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Abstract  

The Wireless Sensor Networks (WSNs) deployment introduces many issues and challenges mainly in terms of energy 

independence. In this context, we adopted the IBM control loop which is composed of four steps (Monitor, Analyze, Plan and 

Execute) to manage Quality of Service (QoS) 1. This paper focuses on the first step which consists in monitoring and sending 

periodically QoS values such as the value of power remaining in the battery of each sensor. We notice that the transmission 

process is very costly in terms of energy and reduces the battery lifetime. In this work, we propose a probabilistic approach that 

estimates a part of these QoS monitoring values and therefore economizes their transmission energy and extends the sensor 

battery lifetime. Our approach is based on the hidden Markov chain and the fuzzy logic. It is composed of two steps: (i) learning 

which allows apprehending the WSNs behavior and (ii) prediction which estimates QoS monitoring values. A WSN application 

deployed in a datacenter is studied as an illustration. The carried out experiments over AZEM1 WSN simulator show that the gain 

varies from 25% to 75% of the battery energy. 
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1. Introduction 

WSNs are composed of small wireless nodes that monitor and control the environment. Then, the collected 

information is transmitted to the base station that can be a computer or a mobile smart phone to process their 

analysis and exploitation
2
. However, the architecture of WSN is influenced by several constraints especially the 

energy consumption due to the fact that nodes are battery powered and generally it is impossible to recharge or 

change them given that sensors are deployed in a large scale and in inaccessible areas. 

Sensor node’s lifetime depends on battery lifetime. Therefore, the energy is the most precious resource that 

affects the sensors lifetime and thus the sensor network. 

An autonomic enabled-architecture according to the IBM control loop
3
 should be adopted in order to adapt 

WSNs applications and increase the WSNs lifetime. The autonomic loop is composed of four steps, namely: 

Monitoring which collects QoS parameters values, Analysis which checks the gathered values and identifies a 
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possible degradation of the network state, Planning which plans actions to adapt the WSNs behavior and Execution 

which enforces them. The first step relies on monitors able to transmit periodically measurements such as the value 

of power remaining in the sensor battery. The transmission of these QoS values consumes a great part of the residual 

battery energy. Optimizing this process allows reducing the energy consumption of sensors and maximizing their 

lifetime and therefore the life of WSNs applications.  

In this paper, we focus on predicting a part of these values. Our challenge is to extend lifetime of WSNs as 

maximum as possible. We propose MPaaS: Monitoring values Prediction as a Service which uses the hidden 

Markov chains and the fuzzy logic to optimize the energy consumption without too much computational overhead.  

MPaaS approach is composed of two steps: • Learning the WSNs behavior step in which we compute transition matrix of the hidden Markov chain (HMC) • Prediction of monitoring values step composed of three phases: • Fuzzification of monitoring value at t instant: we used the fuzzy logic to get a set of probabilities from a single 

monitoring value received at t instant. • Estimation of probability distributions at t+1instant. • Estimation of the monitoring value at t+1 instant: the output of the previous step is a set of probabilities, so we 

used a mathematic formula to compute the estimated monitoring value. 

To illustrate the application of our approach, we used the WSNs datacenter monitoring case study. Our purpose is 

to monitor the battery of each sensor and estimate the value of power remaining in order to increase the whole 

application lifetime. 

The reminder of this paper is organized as following. In section 2, we introduce the related work, the basic 

concept of hidden Markov chain and the fuzzy logic. In section 3, we detail our approach and explain how to 

rationalize energy consumption. Section 4 describes the case study, and the experimentation results. We evaluate the 

performance of our approach in section 5 while calculating the prediction rate error. The last section concludes the 

paper. 

2. Related work 

In this section, we examine the literature about the energy prediction model in WSN. Then, we present the main 

concepts related to the HMC and the fuzzy logic. 

2.1. Energy prediction model in WSN 

Several researches in WSN have looked at various ways of saving energy. In particular, S. Goel et al.
4
 proposed a 

mechanism called Prediction-based monitoring for energy efficient monitoring. This approach focuses only on 

identifying correlation in monitoring data, eliminating their transmission and predicting them at the monitored node. 

The work proposed by P.Hu et al.
5
 is an estimation model based on the HMC to predict the energy level of a 

sensor node. The proposed process contains two main parts: a first part to train the protocol-specific HMC via the 

Baum -Welch algorithm and a second part to predict energy levels via Viterbi algorithm. 

