme, modern solvers use additional components such as
an activity based heuristics, and a restart policy. Let us give some details on these last
two important features. The activity of each variable encountered during each resolu-
tion process is increased. The variable with greatest activity is selected to be assigned
next. This corresponds to the so-called VSIDS variable branching heuristic [3]. During
branching after a certain amount of conflicts, a cutoff limit is reached and the search is
restarted. The evolution of the cutoff value is controlled by a restart policy (e.g. [4]).
Thanks to the activity of the variables cumulated during the previous runs, the objective
of the restarts is to focus early (top of the tree) on important areas of the search space.
This differs from the original purposes behind randomization and restarts introduced in
[5]. For an extensive overview of current techniques to solve SAT, the reader is refered
to [6].

2.2 Parallel SAT solvers

There are two approaches to parallel SAT solving. The first one implements the his-
torical divide-and-conquer idea, which incrementally divides the search space into sub-
spaces, successively allocated to sequential DPLL workers. These workers cooperate
through some load balancing strategy which performs the dynamic transfer of subspaces
to idle workers, and through the exchange of interesting learnt clauses [7,8].

The parallel portfolio approach was introduced in 2008. It exploits the complemen-
tarity between different sequential DPLL strategies to let them compete and cooperate
on the same formula. Since each worker deals with the whole formula, there is no need
to introduce load balancing overheads, and cooperation is only achieved through the
exchange of learnt clauses. With this approach, the crafting of the strategies is impor-
tant, especially with a small number of workers. In general, the objective is to cover the
space of good search strategies in the best possible way.

3 Motivations

As mentioned above, all the current parallel SAT solvers suffer from a non-deterministic
behavior. This is the consequence of their architectures which rely on weak synchroniz-
ing in an attempt to maximize performance. Conflict-clauses sharing usually exploited
in parallel SAT solvers to improve their performance accentuates even more their non-
deterministic behavior i.e., non reproducibility in terms of runtime, reported solutions
or unsatisfiability proofs.

To illustrate the variations in terms of solutions and runtimes, we ran several times
the same parallel solver ManySAT (version 1.1) [9] on all the satisfiable instances used

in the SAT Race 2010 and report several measures. Each instance was tested 10 times
and the time limit for each run was set to 40 minutes. The obtained results are depicted
in Table 3. For each instance, we give the number of variables (nbV ars), the number
of successful runs (nbModels) and the number of different models (diff) obtained by
those runs. Two models are different if their hamming distance is not equal to 0. We
also report the normalized average hamming distance nH̄ = H̄

nbV ars where H̄ is the
average of the pairwise hamming distance between the different models.

Instance nbVars nbModels (diff) nH̄ avgTime (σ)
12pipe_bug8 117526 10 (1) 0 2.63 (53.32)
ACG-20-10p1 381708 10 (10) 1.42 1452.24 (40.61)
AProVE09-20 33054 10 (10) 33.84 19.5 (9.03)
dated-10-13-s 181082 10 (10) 0.67 6.25 (9.30)
gss-16-s100 31248 10 (1) 0 38.77 (18.75)
gss-19-s100 31435 10 (1) 0 441.75 (35.78)
gss-20-s100 31503 10 (1) 0 681 (58.27)
itox_vc1138 150680 10 (10) 26.62 0.65 (22.99)
md5_47_4 65604 10 (10) 34.8 173.9 (31.03)
md5_48_1 66892 10 (10) 34.76 704.74 (74.65)
md5_48_3 66892 10 (10) 34.16 489.02 (68.96)
safe-30-h30-sat 135786 10 (10) 22.32 0.37 (0.79)
sha0_35_1 48689 10 (10) 33.18 45.4 (21.88)
sha0_35_2 48689 10 (10) 33.25 61.65 (29.93)
sha0_35_3 48689 10 (10) 32.76 72.21 (21.93)
sha0_35_4 48689 10 (10) 33.2 105.8 (35.22)
sha0_36_5 50073 10 (10) 34.19 488.16 (58.58)
sortnet-8-ipc5-h19-sat 361125 4 (4) 15.86 2058.39 (47.5)
total-10-19-s 331631 10 (10) 0.5 5.31 (6.75)
UCG-20-10p1 259258 10 (10) 2.12 768.17 (31.63)
vmpc_27 729 10 (2) 2.53 11.95 (32.62)
vmpc_28 784 10 (2) 3.67 34.61 (25.92)
vmpc_31 961 8 (1) 0 583.36 (88.65)

