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FINITE-VOLUME METHOD FOR THE CAHN-HILLIARD EQUATION WITH

DYNAMIC BOUNDARY CONDITIONS

Flore Nabet1

Abstract. A numerical scheme is proposed here to solve a diphasic Cahn-Hilliard equation with
dynamic boundary conditions. A finite-volume method is implemented for the space discretization and
existence and convergence results are proved. Numerical simulations are also presented that show the
influence of these boundary conditions.

1. Introduction

The Cahn-Hilliard equation describes the evolution of binary mixtures when, for example, a binary alloy is
cooled down sufficiently. This problem has been extensively studied for many years with Neumann boundary
conditions. Recently, physicists [5–7] have introduced new boundary conditions, usually called dynamic bound-
ary conditions, to account for the effective interaction between the wall and the two mixture components in a
confined system. With these dynamic boundary conditions, the Cahn-Hilliard equation results in the following
system: Find the concentration c : [0, T [×Ω → R such that:

∂tc = Γb∆µ, in (0, T )× Ω;

µ = −εσb∆c+
σb

ε
f ′b(c), in (0, T )× Ω;

c(0, .) = c0, in Ω;

ε3

ΓsΓb

∂tcΓ = ε2σsσb∆∥cΓ − σbf
′
s(cΓ)− εσb∂nc, on (0, T )× Γ;

∂nµ = 0, on (0, T )× Γ;

(P)

where µ is an intermediate unknown called chemical potential. There cannot be any mass exchange through the
boundary, which is why we consider the homogeneous Neumann boundary condition for the chemical potential.
The domain Ω ⊂ R2 is smooth, connected and bounded, with Γ = ∂Ω its boundary and T > 0 the final time.
The Laplace-Beltrami operator on Γ is noted ∆∥, ∂n is the normal derivative at the boundary and cΓ is the
trace of c on Γ.
These dynamic boundary conditions induced us to look for a solution in L∞(0, T,H1(Ω)) whose trace is in
L∞(0, T,H1(Γ)) (see Theorem 4.5).
The parameter ε > 0 accounts for the interface thickness, the coefficient Γb > 0 is the bulk mobility and σb > 0
is the fluid-fluid surface tension. On the boundary, Γs > 0 defines a surface kinetic coefficient and σs > 0 a
surface capillarity coefficient. The nonlinear terms fb and fs represent respectively the bulk free energy density
and the surface free energy density and they satisfy the following assumptions:
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• Dissipativity:
lim inf
|x|→∞

f ′′b (x) > 0 and lim inf
|x|→∞

f ′′s (x) > 0. (Hdiss)

• Polynomial growth for fb: there exist Cb > 0 and a real p ≥ 2 such that:

|fb(x)| ≤ Cb (1 + |x|p) ,
|f ′b(x)| ≤ Cb

(
1 + |x|p−1

)
,

|f ′′b (x)| ≤ Cb

(
1 + |x|p−2

)
.

(Hfb)

0 1

Figure 1. Typical choice for fb: fb(c) = c2(1− c)2.

Remark 1.1. We can notice that if we choose σs = 0, Γs = +∞ and fs = 0, we formally recover the standard
Neumann boundary condition ∂nc = 0.

The Cahn-Hilliard equation with dynamic boundary conditions (P) is such that the total free energy func-
tional defined by

F(c) =

∫
Ω

(ε
2
σb |∇c|2 +

σb

ε
fb(c)

)
+

∫
Γ

(
ε2

2
σsσb

∣∣∇∥cΓ
∣∣2 + σbfs(cΓ)

)
, (1)

is decreasing with respect to time:

d

dt
F(c(t, .)) = −Γb

∫
Ω

|∇µ(t, .)|2 − ε3

ΓsΓb

∫
Γ

|∂tcΓ(t, .)|2 , t ∈ [0, T [.

