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FINITE VOLUME METHOD FOR THE CAHN-HILLIARD EQUATION WITH

DYNAMIC BOUNDARY CONDITIONS

Flore Nabet1

Abstract. In this paper, we investigate a numerical scheme for solving a diphasic Cahn-Hilliard model
with dynamic boundary conditions. We propose a finite volume method for the space discretization
and we prove existence and convergence results. We also present numerical simulations to show the
influence of these boundary conditions.

1. Introduction

The Cahn-Hilliard equation describes the evolution of binary mixtures which appears, for example, when
a binary alloy is cooled down sufficiently. This problem has been extensively studied for many years with
Neumann boundary conditions. Recently, physicists [4, 5, 7] have introduced new boundary conditions, usually
called dynamic boundary conditions, to account for the effective interaction between the wall and the two
mixture components for a confined system. With these dynamic boundary conditions, the Cahn-Hilliard system
is written as follows: Find the concentration c : [0, T [×Ω → R such that:

∂tc = Γb∆µ, in (0, T )× Ω;

µ = −εσb∆c+
σb

ε
f ′b(c), in (0, T )× Ω;

c(0, .) = c0, in Ω;

ε3

ΓsΓb

∂tcΓ = ε2σsσb∆∥cΓ − σbf
′
s(cΓ)− εσb∂nc, on (0, T )× Γ;

∂nµ = 0, on (0, T )× Γ;

(P)

where µ is an intermediate unknown called chemical potential. There cannot be any mass exchange through
the boundary, that is why we have Neumann boundary condition for the chemical potential.
The domain Ω ⊂ R2 is smooth connected and bounded, we denote by Γ = ∂Ω its boundary and T > 0 is the
final time.
We denote by ∆∥ the Laplace-Beltrami operator on Γ, ∂n the exterior normal derivative at the boundary and
cΓ the trace of c on Γ.
The parameter ε > 0 accounts for the interface thickness, the coefficient Γb > 0 is the bulk mobility and σb > 0
is the fluid-fluid surface tension. On the boundary, Γs > 0 defines a surface kinetic coefficient and σs > 0 a
surface capillarity coefficient. The nonlinear terms fb and fs represent the bulk free energy density and the
surface free energy density respectively and they satisfy the following assumptions:
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• Dissipativity:
lim inf
|x|→∞

f ′′b (x) > 0 and lim inf
|x|→∞

f ′′s (x) > 0. (Hdiss)

• Polynomial growth for fb: there exists Cb > 0 and a real p ≥ 2 such that:

|fb(x)| ≤ Cb (1 + |x|p) ,
|f ′b(x)| ≤ Cb

(
1 + |x|p−1

)
,

|f ′′b (x)| ≤ Cb

(
1 + |x|p−2

)
.

(Hfb)

0 1

Figure 1. Typical choice for fb: fb(c) = c2(1− c)2.

Remark 1.1. We can notice that if we choose σs = 0, Γs = +∞ and fs = 0, we recover the standard Neumann
boundary condition ∂nc = 0.

The Cahn-Hilliard equation with dynamic boundary conditions (P) is posed in order that the following free
energy functional,

F(c) =

∫
Ω

(ε
2
σb |∇c|2 +

σb

ε
fb(c)

)
+

∫
Γ

(
ε2

2
σsσb

∣∣∇∥cΓ
∣∣2 + σbfs(cΓ)

)
, (1)

will decrease with respect to time:

d

dt
F(c(t, .)) = −Γb

∫
Ω

|∇µ(t, .)|2 − ε3

ΓsΓb

∫
Γ

|∂tcΓ(t, .)|2 , t ∈ [0, T [.

From a mathematical point of view, the problem (P) has already been studied in [8–10] where questions
such as global existence and uniqueness, existence of global attractor, maximal regularity of solutions and
convergence to an equilibrium have been answered. From a numerical point of view, some numerical schemes
have been considered in [4, 5, 7] in a finite difference framework but without proof of convergence. In [2], the
authors propose a finite element space semi-discretization and prove error estimate and convergence results on
a slab with periodic conditions on the lateral directions and dynamic conditions on the vertical directions, so
that complex geometries of the domain are not taken into account in the convergence analysis.

In this paper, we investigate a finite volume scheme for the space discretization of this problem. This
discretization is well adapted to the curved geometry and to the coupling between the dynamics in the domain
and the one on the boundary by a flux term. In Section 2, we recall the main finite volume notations, for
example used in [3], that we adapt to our problem with curved domain and dynamic boundary conditions. In
Section 3, we give the discrete energy functional and the associated energy estimates. Then, we propose a finite
volume scheme with different time discretizations for the nonlinear terms. Existence and convergence results
are stated in Section 4. The convergence result enables in particular to get a proof of the existence of a weak
solution of the Cahn-Hilliard model with dynamic boundary conditions. Finally, we give some numerical results
in Section 5 with different nonlinear terms on the boundary.

2. The discrete framework

We give in this section the main notations and definitions used in this paper.
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2.1. The discretization

We notice that Ω is a curved domain so that the notations (Fig. 2) and definitions are slightly different than
the usual finite volume definitions given for example in [3].
An admissible mesh T is constituted by an interior mesh M and a boundary mesh ∂M. The interior mesh M
is a set of control volumes (we notice that some control volumes are curved) K ⊂ Ω such that:

• if K ̸= L, we have K̊ ∩ L̊ = ∅;
• if K ̸= L such that the dimension of K ∩ L is equal to 1, then K ∩ L is an edge of the mesh;
• ∪K∈MK = Ω.