Table 1. Non-deterministic behavior of ManySAT

As expected, the solver exhibits a non-deterministic behavior in term of reported
models. Indeed, on many instances, one can see that each run leads to a different model.
These differences are illustrated in many cases by a large nH̄ . For example, on the
sha0_∗_∗ familly, the number of different models is 10 and the nH̄ is around 30% i.e.,
the models differ in the truth value of about 30% of the variables. Finally, the average
time (avgT ime) and the standard deviation (σ) illustrate the variability of the parallel
solver in term of solving time. The 12pipe_bug8 instance illustrates an extreme case.
Indeed, to find the same model (diff =1) the standard deviation of the runtime is about

Algorithm 1: Deterministic Parallel DPLL
Data: A CNF formula F ;
Result: true if F is satisfiable; false otherwise
begin1

<inParallel, 0 ≤ i < nbCores>2
answer[i] = search(corei) ;3

for (i = 0; i < nbCores; i++) do4
if (answer[i]! = unknown) then5

return answer[i];6

end7

53.32 seconds while the average runtime value is 2.63 seconds. This first experiment
clearly illustrates to which extent the non-deterministic behavior of parallel SAT solvers
can influence the non reproducibility of the results.

4 Deterministic Parallel DPLL

In this section, we present the first deterministic portfolio based parallel SAT solver.
As sharing clauses is proven to be important for the efficiency of parallel SAT solv-
ing, our goal is to design a deterministic approach while maintaining at the same time
clause sharing. To this end, our determinization approach is first based on the introduc-
tion of a barrier directive (<barrier>) that represents a synchronization point at which
a given thread will wait until all the other threads reach the same point. This barrier is
introduced to synchronize both clauses sharing between the different computing units
and termination detection (Section 4.1). Secondly, to enter the barrier region, a syn-
chronization period for clause sharing is introduced and dynamically adjusted (Section
4.2).

4.1 Static Determinization

Let us now describe our determinization approach of non-deterministic portfolio based
parallel SAT solvers. Let us recall that a portfolio based parallel SAT solver runs differ-
ent incarnations of a DPLL-engine on the same instance. Lines 2 and 3 of the algorithm
1 illustrate this portfolio aspect by running in parallel these different search engines on
the available cores. To avoid non determinism in term of a reported solution or an unsat-
isfiability proof, a global data structure called answer is used to record the satisfiability
answer of these different cores. The different threads or cores are ordered according to
their threads ID (from 0 to nbCores-1). Algorithm 1 returns the result obtained by the
first core in this ordering who answered the satisfiability of the formula (lines 4-6).
This is a necessary but not a sufficient condition for the reproducibility of the results.
To achieve a complete determinization of the parallel solver, let us take a closer look to
the DPLL search engine associated to each core (Algorithm 2). In addition to the usual
description of the main component of DPLL based SAT solvers, we can see that two

Algorithm 2: search(corei)
Data: A CNF formula F ;
Result: answer[i] = true if F is satisfiable; false if F is unsatisfiable, unknown

otherwise
begin1

nbConflicts=0;2
while (true) do3

if (!propagate()) then4
nbConflicts++;5
if (topLevel) then6

answer[i]= false;7
goto barrier1;8

learntClause=analyze();9
exportExtraClause(learntClause);10
backtrack();11
if (nbConflicts % period == 0) then12

barrier1: <barrier>13
if (∃j|answer[j]! = unknown) then14

return answer[i];15
updatePeriod();16
importExtraClauses();17
<barrier>18

else19
if (!decide()) then20

answer[i]= true;21
goto barrier1;22

end23

successive synchronization barriers (<barrier>, lines 13 and 18) are added to the algo-
rithm. To understand the role of these synchronizing points, we need to note both their
placement inside the algorithm and the content of the region circumscribed by these two
barriers. First, the barrier labeled barrier1 (line 13) is placed just before any thread can
return a final statement about the satisfiability of the tested CNF. This barrier prevents
cores from returning their solution (i.e. model or refutation proof) in an anarchic way,
and forces them to wait for each other before stating the satisfiability of the formula
(line 14 and 15). This is why the search engine of each core goes to the first barrier
(labeled barrier1) when the unsatisfiability is proved (backtrack to the top level of the
search tree, lines 6-8), or when a model is found (lines 20-22). At line 14, if the satisfia-
bility of the formula is answered by one of the cores (∃j|answer[j]! = unknown), the
algorithm returns its own answer[i]. If no thread can return a definitive answer, they
all share information by importing conflict clauses generated by the other cores during
the last period (line 17). After each one of them has finished to import clauses (sec-
ond barrier, line 18), they continue to explore the search space looking for a solution.
This second synchronization barrier is integrated to prevent each core from leaving the
synchronization region before the others. In other words, when a given core enter this

second barrier, it waits for all other cores until all of them have finished importing the
foreign clauses. As different clauses ordering will induce different unit propagation or-
dering and consequently different search trees, the clauses learnt by the other cores are
imported (line 17) while following a fixed order of the cores w.r.t. their thread ID.