From a mathematical point of view, problem (P) has already been studied in [9–11] where questions such as
global existence and uniqueness, existence of a global attractor, maximal regularity of solutions and convergence
to an equilibrium have been answered. From a numerical point of view, some numerical schemes have been
considered in [5–7] in a finite-difference framework but without proof of convergence. In [2], the authors propose
a spatial finite-element semi-discretization and prove error estimate and convergence results on a slab with
periodic conditions in the lateral directions and dynamic conditions in the vertical directions, so that complex
geometries of the domain are not taken into account in the convergence analysis.

In this paper, we investigate a finite-volume scheme for the space discretization of this problem. This method
is well adapted to the coupling of the dynamics in the domain and those on the boundary by the flux term
∂nc. Moreover, this kind of scheme preserves the mass and accounts naturally for the non-flat geometry of
the boundary and for the associated Laplace-Beltrami operator. In Section 2, we recall the main finite-volume
notation, for example used in [4], that we adapt to our problem with a curved domain and dynamic boundary
conditions. In Section 3, we give the discrete energy functional and the associated energy estimates. Then,
we propose a finite-volume scheme with different time discretizations for the nonlinear terms. Existence and
convergence results are stated in Section 4. Finally, we give some numerical results in Section 5 with different
nonlinear terms on the boundary.

2. The discrete framework

We give in this section the main notation and definitions used in this paper.
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2.1. The discretization

Since Ω is a curved domain, the notation (Fig. 2) and definitions are slightly different from the usual finite-
volume definitions given for example in [4].
An admissible mesh T is constituted of an interior mesh M and a boundary mesh ∂M. The interior mesh M
is a set of control volumes (we specify that some control volumes are curved) K ⊂ Ω such that:

• if K ̸= L, we have K̊ ∩ L̊ = ∅;
• if K ̸= L such that the dimension of K ∩ L is equal to 1, then K ∩ L is an edge of the mesh;
• ∪K∈MK = Ω.

We note ∂M the set of edges of the control volumes in M included in Γ (we remark that these are not segments
but curved sections). We will use two different notations for an element of ∂M: we note e when we consider
it as a control volume belonging to ∂M and we note σ when we consider it as the edge of an interior control
volume K ∈ M.
Let E be the set of the edges of the mesh T , Eext = ∂M is the set of exterior edges and Eint = E \ Eext is the
set of interior edges. Let mσ be the length of the edge σ ∈ E .
For each control volume K ∈ M, we associate a point xK ∈ K and we assume that for all neighbouring control
volumes K, L ∈ M the edge σ = K|L ∈ Eint is orthogonal to the straight line going through xK and xL. The
distance between xK and xL is noted dK,L and n⃗KL is the unit normal vector going from K to L. We define by K̃

the polygon shaped by the vertices of K if there exists at least an edge of K on the boundary and, if not, K̃ = K.
Let mK (respectively mK̃) be the Lebesgue measure of K (respectively K̃).
For any e ∈ ∂M, we note ẽ the chord associated with e, mẽ its length. We define xe as the intersection between
Γ and the straight line passing throught xK and orthogonal to ẽ. Let ye be the intersection between the line
(xKxe) and the chord ẽ. We note dK,e the distance between xK and ye and n⃗Ke is the unit normal vector to ẽ
outward to K.
Let V be the set of the vertices included in Γ and de,v be the distance between the center ye and the vertex
v ∈ V. For a vertex v = e|e′ ⊂ Γ which separates the control volumes e, e′ ∈ ∂M, de,e′ is equal to the sum of
de,v and de′,v.
We can notice that the proposed scheme uses only the coordinates of the vertices of the mesh in Γ and not the
equation of the boundary Γ.

Vertex v ∈ V

Interior mesh M

Boundary mesh ∂M

Centers

xe

dK,L xL

v = e|e′

de,v

ye′

xK

de′,v

dK,e

xe′

ye

n⃗Ke

n⃗KL

Figure 2. Finite-volume meshes

The mesh size is defined by: size(T ) = sup{diam(K),K ∈ M}. All the constants in the results below depend
on a certain measure of the regularity of the mesh, which is classical and that we do not make explicit here in
order to be more synthetic. In short, it is necessary that the control volumes do not become flat when the mesh
is refined.

