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Abstract— The Wireless Sensor Networks (WSNs) deployment introduces many issues and challenges mainly in terms of energy 

independence. In this context, we adopted a self-adaptation strategy composed of four steps (Monitor, Analyze, Plan and Execute) to 

manage Quality of Service (QoS) [1]. This paper focuses on the first step which consists in monitoring and sending QoS values such as 

the value of power remaining in the battery of each sensor. We notice that the transmission process is very expensive in terms of energy 

and reduces the battery lifetime. In this work, we propose a probabilistic approach that estimates a part of these QoS monitoring values 

and therefore economizes their transmission energy and extends the sensor battery life. Our approach is based on the hidden Markov 

chain and the fuzzy logic and composed of two steps: (i) learning which allows apprehending the WSNs behavior and (ii) predicting 

which estimates QoS monitoring values. A WSN application deployed in a datacenter is studied as an illustration. The carried out 

experiments over AZEM WSN simulator show its feasibility and efficiency. 

Keywords— Wireless sensor network; probabilistic approach, hidden Markov chain; value of monitoring; prediction. 

I. INTRODUCTION  

WSNs are composed of small wireless nodes that monitor and control the environment. Then, the collected information is 
transmitted to the base station that can be a computer or a mobile smart phone to process their analysis and exploitation [2]. 

Sensor networks can sense a wide range of measurement such as temperature, humidity, pressure, detection of movement. 
Consequently, the WSNs overcome several field of application such as medical applications, environmental, datacenter, smart 
building and military. 

However, the architecture of WSN is influenced by several constraints especially the energy consumption due to the fact that 
nodes are battery powered and generally it is impossible to recharge or change them given that sensors are deployed in a large scale 
and in inaccessible areas. 

Sensor node’s lifetime depends on battery lifetime. Therefore, the energy is the most precious resource that affects the sensors 
lifetime and thus the sensor network. 

An autonomic enabled-architecture according to the IBM control loop [3] should be taken in order to adapt WSNs applications 
and increase the WSNs lifetime. The autonomic loop is composed of four steps, namely: Monitoring which collects QoS 
parameters values, Analysis which checks the gathered values and identifies a possible degradation of the network state, Planning 
which plans actions to adapt the WSNs behavior and Execution which enforces them. The first step relies on monitors able to 
transmit periodically measurements such as the value of power remaining in the sensor battery. The transmission of these QoS 
values consumes a great part of the residual battery energy. Optimizing this process enable to reduce the energy consumption of 
sensors and maximize their lifetime and therefore the life of WSNs applications.  

In this paper, we focus on predicting a part of these values. Our challenge is to maintain lifetime duration of WSNs as 
maximum as possible. We propose MPaaS: Monitoring values Prediction as a Service which uses the hidden Markov chains and 
the fuzzy logic to optimize the energy consumption. In MPaaS approach, we start by learning WSNs behavior which allows us to 
predict a part of the QoS monitoring values. It will avoid the transmission process of the predicted values, and therefore increase 
the sensor buttery life. 

To illustrate the application of our approach, we used the WSNs datacenter monitoring case study. Our purpose is to monitor 
the battery of each sensor and estimate the value of power remaining in order to increase the whole application lifetime. 

The reminder of the paper is organized as following. In section 2, we briefly introduce the related work, the basic concept of 
hidden Markov chain and the fuzzy logic. In section 3, we detail our approach and explain how to rationalize energy consumption. 
Section 4 describes the case study, and the experimentation results. We evaluate the performance of our approach in section 5 while 
calculating the prediction error. The last section concludes the paper. 
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II. REALATED WORK 

In this section, we examine the state of the art about the energy prediction model in WSN. Then, we present the main concepts 
related to the hidden Markov chain and the fuzzy logic. 

A. Energy predicting model in WSN 

The work proposed by [4] is an estimation model based on the hidden Markov chain (HMC) to predict the energy level of a 
sensor node. The entire process contains two main parts: a first part to train the protocol-specific HMC via the Baum -Welch 
algorithm and a second part to predict energy levels via Viterbi algorithm. 

