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The Wireless Sensor Networks (WSNs) deployment introduces many issues and challenges mainly in terms of energy independence. In this context, we adopted the IBM control loop which is composed of four steps (Monitor, Analyze, Plan and Execute) to manage Quality of Service (QoS) 1 . This paper focuses on the first step which consists in monitoring and sending periodically QoS values such as the value of power remaining in the battery of each sensor. We notice that the transmission process is very costly in terms of energy and reduces the battery lifetime. In this work, we propose a probabilistic approach that estimates a part of these QoS monitoring values and therefore economizes their transmission energy and extends the sensor battery lifetime. Our approach is based on the hidden Markov chain and the fuzzy logic. It is composed of two steps: (i) learning which allows apprehending the WSNs behavior and (ii) prediction which estimates QoS monitoring values. A WSN application deployed in a datacenter is studied as an illustration. The carried out experiments over AZEM 1 WSN simulator show that the gain varies from 25% to 75% of the battery energy.

Introduction

WSNs are composed of small wireless nodes that monitor and control the environment. Then, the collected information is transmitted to the base station that can be a computer or a mobile smart phone to process their analysis and exploitation [START_REF] Akyildiz | Wireless sensor and actor networks: research challenges[END_REF] . However, the architecture of WSN is influenced by several constraints especially the energy consumption due to the fact that nodes are battery powered and generally it is impossible to recharge or change them given that sensors are deployed in a large scale and in inaccessible areas.

Sensor node's lifetime depends on battery lifetime. Therefore, the energy is the most precious resource that affects the sensors lifetime and thus the sensor network.

An autonomic enabled-architecture according to the IBM control loop [START_REF] Jeffery | The vision of autonomic computing[END_REF] should be adopted in order to adapt WSNs applications and increase the WSNs lifetime. The autonomic loop is composed of four steps, namely: Monitoring which collects QoS parameters values, Analysis which checks the gathered values and identifies a possible degradation of the network state, Planning which plans actions to adapt the WSNs behavior and Execution which enforces them. The first step relies on monitors able to transmit periodically measurements such as the value of power remaining in the sensor battery. The transmission of these QoS values consumes a great part of the residual battery energy. Optimizing this process allows reducing the energy consumption of sensors and maximizing their lifetime and therefore the life of WSNs applications.

In this paper, we focus on predicting a part of these values. Our challenge is to extend lifetime of WSNs as maximum as possible. We propose MPaaS: Monitoring values Prediction as a Service which uses the hidden Markov chains and the fuzzy logic to optimize the energy consumption without too much computational overhead.

MPaaS approach is composed of two steps: • Learning the WSNs behavior step in which we compute transition matrix of the hidden Markov chain (HMC) • Prediction of monitoring values step composed of three phases: • Fuzzification of monitoring value at t instant: we used the fuzzy logic to get a set of probabilities from a single monitoring value received at t instant. • Estimation of probability distributions at t+1instant. • Estimation of the monitoring value at t+1 instant: the output of the previous step is a set of probabilities, so we used a mathematic formula to compute the estimated monitoring value.

To illustrate the application of our approach, we used the WSNs datacenter monitoring case study. Our purpose is to monitor the battery of each sensor and estimate the value of power remaining in order to increase the whole application lifetime.

The reminder of this paper is organized as following. In section 2, we introduce the related work, the basic concept of hidden Markov chain and the fuzzy logic. In section 3, we detail our approach and explain how to rationalize energy consumption. Section 4 describes the case study, and the experimentation results. We evaluate the performance of our approach in section 5 while calculating the prediction rate error. The last section concludes the paper.

Related work

In this section, we examine the literature about the energy prediction model in WSN. Then, we present the main concepts related to the HMC and the fuzzy logic.

Energy prediction model in WSN

Several researches in WSN have looked at various ways of saving energy. In particular, S. Goel et al. [START_REF] Goel | Prediction-based Monitoring in Sensor Networks: Taking Lessons from MPEG[END_REF] proposed a mechanism called Prediction-based monitoring for energy efficient monitoring. This approach focuses only on identifying correlation in monitoring data, eliminating their transmission and predicting them at the monitored node.