Let N ∈ N∗ and T ∈]0,+∞[. The temporal interval [0, T ] is uniformly discretized with a fixed time step

∆t =
T

N
. For n ∈ {0, · · · , N}, we define tn = n∆t.
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2.2. Discrete unknowns

For a given time step tn, the FV method associates with all interior control volumes K ∈ M an unknown
value cnK and with all boundary control volumes e ∈ ∂M an unknown value cne for the order parameter. The
same notations are used for the chemical potential with an unknown value µn

K for all K ∈ M. Because of the
Neumann boundary condition, it is not necessary to have boundary unknows for µ.

Whenever it is convenient, we associate with a discrete function uT ∈ RT the piecewise constant functions
uT = (uM, u∂M) where uM =

∑
K∈M

uK1K ∈ L∞(Ω) and u∂M =
∑

e∈∂M

ue1e ∈ L∞(Γ).

We note u∆t
M (respectively u∆t

∂M) the piecewise constant function in ]0, T [×Ω (respectively ]0, T [×Γ) such that
for all t ∈ [tn, tn+1[:

u∆t

M (t, x) = un+1
K if x ∈ K and u∆t

∂M(t, x) = un+1
e if x ∈ e.

2.3. Discrete inner products and norms

Definition 2.1 (Discrete L2 norms).

• For uM ∈ RM, the L2(Ω) discrete norm of uM is defined by:

∥uM∥2
0,M

=
∑

K∈M

mK̃u
2
K.

• For u∂M ∈ R∂M, the L2(Γ) discrete norm of u∂M is defined by:

∥u∂M∥2
0,∂M

=
∑

e∈∂M

mẽu
2
e.

Definition 2.2 (Discrete H1 semi-definite inner products).

• For uT , vT ∈ RT , the H1(Ω) discrete semi-definite inner product is defined by:

JuT , vT K1,T =
∑

σ∈Eint

mσdK,L

(
uK − uL

dK,L

)(
vK − vL

dK,L

)
+

∑
σ∈Eext

mẽdK,e

(
uK − ue
dK,e

)(
vK − ve
dK,e

)
,

where, by convention, ue = uK for σ = e ∈ Eext an edge of K if uT satisfies the homogeneous Neumann

boundary condition. We note |uT |1,T = JuT , uT K 1
2
1,T the associated discrete H1(Ω) seminorm.

• For u∂M, v∂M ∈ R∂M, the H1(Γ) discrete semi-definite inner product is defined by:

Ju∂M, v∂MK1,∂M =
∑

v=e|e′∈V

de,e′

(
ue − ue′

de,e′

)(
ve − ve′

de,e′

)
.

We note |u∂M|
1,∂M

= Ju∂M, u∂MK 1
2
1,∂M the associated discrete H1(Γ) seminorm.

Now, we can define the H1 discrete norms by:

∥uT ∥21,T = ∥uM∥2
0,M

+ |uT |21,T , ∀uT ∈ RT and ∥u∂M∥2
1,∂M

= ∥u∂M∥2
0,∂M

+ |u∂M|2
1,∂M

, ∀u∂M ∈ R∂M.

3. Numerical scheme and energy estimates

3.1. Numerical scheme

We use a consistent two-point flux approximation for Laplace operators in Ω and a consistent two-point flux
approximation for the Laplace-Beltrami operator on Γ. For nonlinear terms, we use two different discretizations
described below, fully implicit and semi-implicit, so that we have to use a Newton method at each iteration.