This approach suffers from several limits. It does not predict the value of power remaining in the battery of 

sensor. Also, the algorithms used are very expensive and complex
6
. Additionally, it does not focus on optimizing the 

process of the QoS values transmission. 

Ma. D’Arienzo et al
7
. dealt with the problem of forecasting the energy consumption of mobile nodes of WSNs 

for environment protection. The proposed approach relies on the definition of a Fluid Stochastic Petri Nets model 

coping with physical, computing and environmental factors. However, this solution takes into account only some 

aspects of the sensor to estimate its energy consumption such as sensing, transmission, movement and environment. 

For instance, it does not take into consideration the energy consumed in receiving data. Moreover, there is no 

validation of the proposed model and therefore no comparison between model analysis results and assessed 

simulators and real data. 



  3 

2.2. The Hidden Markov chain 

A hidden Markov chain is a Markov chain extended by an emission probability distribution over the output 
symbol for each state and it is characterized by the following elements

8
: 

• S = {S1, S2, ..., Sn} set of accessible states 

• A = [aij] is the transition probability matrix  

• B={b1,….bn} is the observation symbol probability distribution 

• Π is the initial state distribution vector 

•  V = {V1, V2, ..., Vm}: Observation symbols correspond to the physical output of the modeled system 

In our approach, we used the fuzzy logic to calculate the observation symbol probability distribution B. It 

consists in the membership probability of the remaining battery power of sensor to different states namely Fully 

Charged (FC), Charged (C), Partially Loaded (PL), Low (L) and Very Low (VL). More details will be given in 

Section 3.  

2.3. The fuzzy logic 

Fuzzy logic
9
 allows the representation and processing of imprecise or uncertain data. It is based on degrees of 

truth rather than the usual true or false binary logic. So, it proposes a gradual transition of an object between two 

states whereas classical set theory allows only full transition. Fuzzy logic system is based on three operations: first, 

the fuzzification which transforms a crisp value to fuzzy. Second, the inference which makes rules to deduce a fuzzy 

output set from linguistic input memberships. Third, the defuzzification which transforms a fuzzy set to a crisp 

value.  

3. Proposed approach 

As shown in Fig. 1, our approach is based on two main steps: learning and prediction and aims at estimating a part 

of monitoring values to save sensing and transmission energy. Therefore, it increases the lifetime of wireless sensor 

network based applications.  

3.1. Learning step 

The first step in our approach starts by storing collected values from embedded monitors in a Google cloud 

datastore. Then, we calculate the transition matrix that we use later in the second step. Collecting sufficient numbers 

of monitoring values is necessary to ensure the stabilization of transition matrix. 

We denote by S the set of states of the battery: S= {FC, C, PL, L, VL},V is the observed variable: V = {VEnergy: 

value of power remaining in the battery.}, B is the current probability distributions of observing VEnergy at different 

states at t instant: B t = {P (FC), P (C), P (PL), P (L), P (VL)}. 

 To model the transition between these states, we present the transition 

matrix A associated to the HMC as follow: 

 

ij

ij

ijj

n
P

n
= ∑  is the probability of transition from state i at t instant to the 

state j at t +1 instant, where n ij is the number of sensors with battery level in state i. For instance, PFCPL means the 

probability of transition from fully charged state at t instant to partially loaded state at t+1 instant. 

FCFC FCC FCPL FCL FCVL

CFC CC CPL CL CVL

PLFc PLC PLPL PLL PLVL

LFC LC LPL LL LVL

VLFC VLC VLPL VLL VLVL

P P P P P

P P P P P

P P P P P

P P P P P

P P P P P
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Fig. 1.Proposed approach 

3.2. Prediction step 

Now suppose that we are at t instant and we received monitoring value from the monitors deployed on sensor. 

Instead of asking the monitor for sensing and transmitting the value at t +1 instant, we estimate it. The prediction 

step is composed of three phases, namely: fuzzification of monitoring value at t instant, estimation of the probability 

distributions at t+1 instant and estimation of the monitoring value at t+1 instant. 

 

 

 

 

Fig. 2. (a) General form of our discourse universe; (b) The 

deployment architecture 
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can get the current probability distributions of these crisp values using the membership functions of the appropriate 

set. To describe the variable domain of VEnergy, we have used five triangular membership functions defined 

through five items (threshold1, threshold2, threshold3, threshold4, threshold5), as shown in Fig. 2 (a). The variable 

domain is divided equally to five sub-domains following the standard designation in fuzzy logic of five items 

triangular membership
10

. These functions are associated with battery states: (FC - C - PC - L – VL). In fact, simple 

functions are used to build membership function because using complex function causes a high computational cost 

and they do not add more precision.  