To complete this detailed description, let us just specify the usual functions of the
search engine. First, the propagate() function (line 4) applies classical unit propagation
and returns false if a conflict occurs, and true otherwise. In the first case, a clause is
learnt by the function analyze() (line 9), such a clause is added to the formula and
exported to the other cores (line 10, exportExtraClause() function). These learned
clauses are periodically imported in the synchronization region (line 17). In the second
case, the decide() function choses the next decision variable, assigns it and returns true,
otherwise it returns false as all the variable are assigned i.e., a model is found.

Note that to maximize the dynamics of information exchange, each core can be
synchronized with the other ones after each conflict, importing each learnt clause right
after it has been generated. Unfortunately, this solution proves empirically inefficient,
since a lot of time is wasted by the thread waiting. To avoid this problem, we propose
to only synchronize the threads after some fixed number of conflicts period (line 10).
This approach, called (DP)2LL_static(period), does not update the period during
search (no call to the function updatePeriod(), line 16). However, even if we have the
"optimal" value of the parameter period, the problem of thread waiting at the synchro-
nization barrier can not be completely eliminated. Indeed, as the different cores usually
present different search behaviors (different search strategies, different size of the learnt
databases, etc.), using the same value of the period for all cores, leads inevitably to
wasted waiting time at the first barrier.

In the next section, we propose a speed-based dynamic synchronization approach
that exploits the current size of the formula to deduce a specific value of the period for
each core (call to updatePeriod() function, line 16).

4.2 Speed-based Dynamic Synchronization

As mentioned above, the DPLL search engines used by the different cores develop dif-
ferent search trees, hence thread waiting can not be avoided even if the static value
is optimally fine tuned. In this section, we propose a speed-based dynamic synchro-
nization of the value of the period. Our goal is to reduce as much as possible the time
wasted by the different cores at the synchronization barrier. The time needed by each
core to perform the same number of conflicts is difficult to estimate in advance; how-
ever we propose an interesting approximation measure that exploits the current state of
the search engine. As decisions and unit propagations are two fundamental operations
that dominate the SAT solver run time, estimating their cost might lead us to a better
approximation of the progression speed of each solver. More precisely, as the different
cores are run on the same formula, to measure the speedup of each core, we exploit
the size of its current learnt set of clauses as an estimation of the cost of these basic
operations. Consequently, our speed-based dynamic synchronization of the period is a
function of this important information.

Let us formally describe our approach. In our dynamic synchronization strategy,
for each core or computing unit ui, we consider a synchronization-time sequence as a

set of steps tki with t0i = 0 and tki = tk−1
i + periodki where periodki represents the

time window defined in term of number of conflicts between tk−1
i and tki . Obviously,

this synchronization-time sequence is different for all the computing units ui (0 ≤ i <
nbCores). Let us define ∆k

i as the set of clauses currently in the leant database of ui at
step tki . In the sequel, when there is no ambiguity, we sometimes note tki simply k.

Let us now formally describe the dynamic computation of these synchronization-
time sequences. Let m = max∀ui

(|∆k
i |), where 0 ≤ i < nbCores, be the size of the

largest learnt clauses database and Ski =
|∆k

i |
m the ratio between the size of the learnt

clauses database of ui and m. This ratio Ski represents the speedup of ui. When this
ratio tends to one, the progression of the core ui is closer to the slowest core, while
when it tends to 0, the core ui progresses more quickly than the slowest one. For k = 0
and for each ui, we set period0

i to α, where α is a natural number. Then, at a given
time step k > 0, and for each ui, the next value of the period is computed as follows:
periodk+1

i = α + (1 − Ski) × α, where 0 ≤ i < nbCores. Intuitively, the core with
the highest speedup Ski (tending to 1) should have the lowest period. On the contrary,
the core with the lowest speedup Ski (tending to 0) should have the highest value of the
period.