We assume that cnT ∈ RT is given. The scheme then writes as follows.
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Problem 3.1. Find (cn+1
T , µn+1

M ) ∈ RT × RM such that ∀uT ∈ RT , ∀vM ∈ RM:

∑
K∈M

mK̃

cn+1
K − cnK

∆t
vK =− ΓbJµn+1

M , vMK1,T∑
K∈M

mK̃µ
n+1
K uK =εσb

∑
σ∈Eint

mσ

dK,L

(
cn+1
K − cn+1

L

)
(uK − uL)

+ εσb

∑
σ∈Eext

mẽ

dK,e

(
cn+1
K − cn+1

e

)
uK +

σb

ε

∑
K∈M

mK̃d
fb(cnK, c

n+1
K )uK

ε3

ΓbΓs

∑
e∈∂M

mẽ
cn+1
e − cne

∆t
=− ε2σbσsJcn+1

∂M , u∂MK1,∂M − σb

∑
e∈∂M

mẽd
fs(cne , c

n+1
e )ue

− εσb

∑
σ∈Eext

mẽ

dK,e

(
cn+1
e − cn+1

K

)
ue

(S)

The functions dfb and dfs represent the discretizations for nonlinear terms f ′b(c) and f
′
s(c).

We can notice that in scheme (S) the coupling between interior and boundary unknowns is performed by the
two boxed terms: one in the interior mesh M and the other on the boundary mesh ∂M.

We can also remark that scheme (S) only uses geometric quantities related to the polygonal approximations
of the control volumes. However, the convergence analysis is performed by using the exact geometric quantities
related to the curved control volumes. In particular, we use projections of continuous functions on these curved
control volumes which are useful to obtain a suitable approximation for the initial data.

In order to simplify the presentation and the analysis, we have written the scheme as a formulation which
looks like a variational formulation. However, if for each control volume we choose the indicator function of this
particular control volume as a test function in (S), we recognize a usual finite-volume flux balance equation.

3.2. Energy estimate

Here we give the definition of the discrete energy and the corresponding estimate.

Definition 3.2 (Discrete free energy). The discrete free energy associated with the continuous free energy (1)
is composed of a bulk energy Fb,T and a surface energy Fs,∂M such that for all cT ∈ RT :

FT (cT ) = Fb,T (cT ) + Fs,∂M(c∂M)

where:

Fb,T (cT ) =
σb

ε

∑
K∈M

mK̃fb(cK) +
ε

2
σb |cT |21,T and Fs,∂M(c∂M) = σb

∑
e∈∂M

mẽfs(ce) +
ε2

2
σbσs |c∂M|2

1,∂M
.

By using Problem 3.1 with vM = µn+1
M and uT = cn+1

T − cnT as test functions, we obtain the following energy
estimate.

Proposition 3.3 (General energy estimate). Let cnT ∈ RT . We assume that there exists a solution (cn+1
T , µn+1

M )
to Problem 3.1. Then, the following equality holds:

FT (c
n+1
T )−FT (c

n
T ) + ∆tΓb

∣∣µn+1
M

∣∣2
1,T

+
ε3

ΓbΓs

1

∆t

∥∥cn+1
∂M − cn∂M

∥∥2
0,∂M

+
ε

2
σb

∣∣cn+1
T − cnT

∣∣2
1,T

+
ε2

2
σbσs

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

=
σb

ε

∑
K∈M

mK̃

(
fb(c

n+1
K )− fb(c

n
K)− dfb(cnK, c

n+1
K )(cn+1

K − cnK)
)

+ σb

∑
e∈∂M

mẽ

(
fs(c

n+1
e )− fs(c

n
e )− dfs(cne , c

n+1
e )(cn+1

e − cne )
)
.

(2)
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3.3. Discretization for nonlinear terms

In this section, we detail our two discretizations for the nonlinear terms used in scheme (S) and we give the
associated energy estimates.

3.3.1. Fully implicit discretization

For the fully implicit discretization in time, we choose dfb and dfs independent of cnT namely:

dfb(cnK, c
n+1
K ) = f ′b(c

n+1
K ), ∀K ∈ M and dfs(cne , c

n+1
e ) = f ′s(c

n+1
e ), ∀e ∈ ∂M.