This approach suffers from several disadvantages. It doesn’t predict the value of power remaining in the battery of sensor. Also, 
the algorithms used are very expensive and complex [5]. Additionally, it doesn’t focus on optimizing the process of the QoS values 
transmission. 

B. The Hidden Markov chain 

The hidden Markov chains [6] are designed to model a system with two stochastic processes. The first represents the evolution 
of observable information while the second is characterized by a not visible states and transition probabilities. The hidden Markov 
chain can represent the transition from a hidden state to another. This feature allows it to predict the behavior of an object or a 
sequence. 

A hidden Markov chain is characterized by the following elements: 

 N is the number of hidden state in the model. We denote the different accessible state as: S = {S1, S2, ..., Sn} and qt the 
state at t instant. 

 M is the number of distinct observations per state. Observation symbols correspond to the physical output of the modeled 
system. We denote the different symbols as: V = {V1, V2, ..., Vm}.  

 A is the state transition probability distribution A = [aij], where 

aij = P[qt+1 = Sj|qt = Si] 1≤i,j≤N  (1) 

 B is the observation symbol probability distribution in state j, where 

bj(k) = P[V(t) = Vk|qt = Sj] 1≤j≤N, 1≤ k ≤M (2) 

 Π is the initial state distribution, Π = [πi], where 

πi = P[q1 = Si]    (3) 

In our approach, we used the fuzzy logic to calculate the observation symbol probability distribution B. It consists in the 
membership probability of the remaining battery power of sensor to different states namely Fully Charged (FC), Charged (C), 
Partially Loaded (PL), Low (L) and Very Low (VL). More details will be given in Section 3.  

C. The fuzzy logic 

Fuzzy logic [7] introduced by Zadeh in 1965, is an extension of the theory of binary sets. It allows the representation and 
processing of imprecise or uncertain data. 

Fuzzy logic is based on degrees of truth rather than the usual true or false binary logic. So, it proposes a gradual transition of an 
object between two states whereas classical set theory allows only full transition. Fuzzy logic system is based on three operations: 
first, the fuzzification which transforms a crisp value to fuzzy. Second, the inference which makes rules to deduce a fuzzy output 
set from linguistic input memberships. Third, the defuzzification which transforms a fuzzy set to a crisp value. 

III. PROPOSED APPROACH 

As shown in Fig. 1, our approach is based on two steps: learning and predicting and aims to estimate a part of monitoring 
values to save sensing and transmission energy. Therefore, it increases the lifetime duration of wireless sensor network. 
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Fig. 1. Proposed approach 

A. Learning step 

The first step in our approach starts by storing collected values from embedded monitors during the monitoring phase in a 
database. Then, we calculate the transition matrix that we use later in the second step. Collecting sufficient numbers of monitoring 
values is necessary to ensure the stabilization of transition matrix. 

We denote by S the set of states of the battery: S= {FC, C, PL, L, VL},V is the observed variable: V = {VEnergy: value of 
power remaining in the battery.}, B is the current probability distributions of observing VEnergy at different states  at t instant: Bt = 
{P (FC), P (C), P (PL), P (L), P (VL)}. The set S is composed of five states which are close to the reality and fit with our prediction 
model.  

 FC: The fully charged state means that the battery is totally charged enabling a high performance functioning.  

 C: The charged state denotes that the battery is charged enabling a normal functioning. 

 PL: The partially load state denotes that the battery is partially charged but it shows a degradation of the energy level, so it is a 
precaution state. 

 L: The low state denotes that energy level in the battery is low. 

 VL: The very low state denotes a critical state of the battery energy level. 
To model the transition between these states, we present the transition matrix A associated to the hidden Markov chain as 

follow: 

A= 

FCFC FCC FCPL FCL FCVL

CFC CC CPL CL CVL

PLFc PLC PLPL PLL PLVL

LFC LC LPL LL LVL

VLFC VLC VLPL VLL VLVL

P P P P P

P P P P P

P P P P P

P P P P P

P P P P P

 
 
 
 
 
 
  

 

Pij is the probability of transition from state i at t instant to the state j at t +1 instant, and is expressed as [8]: 

 Pij ═
ij

ij

j

n

n
 

Where nij is the number of sensors which batteries switch from state i at t instant to state j at t+1 instant and ij

j

n  is the total 

number of sensors with battery level in state i. 