5 Evaluation

period solving time waiting time waiting/solving time (in %)
static(1) 10,276 4,208 40.9
static(100) 9,715 2,559 26.3
static(10000) 9,124 1,605 17.6

Table 2. Waiting time w.r.t. period synchronizing

All the experimentations have been conducted on Intel Xeon 3GHz under Linux
CentOS 4.1. (kernel 2.6.9) with a RAM limit of 2GB. Our deterministic DPLL algo-
rithm has been implemented on top of the portfolio-based parallel solver ManySAT
(version 1.1). The timeout was set to 900 seconds for each instance, and if no answer
was delivered within this amount of time, the instance was said unsolved. We used the
100 instances proposed during the recent SAT Race 2010, and we report for each
experiment the number of solved instances (x-axis) together with the total needed time
(y-axis) to solve them. Each parallelized solver is running using 4 threads. Note that in
the following experiments, we consider the real time used by the solvers, instead of the
classic CPU time. Indeed, in most architectures, the CPU time is not increased when
the threads are asleep (e.g. waiting time at the barriers), so taking the CPU time into
account would give an illegitimate substantial advantage to our deterministic solvers.

 0

 2000

 4000

 6000

 8000

 10000

 50 55 60 65 70 75

cu
m

ul
at

ed
 ti

m
e

(s
ec

on
ds

)

#solved instances

Sequential
ManySat 1.1

(DP)2LL_static(1)
(DP)2LL_static(100)

(DP)2LL_static(10000)

Fig. 1. Performances using static synchronizing

5.1 Static Period

In a first experiment, we have evaluated the performance of our Deterministic Parallel
DPLL ((DP)2LL) with various static periods. Figure 1 presents the obtained results.
First, a sequential version of the solver has been used. Unsurprisingly, this version ob-
tains the worst global results by only solving 68 instances in more than 11,000 seconds.
This result enables to show the improvement obtained by the use of parallelized en-
gines. We also report the results obtained by the non-deterministic solver ManySAT
1.1. Note that as shown in Section 3, executing several times this version may lead
to different results. This non-deterministic solver has been able to solve 75 instances
within 8,850 seconds. Next, we ran a deterministic version of ManySAT where each
core synchronizes with the other ones after each clause generation ((DP)2LL_static(1)).
We can observe that the synchronization barrier is computationally heavy. Indeed, the
deterministic version is clearly less efficient than the non-deterministic one, by only
solving 72 instances out of 100 in more than 10,000 seconds.

This negative result is mainly due to the time wasted by the cores waiting for each
others on a (very) regular basis. To overcome this issue, we also tried to synchronize the
different threads only after a given number of conflicts (100, 10000). Figure 1 shows
that those versions outperform the "period=1" one, but they stay far from the results
obtained by the non-deterministic version.

The barriers that enable our algorithm to be deterministic are clearly a drawback to
its efficiency. Therefore, we evaluated the amount of time spent by the threads waiting
for each others. In Table 2, we report the rate of time spent waiting for synchronization
with respect to the total solving time for the different versions of (DP)2LL. As the re-
sults show, this waiting time can be really significant when waiting after each conflict.

Indeed, in this case, more than 40% of the time is spent by the threads waiting for each
other. As expected, this rate is reduced when the synchronization is achieved less often,
but is never insignificant. Note that even if the "period=10000" version wastes less time
than "period=100" waiting, it obtains worst global results by only solving 72 instances.
The "period=100" version obtains the best results (discarding the non-deterministic ver-
sion). Based on extensive experiments, this parameter seems to be a good tradeoff be-
tween the time spent at the barrier, and the dynamics of information exchange. Indeed,
we believe that information is exchanged too late in the "period=10000" version, which
explains its less satisfying behavior.

Accordingly, we tried to reduce the waiting time of the threads by adopting a Speed-
based dynamic strategy (presented Section 4.2). Empirical results about this dynamic
technique are presented in the next section.

5.2 Dynamic Period

In a second experiment, we tried to empirically evaluate our dynamic strategy. We com-
pare the results of this version with the ones obtained by ManySAT 1.1, and with the
results of the best static version (100), and of the sequential one too. The results are
reported in Figure 2. The dynamic version is run with parameter α = 300.

 0

 2000

 4000

 6000

 8000

 10000

 50 55 60 65 70 75

cu
m

ul
at

ed
 ti

m
e

(s
ec

on
ds

)

#solved instances

Sequential
ManySat 1.1

(DP)2LL_static(100)
(DP)2LL_dynamic

Fig. 2. Performance using dynamic synchronizing

This experiment empirically confirms the intuition that each core should have a dif-
ferent period value, w.r.t. the size of its own learnt clauses database, which heuristically
indicates its unit propagation speed. Indeed, we can observe in Figure 2 that the "solv-
ing curve" of this dynamic version is really close to the one of ManySat 1.1. This

means that the 2 solvers are able to solve about the same amount of instances within
about the same time. Moreover, this adaptive version is able to solve 2 more instances
than the non-deterministic one, which makes it the most efficient version tested during
our experiments.