Then, by using the energy estimate (2) and dissipativity assumptions (Hdiss), we obtain the following discrete
energy inequality:

Proposition 3.4 (Discrete energy inequality). Let cnT ∈ RT . We assume that there exists a solution (cn+1
T , µn+1

M )
to Problem 3.1. Then, there exists ∆t0 > 0 such that for all ∆t ≤ ∆t0, we have:

FT (c
n+1
T ) +

∆tΓb

2

∣∣µn+1
M

∣∣2
1,T

+
ε3

ΓbΓs

1

2∆t

∥∥cn+1
∂M − cn∂M

∥∥2
0,∂M

+
ε

4
σb

∣∣cn+1
T − cnT

∣∣2
1,T

+
ε2

2
σbσs

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

≤ FT (c
n
T ).

We can notice that ∆t0 depends on the parameters of the equation, so with this discretization we have to
choose a small enough ∆t. This is why we introduce below another discretization.

3.3.2. Semi-implicit discretization

We would like to obtain an energy estimate without any condition on ∆t. Thus, we choose a discretization
for nonlinear terms such that the right hand side in (2) is equal to 0:

dfb(x, y) =
fb(y)− fb(x)

y − x
and dfs(x, y) =

fs(y)− fs(x)

y − x
, ∀x, y.

We can remark that the potentials used for numerical tests are polynomials. Thus, we can express dfb (respec-
tively dfs) as a polynomial in the variables x, y.

We thus obtain the following energy equality true for all ∆t > 0:

Proposition 3.5 (Discrete energy equality). Let cnT ∈ RT . We assume that there exists a solution (cn+1
T , µn+1

M )
to Problem 3.1, then we have:

FT (c
n+1
T ) + ∆tΓb

∣∣µn+1
M

∣∣2
1,T

+
ε3

ΓbΓs

1

∆t

∥∥cn+1
∂M − cn∂M

∥∥2
0,∂M

+
ε

2
σb

∣∣cn+1
T − cnT

∣∣2
1,T

+
ε2

2
σbσs

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

= FT (c
n
T ).

We can notice that we use here two different discretizations for nonlinear potentials, but we can choose
another discretization such as, for example, the convex-concave discretization (see [1] for more details).

4. Existence and convergence

We give general assumptions on the discretization of nonlinear potential dfb to demonstrate the existence
and convergence theorems.
dfb is of C1 class and there exist Cb ≥ 0 and a real p such that 2 ≤ p < +∞,∣∣dfb(a, b)∣∣ ≤ Cb

(
1 + |a|p−1 + |b|p−1

)
and

∣∣D (
dfb(a, .)

)
(b)

∣∣ ≤ Cb

(
1 + |a|p−2 + |b|p−2

)
. (Hdfb )
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4.1. Existence

The existence of a solution to discrete Problem 3.1 is based on the topological degree theory and the a priori
energy estimates obtained above.

Theorem 4.1 (Existence of a discrete solution). Let cnT ∈ RT . Assuming that dissipativity assumptions (Hdiss)

and growth conditions (Hdfb ) hold and that there exist constants K
cnT
b ,K

cnT
s (depending possibly on cnT ) such

that, for all uT ∈ RT , ∑
K∈M

mK̃

(
fb(uK)− fb(c

n
K)− dfb(cnK, uK)(uK − cnK)

)
≤ K

cnT
b ,∑

e∈∂M

mẽ

(
fs(ue)− fs(c

n
e )− dfs(cne , ue)(ue − cne )

)
≤ K

cnT
s .

(3)

Then, there exists at least one solution (cn+1
T , µn+1

M ) ∈ RT × RM to Problem 3.1.

4.2. Convergence

In order to prove the convergence result we have to define a solution to Problem (P) in a weak sense.

Definition 4.2 (Weak formulation). We say that a couple (c, µ) ∈ L∞(0, T ;H1(Ω))×L2(0, T ;H1(Ω)) such that
Tr(c) ∈ L∞(0, T ;H1(Γ)) is solution to continuous Problem (P) in the weak sense if for all ψ ∈ C∞

c

(
[0, T [×Ω

)
,

the following identities hold:∫ T

0

∫
Ω

(−∂tψc+ Γb∇µ · ∇ψ) =
∫
Ω

c0ψ(0, .), (4)∫ T

0

∫
Ω

(
−µψ + εσb∇c · ∇ψ +

σb

ε
f ′b(c)ψ

)
+

∫ T

0

∫
Γ

(
− ε3

ΓbΓs

∂tψcΓ + σsσbε
2∇∥cΓ · ∇∥ψ + σbf

′
s(cΓ)ψ

)
(5)

=
ε3

ΓbΓs

∫
Γ

Tr(c0)ψ(0, .).