The work proposed by P.Hu et al. [START_REF] Hu | The HMM-based Modeling for the Energy Level Prediction in Wireless Sensor Networks[END_REF] is an estimation model based on the HMC to predict the energy level of a sensor node. The proposed process contains two main parts: a first part to train the protocol-specific HMC via the Baum -Welch algorithm and a second part to predict energy levels via Viterbi algorithm.

This approach suffers from several limits. It does not predict the value of power remaining in the battery of sensor. Also, the algorithms used are very expensive and complex [START_REF] Santosh | A Random Sampling based Algorithm for Learning Intersections of Halfspaces[END_REF] . Additionally, it does not focus on optimizing the process of the QoS values transmission.

Ma. D'Arienzo et al [START_REF] D'arienzo | Estimation of the energy consumption of mobile sensors in WSN environmental monitoring applications[END_REF] . dealt with the problem of forecasting the energy consumption of mobile nodes of WSNs for environment protection. The proposed approach relies on the definition of a Fluid Stochastic Petri Nets model coping with physical, computing and environmental factors. However, this solution takes into account only some aspects of the sensor to estimate its energy consumption such as sensing, transmission, movement and environment. For instance, it does not take into consideration the energy consumed in receiving data. Moreover, there is no validation of the proposed model and therefore no comparison between model analysis results and assessed simulators and real data.

The Hidden Markov chain

A hidden Markov chain is a Markov chain extended by an emission probability distribution over the output symbol for each state and it is characterized by the following elements 8 :

• S = {S1, S2, ..., Sn} set of accessible states

• A = [aij] is the transition probability matrix • B={b1,….

bn} is the observation symbol probability distribution

• Π is the initial state distribution vector • V = {V1, V2, ..., Vm}: Observation symbols correspond to the physical output of the modeled system

In our approach, we used the fuzzy logic to calculate the observation symbol probability distribution B. It consists in the membership probability of the remaining battery power of sensor to different states namely Fully Charged (FC), Charged (C), Partially Loaded (PL), Low (L) and Very Low (VL). More details will be given in Section 3.

The fuzzy logic

Fuzzy logic [START_REF] Mamdani | An experiment in linguistic synthesis with a fuzzy logic controller[END_REF] allows the representation and processing of imprecise or uncertain data. It is based on degrees of truth rather than the usual true or false binary logic. So, it proposes a gradual transition of an object between two states whereas classical set theory allows only full transition. Fuzzy logic system is based on three operations: first, the fuzzification which transforms a crisp value to fuzzy. Second, the inference which makes rules to deduce a fuzzy output set from linguistic input memberships. Third, the defuzzification which transforms a fuzzy set to a crisp value.

Proposed approach

As shown in Fig. 1, our approach is based on two main steps: learning and prediction and aims at estimating a part of monitoring values to save sensing and transmission energy. Therefore, it increases the lifetime of wireless sensor network based applications.

Learning step

The first step in our approach starts by storing collected values from embedded monitors in a Google cloud datastore. Then, we calculate the transition matrix that we use later in the second step. Collecting sufficient numbers of monitoring values is necessary to ensure the stabilization of transition matrix.

We denote by S the set of states of the battery: S= {FC, C, PL, L, VL},V is the observed variable: V = {VEnergy: value of power remaining in the battery.}, B is the current probability distributions of observing VEnergy at different states at t instant: B t = {P (FC), P (C), P (PL), P (L), P (VL)}.

To model the transition between these states, we present the transition matrix A associated to the HMC as follow: 

ij ij ij j n P n = ∑

Prediction step

Now suppose that we are at t instant and we received monitoring value from the monitors deployed on sensor. Instead of asking the monitor for sensing and transmitting the value at t +1 instant, we estimate it. The prediction step is composed of three phases, namely: fuzzification of monitoring value at t instant, estimation of the probability distributions at t+1 instant and estimation of the monitoring value at t+1 instant. can get the current probability distributions of these crisp values using the membership functions of the appropriate set. To describe the variable domain of VEnergy, we have used five triangular membership functions defined through five items (threshold1, threshold2, threshold3, threshold4, threshold5), as shown in Fig. 2 (a). The variable domain is divided equally to five sub-domains following the standard designation in fuzzy logic of five items triangular membership [START_REF] Nasseri | Fuzzy numbers: Positive and nonnegative[END_REF] . These functions are associated with battery states: (FC -C -PC -L -VL). In fact, simple functions are used to build membership function because using complex function causes a high computational cost and they do not add more precision.