B. Predicting step 

Now suppose that we are at t instance and we received monitoring value from the monitors deployed on sensor. Instead of 
asking the monitor for sensing and transmitting the value at t +1 instance, we estimate it. 
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The predicting step is composed of three phases, namely: fuzzifying the monitored values at t instance, estimating the 
probability distributions at t+1 instant and estimating the monitoring value at t+1 instant. 

1) Fuzzification of monitoring value at t instance 
Initially, we compute the current probability distributions of observing VEnergy at different states via fuzzification process [9]. 

To describe the variable domain of VEnergy, we have used five triangular membership functions defined through five items 
(threshold1, threshold2, threshold3, threshold4, threshold5), as shown in Fig. 2. The variable domain is divided equally to five sub-
domains following the standard designation in fuzzy logic of five items triangular membership. These functions are associated with 
battery states: (FC - C - PC - L – VL).  

The mathematical definitions [10] of these five functions are: 
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Fig. 2. General form of our discourse universe 
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We note that each received monitoring value is stored in the database which allows us to continuously update the transition 
matrix. 

2) Estimating probability distributions at t+1instance 

The estimating probability distribution 1m  at t+1 instance is equal to the multiplication of the probability distribution 

obtained in the previous step m  with the transition matrix A. This equation is adopted from the work in [11]: 

 1 .m m A    

3) Estimating the monitoring value at t+1 instance 
The last phase of the second step is the estimation of the monitoring value at t+1 instance which is calculated based on this 

equation [12]: 


1

1

(Pi).Ei
M

t

i

E 



  

Where M is the number of states (five states), Pi is the probability that a sensor will enter in state i at t+1 instance and Ei 
denotes the energy remaining in the battery of sensor when it is 100% in state i (threshold1, threshold2, threshold3, threshold4, 
threshold5) 

IV. ILLUSTRATION 

In follows, we describe the implementation details of our approach. Then, we detail the case study based on the deployment of a 
WSN in a datacenter and we present experimental results.  

A. Architecture of our implementation 

To illustrate our approach, we developed a service oriented web application using Google App Engine platform. The 
deployment architecture of our implementation is illustrated in Fig. 3. 

 

Fig. 3. The deployment architecture 

Our implementation relies on two infrastructures namely: embedded sensors infrastructure and cloud infrastructure. 

We need a sensors infrastructure because our approach is defined in the context of self-adaptation strategy in WSN 
applications. This infrastructure enables us to collect monitoring values arising from monitors deployed on sensors. These monitors 
consist of a service oriented device level that we call Device as a Service (DaaS). The collected values are stored in the Google 
Cloud database (called DataStore). These data enable computing transition matrix that is used in the computing of estimated 
monitoring values. To perform our experimentation, we used AZEM WSNs simulator to emulate sensor infrastructure. 

The storage of monitoring values and computing estimated values operate in cloud infrastructure and was implemented at PaaS 
level. 

We have implemented the following PaaS services in our application: storage of monitoring values, getting monitoring values 
in defined time interval, computing the transition matrix, fuzzification of monitoring value at instant t, setting monitoring 
frequency, getting monitoring frequency and computing estimated monitoring values. 

B. Case study 

To illustrate our approach, we used a case study based on the deployment of a WSN in a datacenter [13]. The datacenter 
includes many machines and servers for the storage and the processing of data. Administrators must ensure the continuity, 
availability of these servers and security of data and of the datacenter physical environment. 
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In addition, datacenter consume between 1.1% and 1.5% of worldwide electricity [14], therefore many solutions are 
implemented to reduce this increased consumption and monitor the environment such as the deployment of a WSN in a datacenter 
in order to save energy. Many kinds of sensors can be deployed in the datacenter; we mention sensors for measuring humidity, 
temperature, state of charge of uninterruptible power supply batteries and movement detectors. These sensors communicate 
collected data to the gateway that in turn sends to a base station via Internet to enable the control and the management of such 
environment. 