Theorem 4.3 (Bounds of the solutions). Assuming that assumptions (Hdiss), (Hfb), (Hdfb ), (3) hold and that
there exists a constant C > 0 such that, for all n ∈ N,

FT (c
n+1
T ) + C

(
∆tΓb

∣∣µn+1
M

∣∣2
1,T

+
ε3

ΓbΓs

1

∆t

∥∥cn+1
∂M − cn∂M

∥∥2
0,∂M

+
ε

2
σb

∣∣cn+1
T − cnT

∣∣2
1,T

+
ε2

2
σbσs

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

)
≤FT (c

n
T ), (6)

then, there exists M > 0 independent of T and ∆t such that:

sup
n≤N

∥cnT ∥1,T ≤M, sup
n≤N

∥cn∂M∥
1,∂M

≤M,

N−1∑
n=0

∆t
∥∥µn+1

M

∥∥2
1,T

≤M,

∆t

N−1∑
n=0

∆t

∥∥∥∥cn+1
T − cnT

∆t

∥∥∥∥2
1,T

≤M and ∆t

N−1∑
n=0

∆t

∥∥∥∥cn+1
∂M − cn∂M

∆t

∥∥∥∥2
1,∂M

≤M.

These bounds are one of the key elements to prove the convergence result below by using the discrete H1

compactness and the Kolmogorov theorem. We also note that we have nonlinearities in the domain Ω and on
the boundary Γ. Thus L2((0, T )× Ω) compactness is not sufficient and we have to prove uniform estimates of
time and space translates on Ω and Γ.
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Theorem 4.4 (Estimation of time and space translates). Let (c∆t
T , µ∆t

M ) be a solution to Problem 3.1, then there
exists C > 0 (not depending on size(T ) and ∆t) such that:∥∥∥c̃∆t

M (.+ τ, .)− c̃∆t
M (., .)

∥∥∥2
L2(R×R2)

≤ Cτ,
∥∥∥c̃∆t

M (., .+ η)− c̃∆t
M (., .)

∥∥∥2
L2(R×R2)

≤ C|η|,∥∥∥c̃∆t
∂M(.+ τ, .)− c̃∆t

∂M(., .)
∥∥∥2
L2(R×Γ)

≤ Cτ,
∥∥∥c̃∆t

∂M(., τη(.))− c̃∆t
∂M(., .)

∥∥∥2
L2(R×Γ)

≤ C|η|,

where we note c̃∆t
M (respectively c̃∆t

∂M) the extension by 0 of c∆t
M (respectively c∆t

∂M) on R×R2 (respectively R×Γ)
and τη represents the shifting of length η along the boundary Γ (an orientation being given on Γ).

Theorem 4.4 is proved by using the bounds of the solutions given by Theorem 4.3 and scheme (S). This
Theorem is essential to apply the Kolmogorov theorem and to prove the following convergence result.

Theorem 4.5 (Convergence theorem). Assuming that conditions (Hdiss), (Hfb), (Hdfb ), (3) and (6) hold, let
us consider Problem (P) with an initial condition c0 ∈ H1(Ω) such that Tr(c0) ∈ H1(Γ). Then, there exists a

weak solution (c, µ) on [0, T [ (in the sense of Definition 4.2). Furthermore, let
(
c(m), c

(m)
Γ

)
m∈N

and
(
µ(m)

)
m∈N

be a sequence of solutions to Problem 3.1 with a sequence of discretizations such that the space and time steps,

h
(m)
T and ∆t(m) respectively, tend to 0. Then, up to a subsequence, the following convergence properties hold,

for all q ≥ 1, when h
(m)
T ,∆t(m) → 0:

c(m) → c in L2(0, T ;Lq(Ω)) strongly,

c
(m)
Γ → Tr(c) in L2(0, T ;Lq(Γ)) strongly,

and µ(m) → µ in L2(0, T ;Lq(Ω)) weakly.