Estimation of probability distributions at t+1instant

The estimating probability distribution B t+1 at t+1 instant is equal to the multiplication of the probability distribution obtained in the previous step B t with the transition matrix A.

1 . tt B BA + = (1)

Estimation of the monitoring value at t+1 instant

The last phase of the second step is the estimation of the monitoring value at t+1 instant which is calculated based on this equation 11 :

1 1 (*) M t i E Pi Ei + = = ∑ (2)
Where M is the number of states (five states), Pi is the probability that a sensor will enter in state i at t+1 instant and Ei denotes the energy remaining in the battery of sensor when it is 100% in state i (threshold1, threshold2, threshold3, threshold4, threshold5).

Illustrations

In what follows, we describe the implementation details of our approach. Then, we detail the case study based on the deployment of a WSN in a datacenter and we present experimental results.

Architecture of our implementation

To illustrate our approach, we developed a service oriented web application using Google App Engine platform. The deployment architecture of our implementation is illustrated in Fig. 2 (b). Our implementation relies on two infrastructures namely: embedded sensors infrastructure and cloud infrastructure. We need a sensors infrastructure because our approach is defined in the context of self-adaptation strategy in WSN applications. This infrastructure enables us to collect monitoring values arising from monitors deployed on sensor. These monitors consist of a service oriented device level that we call Device as a Service (DaaS). The collected values are stored in the Google Cloud database (called DataStore). These data enable computing transition matrix that is used in the computing of estimated monitoring values. To perform our experimentation, we used AZEM WSNs simulator to emulate sensor infrastructure. The storage of monitoring values and computing estimated values operate in cloud infrastructure and was implemented at PaaS level.

Case study

To illustrate our approach, we used a case study based on the deployment of a WSN in a datacenter. The sensors deployed in the datacenter are battery powered to get an optimal availability in case of a power interruption (sensors, fire and smoke detectors, intrusion sensor must work to monitor the environment) and to provide a greater flexibility and operational speed by deploying these sensors in different and difficult accessibility place without being worried of wiring constraint. Thus, the life duration of a sensor is highly dependent on the life of its battery, so monitoring the state of charge of the battery of sensors, optimizing energy consumption and taking preventive measures and decisions are very important. Our approach aims to achieve these goals by predicting the monitoring values and subtracting the cost of sending these values. To test our approach, we carry out experiments using our WSNs simulator AZEM on sensors deployed in a data center that incorporates the following types of WSN applications:

• Periodic applications: Sensors send monitoring data periodically such as sending measures of state of charge of UPS (uninterruptible power supply) batteries.

• Event-based applications: Sensors send monitoring data when an event occurs such as sending alarm in case of unauthorized access in the datacenter.

• Hybrid application: Some applications need a mixture of both periodic and event-based data monitoring such as a sensor that monitors the temperature of a server in the datacenter periodically and besides it sends alarms when a specific event occurs.

Experimental results

Our experiments are ensured using those properties: the sent message size is equal to 10 000 bit, the initial energy value for each sensor is equal to 3 joules and AZEM is the used WSN simulator. We use three energy models, namely μAMPS Specific Model 12 , Mica2 Specific Model [START_REF] Polastre | Versatile Low Power Media Access for Wireless Sensor Networks[END_REF] and Mica2 Specific Model with actual measurement [START_REF] Shnayder | Simulating the Power Consumption of LargeScale Sensor Network Applications[END_REF] .

We carried out experiments for periodic (P), event-based (Evt) and hybrid (H) applications. First, we perform these experiments with an estimation frequency equal to the half of monitoring values dealing with periodic application, this means that sensor sends the monitoring value at t instant, and we estimate the monitoring value at t +1 instant as shown in Fig. 3 (a). In the second case we carried out these experiments with an estimation frequency equal to two-thirds of monitoring values as shown in Fig. 3 (b). Finally, we perform experiments with an estimation frequency equal to three-quarters of monitoring values dealing with Hybrid application (see Fig. 4). Realizing these experiments on three energy models with maintaining the same application type, we notice that estimated values are around the curve of the received monitoring values. That's proving the efficiency of these estimated values. 