3.2.2. Estimation of probability distributions at t+1instant 

The estimating probability distribution B t+1 at t+1 instant is equal to the multiplication of the probability 

distribution obtained in the previous step B t with the transition matrix A.  

1 .t tB B A+ =   (1) 

3.2.3. Estimation of the monitoring value at t+1 instant 

The last phase of the second step is the estimation of the monitoring value at t+1 instant which is calculated based 

on this equation 
11

:  

1 1
( * )

M

t i
E Pi Ei+ ==∑   (2) 

Where M is the number of states (five states), Pi is the probability that a sensor will enter in state i at t+1 instant 

and Ei denotes the energy remaining in the battery of sensor when it is 100% in state i (threshold1, threshold2, 

threshold3, threshold4, threshold5). 

4. Illustrations 

In what follows, we describe the implementation details of our approach. Then, we detail the case study based on 

the deployment of a WSN in a datacenter and we present experimental results.  

4.1. Architecture of our implementation 

To illustrate our approach, we developed a service oriented web application using Google App Engine platform. 

The deployment architecture of our implementation is illustrated in Fig. 2 (b). Our implementation relies on two 

infrastructures namely: embedded sensors infrastructure and cloud infrastructure. We need a sensors infrastructure 

because our approach is defined in the context of self-adaptation strategy in WSN applications. This infrastructure 

enables us to collect monitoring values arising from monitors deployed on sensor. These monitors consist of a 

service oriented device level that we call Device as a Service (DaaS). The collected values are stored in the Google 

Cloud database (called DataStore). These data enable computing transition matrix that is used in the computing of 

estimated monitoring values. To perform our experimentation, we used AZEM WSNs simulator to emulate sensor 

infrastructure. The storage of monitoring values and computing estimated values operate in cloud infrastructure and 

was implemented at PaaS level. 

4.2. Case study 

To illustrate our approach, we used a case study based on the deployment of a WSN in a datacenter. The sensors 

deployed in the datacenter are battery powered to get an optimal availability in case of a power interruption (sensors, 

fire and smoke detectors, intrusion sensor must work to monitor the environment) and to provide a greater flexibility 

and operational speed by deploying these sensors in different and difficult accessibility place without being worried 

of wiring constraint. Thus, the life duration of a sensor is highly dependent on the life of its battery, so monitoring 



6  

the state of charge of the battery of sensors, optimizing energy consumption and taking preventive measures and 

decisions are very important. Our approach aims to achieve these goals by predicting the monitoring values and 

subtracting the cost of sending these values. To test our approach, we carry out experiments using our WSNs 

simulator AZEM on sensors deployed in a data center that incorporates the following types of WSN applications: 

• Periodic applications: Sensors send monitoring data periodically such as sending measures of state of charge of 

UPS (uninterruptible power supply) batteries. 

• Event-based applications: Sensors send monitoring data when an event occurs such as sending alarm in case of 

unauthorized access in the datacenter. 

• Hybrid application: Some applications need a mixture of both periodic and event-based data monitoring such as a 

sensor that monitors the temperature of a server in the datacenter periodically and besides it sends alarms when a 

specific event occurs.  

4.3. Experimental results 

Our experiments are ensured using those properties: the sent message size is equal to 10 000 bit, the initial energy 

value for each sensor is equal to 3 joules and AZEM is the used WSN simulator. We use three energy models, 

namely μAMPS Specific Model 12
, Mica2 Specific Model 

13
 and Mica2 Specific Model with actual measurement 

14
. 

We carried out experiments for periodic (P), event-based (Evt) and hybrid (H) applications. First, we perform 

these experiments with an estimation frequency equal to the half of monitoring values dealing with periodic 

application, this means that sensor sends the monitoring value at t instant, and we estimate the monitoring value at t 

+1 instant as shown in Fig. 3 (a). In the second case we carried out these experiments with an estimation frequency 

equal to two-thirds of monitoring values as shown in Fig. 3 (b). Finally, we perform experiments with an estimation 

frequency equal to three-quarters of monitoring values dealing with Hybrid application (see Fig. 4). Realizing these 

experiments on three energy models with maintaining the same application type, we notice that estimated values are 

around the curve of the received monitoring values. That’s proving the efficiency of these estimated values. 