Remark 4.6. We chose the initial concentration in the scheme equal to the mean-value projection:

c0T =

((
1

mK

∫
K
c0

)
K∈M

,

(
1

me

∫
e

c0

)
e∈∂M

)
.

5. Numerical simulations

In this section, we present numerical experiments for three different nonlinear surface free energy densities.
We choose here the semi-implicit discretization in time for nonlinear terms in order to allow for a not too small
time step ∆t. For each simulation we consider the usual double-well bulk potential fb(c) = c2(1− c)2.
We are interested here by two domains with a Delaunay triangular mesh:

• a (0, 8)× (0, 4) rectangle with periodic boundary conditions in the lateral direction and dynamic bound-
ary conditions in the vertical direction;

• a smooth curved domain whose diameter is equal to 2 and with dynamic boundary conditions everywhere
on Γ.

In these cases, xK is the circumcenter of the control volume K and ye is the middle of the chord ẽ.
For each domain, we choose a random initial c0 ∈ RT between 0.4 and 0.6 and we keep this initial data for each
simulation with the same domain. We can then observe the influence of the boundary conditions on the phase
separation dynamics.

5.1. Influence of the surface diffusion term

First, we choose fs = fb for the surface potential and to compare the results in [5, 6], we begin with the
rectangular domain (Fig. 3) and the following parameters: ε = 0.3, Γb = σb = 0.1 for the bulk, Γs = 10 for the



ESAIM: PROCEEDINGS 9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Figure 3. Spinodal decomposition for rectangular domain

surface and T = 0.75, dt = 0.05 for the time. We observe the influence of surface diffusion by computing the
solution with two different values for the surface coefficient σs.

In both case, we have lateral anisotropic structures but their length scale is different. Indeed, when we have
σs = 0 (Fig. 3a) the structure length scales are shorter than when we have σs = 5 (Fig. 3b). These results are
very close to those observed in [5].

Now, we test the scheme with our curved domain (Fig. 4) with the following parameters: ε = Γb = σb = 0.1
for the bulk, Γs = 10 for the surface and T = 0.025, dt = 0.005 for the time.
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Figure 4. Spinodal decomposition for curved domain

We observe the same behavior as for the rectangular domain (Fig. 3): for σs = 0 (Fig. 4a), we have small
typical structures on the boundary while for σs = 5 (Fig. 4a) the structures are large excepted where the domain
is too narrow.

5.2. Preferential attraction by the wall

For the following computation (Fig 5), we want to observe the influence of the surface potential by taking
fs(c) = gsc

2−(hs+gs)c where hs ̸= 0 describes the possible preferential attraction of one of the two components
by the wall. Thus, we choose fixed parameters: ε = 0.2, Γb = σb = 0.1 for the bulk, Γs = 10, σs = 0, gs = 10
for the surface and T = 0.37, dt = 0.001 for the time and we modify the coefficient hs.

First, we notice than the parallel structures observed when hs = 0 (Fig. 5a) are similar to those observed
in [2,7]. Then, we confirm the preferential attraction of the phase c = 1 by the boundary when hs > 0 (Fig. 5b)
and we notice that this attraction changes all the behavior in the domain Ω.
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Figure 5. Influence of hs

Conclusion

We propose here a finite-volume scheme to deal with the 2D Cahn-Hilliard equation with dynamic boundary
conditions. With this method the coupling between the equation in the domain and the equation on the
boundary is easy to implement even with a curved geometry for the mesh. Furthermore, we give a convergence
result which additionally enables to obtain the existence of weak solutions for the continuous problem.
We can specify that we have error estimates for the Cahn-Hilliard equation with Neumann boundary conditions.
Moreover, in [8] we performed numerical simulations for error estimates which gave the expected first-order
convergence.
Finally, a possible future work will be the coupling of Cahn-Hilliard system (P) with the Navier-Stokes equation,
such as, for example, in [3].
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