For instance, a temperature and humidity sensors monitor servers and send alarm upon unusually temperature rise, smoke and 
fire detection. They can also stop the redundant cooling unit in order to save energy and in case of exceeding of the temperature 
threshold a ventilator or an air conditioner is triggered automatically. A movement detectors sensor sends alarm upon an 
unauthorized access to the data center or inappropriate activities of personnel. 

In case of a power interruption, the servers must continue their work through uninterruptible power supply batteries that are 
able to bridge power failures and supply equipment in the data center to ensure their availability. Ensuring the availability and 
effectiveness of these batteries, sensors are used to monitor and measure their state of charge. 

The sensors deployed in the datacenter are battery powered to get an optimal availability in case of a power interruption 
(sensors, fire and smoke detectors, intrusion sensor must work to monitor the environment), to reduce energy consumption and to 
provide a greater flexibility and operational speed by deploying these sensors in different and difficult accessibility place without 
being worried of wiring constraint. Thus, the life duration of a sensor is highly dependent on the life of its battery, so monitoring 
the state of charge of the battery of sensors, optimizing energy consumption and taking preventive measures and decisions are very 
important. Our approach aims to achieve these goals by predicting the monitoring values and subtract the cost of sending these 
values. To test our approach, we carry out experiments using our WSNs simulator AZEM on sensors deployed in a data center that 
incorporates the following types of WSN applications [15]: 

 Periodic applications: Sensors send monitoring data periodically such as sending measures of state of charge of UPS 
batteries. 

 Event-based applications: sensors send monitoring data when an event occurs such as sending alarm in case of unauthorized 
access in datacenter. 

 Hybrid application: Some applications need a mixture of both periodic and event-based data monitoring such as a sensor 
that monitors the temperature of a server in the datacenter periodically and besides it sends alarms when a specific event 
occurs. 

C. Experimental results 

Our experiments are ensured using those properties: the sent message size is equal to 10 000 bit, the initial energy value for 
each sensor is equal to 3 joules. We use three energy models, namely μAMPS Specific Model [16], Mica2 Specific Model [17] and 
Mica2 Specific Model with actual measurement [18]. We carried out experiments for periodic (P), event-based (Evt) and hybrid 
(H) applications. 

First, we perform these experiments with an estimation frequency equal to the half of monitoring values, this means that sensor 
sends the monitoring value at t instant, and we estimate the monitoring value at t +1 instant. Realizing these experiments on three 
energy models with maintaining the same application type, we obtain graphics that contain three curves as shown in Fig. 4 dealing 
with periodic application.  

 

 

 

 

 

 

 

Fig. 4. Estimation result of half of values in P application 

We notice that estimated values are around the curve of the received monitoring values. That’s prove the efficiency of these 
estimated values 

In second case we carried out these experiments with an estimation frequency equal to two-thirds of monitoring values as 
shown in Fig. 5 that deals with Event-based applications. We note that the estimated values still surrounds the received monitoring 
values curve which allows us to deduce that our approach tolerates the two-thirds estimation frequency. 
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Fig. 5. Estimation result of two-third of values in Evt application 

Finally, we perform experiments with an estimation frequency equal to three-quarters of monitoring values. Results are shown 
in Fig. 6 regarding Hybrid application. 

With three-quarters frequency estimation, we notice that sometimes, estimated values move away from the received monitoring 
values curve. This is caused by the error propagation due to the integration of estimated values that may contain estimation error  in 
the database used to generate the transition matrix influencing thereby the second and the third generated values. 

 

 

 

 

 

 

 

 

Fig. 6. Estimation result of three-quarters of values in H application 

 

 

 

 

 

V. EVALUATION 

In order to determine the accuracy of our approach, we calculate the estimation error. This error is defined as the difference 
between real monitoring value and estimated value in absolute value. We also compute the average error for each application and 
for each energy model. 

Table І, Table ІІ and Table ІІІ summarize the average error of monitoring values estimation for each type of application. For 
example following μAMPS Specific Model, for periodic application, the average error is equal to 0.0135, for event-based 
application, the average error is equal to 0.0246, while for hybrid application, the average error is equal to 0.0171. 

In conclusion, we note that the average error in the periodic applications types is less than the average error in the other two 
ones, since energy consumption is almost stable over time due to no random events or events that affect the behavior of the battery 
and therefore the transition matrix is more stable and the estimation is better. 