 

 

 

 

Fig. 3. (a) Estimation result of half of values in P application; (b) Estimation result of two-third of values in Evt application 

 

 

 

 

Fig. 4. Estimation result of three-quarters of values in H application 
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5. Evaluation 

In order to determine the accuracy of our approach, we calculate the estimation error defined as:  

| |Error MV EstV= −   (3) 

 Where MV is the real monitoring value and EstV is the estimated value. We also compute the average error for 

each application and for each energy model. Table 1, Table 2 and Table 3 summarize the average error of 

monitoring values estimation for each type of application. For example following μAMPS Specific Model, for 
periodic application, the average error is equal to 0.0135, for event-based application, the average error is equal to 

0.0246, while for hybrid application, the average error is equal to 0.0171. 

In conclusion, we note that the average error in periodic applications types is less than the average error in the 

other two ones, since energy consumption is almost stable over time due to the absence of random events that affect 

the behavior of the battery and therefore the transition matrix is more stable and the estimation is better. 

We remark that as the number of estimated values increases, the average error increases. We also note that when 

there is a sudden change in the behavior of the battery, the error of estimation increases at this instant. However, 

through continuous learning, the transition matrix is updated each instant and our prediction approach adjusts itself 

and therefore the error rate decreases. 

     Table 1. The estimation error average of half of the sensed values. 

                            Application Type 

Model 

Periodic Event Based Hybrid 

μAMPS Specific Model 0.0135 J 0.0246 J 0.0171 J 

Mica2 Specific Model 0.021 J 0.025 J 0.022 J 

Mica2 Specific Model with actual 

measurement. 

0.032 J 0.038 J 0.034 J 

     Table 2. The estimation error average of two-third of the sensed values. 

                            Application Type 

Model 

Periodic Event Based Hybrid 

μAMPS Specific Model 0.0169 J 0.027 J 0.019 J 

Mica2 Specific Model 0.024 J 0.026 J 0.025 J 

Mica2 Specific Model with actual 

measurement. 

0.03 J 0.046 J 0.032 J 

     Table 3. The estimation error average of three-quarter of the sensed values. 

                            Application Type 

Model 

Periodic Event Based Hybrid 

μAMPS Specific Model 0.025 J 0.0311 J 0.026 J 

Mica2 Specific Model 0.040 J 0.046 J 0.044 J 

Mica2 Specific Model with actual 

measurement. 

0.043 J 0.058 J 0.056 J 

Our approach increases the life duration of sensors battery by reducing the cost of transmitting monitoring values. 

As shown in Table 4, we save 50% of the cost of the transmission process with the prediction of the half of 

monitoring values. For instance, according to μAMPS Specific Model, the required energy to send a message is 
equal to 1.04 μJ. To send 100 messages of one bit, the sensor consumes 104 μJ (1.04 μJ * 100, see Table 4). With 

our approach, when we estimate the half of the sensed values, the sensor consumes only 52 μJ (1.04 μJ * 50). When 

we estimate the two-thirds of the sensed values, the sensor consumes 34.32 μJ (1.04 μJ * 33). In this case we save 
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66% of the cost of the transmission process. When we estimate three-quarters of the monitoring values, we can save 

75% of the transmission cost. In addition, there is no additional power cost for the sensor because we separate the 

application logic of WSN from the prediction logic ensuring that the prediction layer is not bound to the application 

layer. In this way the implementation of our method does not effect on the sensors energy. 

     Table 4. The energy consumption of a sensor with and without estimation. 

                            Frequency 

Model 

Without estimation Half of values Two-third of 

values 

μAMPS Specific Model 104 μJ 52 μJ 34.32 μJ 

Mica2 Specific Model 27 μJ 13.5 μJ 8.91 μJ 

Mica2 Specific Model with actual 

measurement. 

460.2 μJ 230.1 μJ 151.68 μJ 

6. Conclusion 

In this paper, we presented the MPaaS approach, which allows optimizing energy consumption of WSNs. The 
optimization process is based on the prediction of monitoring values, that enables to economize their sensing and the 
transmission energy cost. Our approach relies on rigorous reasoning over the hidden Markov chain and the fuzzy 
logic. It is composed of two steps. The first allows learning the behavior of the WSNs application energy 
consumption model. The second predicts a part of the sensed values. The learning process is continuously updated in 
order to get better prediction results. The use case of WSN deployed in a datacenter is used to illustrate the feasibility 
of our approach. The carried out experiment shows that we can increase battery lifetime and the negligible computed 
estimation error proves the correctness of the proposed approach. Our future work will focus on deploying and 
assessing our approach in a real and a large scale environment. 
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