6 Previous Works

In the last two years, portfolio based parallel solvers became prominent, and we are not
aware of a recently developed divide-and-conquer approach (the latest being [8]). We
describe here all the parallel solvers qualified during the 2010 SAT Race4. We believe
that these parallel portfolio approaches represent the current state-of-the-art in parallel
SAT.

In plingeling, [10] the original SAT instance is duplicated by a boss thread and
allocated to worker threads. The strategies used by these workers are mainly differenti-
ated by the amount of pre-processing, random seeds, and variables branching. Conflict
clause sharing is restricted to units which are exchanged through the boss thread. This
solver won the parallel track of the 2010 SAT Race.

ManySAT [9] was the first parallel SAT portfolio. It duplicates the instance of the
SAT problem to solve, and runs independent SAT solvers differentiated on their restart
policies, branching heuristics, random seeds, conflict clause learning, etc. It exchanges
clauses through various policies. Two versions of this solver were presented at the 2010
SAT Race, they finished respectively second and third.

In SArTagnan, [11] different SAT algorithms are allocated to different threads,
and differentiated with respect to, restarts policies, and VSIDS heuristics. Some threads
apply a dynamic resolution process [12], or exploit reference points [13]. Some others
try to simplify a shared clauses database by performing dynamic variable elimination
or replacement. This solver finished fourth.

In Antom, [14] the SAT algorithms are differentiated on decision heuristic, restart
strategy, conflict clause detection, lazy hyper binary resolution [12], and dynamic unit
propagation lookahead. Conflict clause sharing is implemented. This solver finished
fifth.

7 Discussion

In this paper, we tackle the important issue of non determinism in parallel SAT solvers
by proposing (DP)2LL, a first implementation of a deterministic parallelized proce-
dure for SAT. To this purpose, a simple but efficient idea is presented; it mainly consists
in introducing two synchronization barriers to the algorithm. We propose different syn-
chronizing strategies, and show that this deterministic version proves empirically very
efficient; indeed, it can compete against a recent non-deterministic algorithm.

This first implementation opens many interesting research perspectives. First, the
barrier added to the main loop of the parallelized CDCL for making the algorithm de-
terministic can be seen as a drawback of the procedure. Indeed, every thread that has

4 http://baldur.iti.uka.de/sat-race-2010

terminated its partial computation has to wait for the all other threads to finish. Nev-
ertheless, our synchronization policy proves effective while keeping the heart of the
parallelized architecture: clause exchanges. Moreover, we think that it is possible to
take even better advantage of this synchronization step. New ways for the threads of
execution to interact can be imagined at this particular point; we think that this is a
promising path for future research.

References

1. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
munications of the ACM 5(7) (1962) 394–397

2. Marques-Silva, J., Sakallah, K.: GRASP - A New Search Algorithm for Satisfiability. In:
ICCAD. (1996) 220–227

3. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in
boolean satisfiability solver. In: ICCAD. (2001) 279–285

4. Biere, A.: Adaptive restart strategies for conflict driven SAT solvers. In: SAT. (2008) 28–33
5. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization.

In: AAAI. (1998) 431–437
6. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Volume

185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)
7. Chrabakh, W., Wolski, R.: GrADSAT: A parallel SAT solver for the grid. Technical report,

UCSB Computer Science (2003)
8. Chu, G., Stuckey, P.J.: Pminisat: a parallelization of minisat 2.0. Technical report, SAT Race

(2008)
9. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability,

Boolean Modeling and Computation 6 (2009) 245–262
10. Biere, A.: Lingeling, plingeling, picosat and precosat at SAT race 2010. Technical Report

10/1, FMV Reports Series (2010)
11. Kottler, S.: SArTagnan: solver description. Technical report, SAT Race 2010 (July 2010)
12. Biere, A.: Lazy hyper binary resolution. Technical report, Dagstuhl Seminar 09461 (2009)
13. Kottler, S.: SAT solving with reference points. In: SAT. (2010) 143–157
14. Schubert, T., Lewis, M., Becker, B.: Antom: solver description. Technical report, SAT Race

(2010)