We remark that as the number of estimated values increases, the average error increases. We also note that when there is a 
sudden change in the behavior of the battery, the error of estimation increases at this instant. However, through continuous 
learning, the transition matrix is updated each instant and our prediction approach adjusts itself and therefore the error rate 
decreases. 

Our approach increases the life duration of sensors battery by reducing the cost of transmitting monitoring values. As shown in 
Table ІV, we save 50% of the cost of the transmission process with the prediction of the half of the monitoring values. For instance, 
according to μAMPS Specific Model, the required energy to send a message is equal to 1.04 μJ. To send 100 messages of one bit, 
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the sensor consumes 104 μJ (1.04 μJ * 100, see Table IV). With our approach, when we estimate the half of the sensed values, the 
sensor consumes only 52 μJ (1.04 μJ * 50, see Table I). When we estimate the two-thirds of the sensed values, the sensor consumes 
34.32 μJ (1.04 μJ * 33, see Table II). In this case we save 66% of the cost of the transmission process. When we estimate three-
quarters of the monitored values, we can save 75% of the transmission cost (see Table III). 

 
TABLE I.  THE ESTIMATION ERRORS AVERAGE OF HALF OF THE SENSED 

VALUES 

            Application type 

  Model   

Periodic Event-
Based 

Hybrid 

μAMPS Specific Model 0.0135 J 0.0246 J 0.0171 J 

Mica2 Specific Model 0.021 J 0.025 J 0.022 J 

Mica2 Specific Model with actual 
measurement. 

0.032 J 0.038 J 0.034 J 

 
TABLE II.  THE ESTIMATION ERRORS AVERAGE OF TWO-THIRDS OF THE 

SENSED VALUES 

            Application type 

  Model   

Periodic Event-
Based 

Hybrid 

μAMPS Specific Model 0.0169 J 

 

0.027 J 

 

0.019 J 

 

Mica2 Specific Model 0.024 J 

 

0.026 J 

 

0.025 J 

 

Mica2 Specific Model with actual 
measurement. 

0.03 J 

 

0.046 J 

 

0.032 J 

 

 
 
 

TABLE III.  THE ESTIMATION ERRORS AVERAGE OF THREE-QUARTERS OF 

THE SENSED VALUES 

            Application type 

  Model   

Periodic Event-
Based 

Hybrid 

μAMPS Specific Model 0.025 J 0.0311 J 

 

0.026 J 

 

Mica2 Specific Model 0.040 J 

 

0.046 J 

 

0.044 J 

 

Mica2 Specific Model with actual 
measurement. 

0.043 J 

 

0.058 J 

 

0.056 J 

 

 
TABLE IV.  THE ENERGY CONSUMPTION OF A SENSOR WITH AND 

WITHOUT ESTIMATION 

     Frequency 

Model   

Without 
estimation 

Half of 
values 

Two-third 
of values 

Three-
quarter 
of values 

μAMPS Specific 
Model 104 μJ 52 μJ 34.32 μJ 26 μJ 

Mica2 Specific 
Model 27 μJ 13.5 μJ 8.91 μJ 6.75 μJ 

Mica2 Specific 
Model with 
actual 
measurement. 

460.2 μJ 230.1 μJ 151.68 μJ 115.05 μJ 

VI. CONCLUSION 

In this paper, we presented the MPaaS approach, which allows optimizing energy consumption of WSNs. The optimization 
process is based on the prediction of monitored values, that enables to economize their sensing and the transmission energy cost. 
Our approach relies on rigorous reasoning over the hidden Markov chain and the fuzzy logic. It is composed of two steps. The first 
allows learning the behavior of the WSNs application energy consumption model. The second uses the hidden Markov chain to 
predict a part of the sensed values. The learning process is continuously updated in order to get better prediction result. The use 
case of WSN deployed in a datacenter is used to illustrate the feasibility of our approach. The curried out experiment shows that we 
can increase buttery lifetime and the negligible computed estimation error prove the correctness of the propose approach. Our 
future work will focus on deploying and assessing our approach in a real and a large scale environment. 
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