Evaluation

In order to determine the accuracy of our approach, we calculate the estimation error defined as:

|| Error MV EstV = - (3) 
Where MV is the real monitoring value and EstV is the estimated value. We also compute the average error for each application and for each energy model. Table 1, Table 2 and Table 3 summarize the average error of monitoring values estimation for each type of application. For example following μAMPS Specific Model, for periodic application, the average error is equal to 0.0135, for event-based application, the average error is equal to 0.0246, while for hybrid application, the average error is equal to 0.0171.

In conclusion, we note that the average error in periodic applications types is less than the average error in the other two ones, since energy consumption is almost stable over time due to the absence of random events that affect the behavior of the battery and therefore the transition matrix is more stable and the estimation is better. We remark that as the number of estimated values increases, the average error increases. We also note that when there is a sudden change in the behavior of the battery, the error of estimation increases at this instant. However, through continuous learning, the transition matrix is updated each instant and our prediction approach adjusts itself and therefore the error rate decreases. Our approach increases the life duration of sensors battery by reducing the cost of transmitting monitoring values. As shown in Table 4, we save 50% of the cost of the transmission process with the prediction of the half of monitoring values. For instance, according to μAMPS Specific Model, the required energy to send a message is equal to 1.04 μJ. To send 100 messages of one bit, the sensor consumes 104 μJ (1.04 μJ * 100, see Table 4). With our approach, when we estimate the half of the sensed values, the sensor consumes only 52 μJ (1.04 μJ * 50). When we estimate the two-thirds of the sensed values, the sensor consumes 34.32 μJ (1.04 μJ * 33). In this case we save 66% of the cost of the transmission process. When we estimate three-quarters of the monitoring values, we can save 75% of the transmission cost. In addition, there is no additional power cost for the sensor because we separate the application logic of WSN from the prediction logic ensuring that the prediction layer is not bound to the application layer. In this way the implementation of our method does not effect on the sensors energy. 

Conclusion

In this paper, we presented the MPaaS approach, which allows optimizing energy consumption of WSNs. The optimization process is based on the prediction of monitoring values, that enables to economize their sensing and the transmission energy cost. Our approach relies on rigorous reasoning over the hidden Markov chain and the fuzzy logic. It is composed of two steps. The first allows learning the behavior of the WSNs application energy consumption model. The second predicts a part of the sensed values. The learning process is continuously updated in order to get better prediction results. The use case of WSN deployed in a datacenter is used to illustrate the feasibility of our approach. The carried out experiment shows that we can increase battery lifetime and the negligible computed estimation error proves the correctness of the proposed approach. Our future work will focus on deploying and assessing our approach in a real and a large scale environment.
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Table 1 .

 1 The estimation error average of half of the sensed values.

	Application Type	Periodic	Event Based	Hybrid
	Model			
	μAMPS Specific Model	0.0135 J	0.0246 J	0.0171 J
	Mica2 Specific Model	0.021 J	0.025 J	0.022 J
	Mica2 Specific Model with actual	0.032 J	0.038 J	0.034 J
	measurement.			

Table 2 .

 2 The estimation error average of two-third of the sensed values.

	Application Type	Periodic	Event Based	Hybrid
	Model			
	μAMPS Specific Model	0.0169 J	0.027 J	0.019 J
	Mica2 Specific Model	0.024 J	0.026 J	0.025 J
	Mica2 Specific Model with actual	0.03 J	0.046 J	0.032 J
	measurement.			

Table 3 .

 3 The estimation error average of three-quarter of the sensed values.

	Application Type	Periodic	Event Based	Hybrid
	Model			
	μAMPS Specific Model	0.025 J	0.0311 J	0.026 J
	Mica2 Specific Model	0.040 J	0.046 J	0.044 J
	Mica2 Specific Model with actual	0.043 J	0.058 J	0.056 J
	measurement.			

Table 4 .

 4 The energy consumption of a sensor with and without estimation.

	Frequency	Without estimation Half of values	Two-third of
	Model			values
	μAMPS Specific Model	104 μJ	52 μJ	34.32 μJ
	Mica2 Specific Model	27 μJ	13.5 μJ	8.91 μJ
	Mica2 Specific Model with actual	460.2 μJ	230.1 μJ	151.68 μJ
	measurement.