We denote by ∂M the set of edges σ (we remark that these are not segments but curve sections) of the control
volumes in M included in Γ. Let E be the set of the edges of the mesh T , Eint = E \ ∂M the set of interior
edges and V the set of the vertices included in Γ.

For each control volume K ∈ M, we associate a point xK ∈ K and we assume that for all neighbouring control
volumes K, L ∈ M the edge σ = K|L is orthogonal to the straight line going through xK and xL. The distance
between xK and xL is denoted by dK,L and mσ is the length of σ. Let mK be the Lebesgue measure of K and if
K is a curved control volume then mapp

K is the area of the polygon formed by the vertices of K. We denote by
EK the set of its edges and n⃗σK the outward unit normal vector to K.

For any σ ∈ ∂M, we denote by eσ the chord associated with σ, meσ its length and n⃗eσ the outward unit
normal vector to Ω. Let xσ on Γ as defined on the Figure 2 and such that eσ is orthogonal to the straight line
going through xK and xσ, then yσ is the intersection between the segment [xK, xσ] and the chord eσ. We denote
by dK,σ the distance between xK and yσ, Vσ the set of vertices of σ and n⃗σ the outward unit normal vector to
Ω.

Let v = σ|σ′ be the vertex which separates the edges σ, σ′ ∈ ∂M, γv ⊂ Γ the arch whose ends are xσ and xσ′

and mγv its length. We denote by dσ,v the distance between yσ and v and dσ,σ′ is equal to the sum of dσ,v and
dσ′,v.

We can notice that we do not use the equation of the curve. Indeed, we only know the coordinates of the
vertices of the mesh and so these quantities are calculated from these coordinates.

n⃗σ

Vertex v ∈ V

Interior mesh M

Boundary mesh ∂M

Centers

xσ

dK,L

n⃗eσ

xL

n⃗σK

v = σ|σ′

yσ
dσ,v

yσ′

xK

xσ′

dσ′,v

dK,σ

Figure 2. Finite volume meshes

The mesh size is defined by: size(T ) = sup{diam(K),K ∈ M}. All the constants in the results below depend
on a certain measure of the regularity of the mesh which is classical and that we do not make explicit here in
order to be more synthetic. In short, it is necessary that the control volumes do not become flat when the mesh
is refined.

Let N ∈ N∗ and T ∈]0,+∞[. The temporal interval [0, T ] is uniformly discretized with a fixed time step

∆t =
T

N
. For n ∈ {0, · · · , N}, we define tn = n∆t.



4 ESAIM: PROCEEDINGS

2.2. Discrete unknowns

For a given time step tn, the FV method associates with all interior control volumes K ∈ M an unknown
value cnK ∈ RM and with all exterior edges σ ∈ ∂M an unknown value cnσ ∈ R∂M for the order parameter. The
same notations are used for the chemical potential with an unknown value µn

K ∈ RM for all K ∈ M. There is no
need of boundary unknows for µ.

Whenever it is convenient, we associate with a discrete fonction uT ∈ RT the piecewise constant functions
uT = (uM, u∂M) where uM =

∑
K∈M

uK1K ∈ L∞(Ω) and u∂M =
∑

σ∈∂M

uσ1σ ∈ L∞(Γ).

We denote by u∆t
T the piecewise constant function in ]0, T [×Ω such that for all t ∈ [tn, tn+1[:

u∆t

T (t, x) = un+1
K if x ∈ K and u∆t

T (t, x) = un+1
σ if x ∈ σ.

2.3. Discrete inner products and norms

Definition 2.1 (Discrete L2 norms).

• For uM ∈ RM, the L2 discrete norm of uM is defined by:

∥uM∥20,M =
∑

K∈M

mKu
2
K.

• For u∂M ∈ R∂M, the L2 discrete norm of u∂M is defined by:

∥u∂M∥20,∂M
=
∑

σ∈∂M

meσu
2
σ.

Definition 2.2 (Discrete H1 semi-definite inner products).

• For uT , vT ∈ RT , their H1 discrete semi-definite inner product is defined by:

JuT , vT K1,T =
∑

σ∈Eint

mσdK,L

(
uK − uL

dK,L

)(
vK − vL

dK,L

)
+
∑

σ∈∂M

meσdK,σ

(
uK − uσ

dK,σ

)(
vK − vσ

dK,σ

)
,

where, by convention, uσ = uK for σ ∈ ∂M an edge of K if uT satifies homogeneous Neumann boundary

condition. We notice by |uT |1,T = JuT , uT K 1
2
1,T the associated discrete H1 seminorm in Ω.

• For u∂M, v∂M ∈ R∂M, their H1 discrete semi-definite inner product is defined by:

Ju∂M, v∂MK1,∂M =
∑
v∈V

dσ,σ′

(
uσ − uσ′

dσ,σ′

)(
vσ − vσ′

dσ,σ′

)
.

We notice by |u∂M|1,∂M
= Ju∂M, u∂MK 1

2
1,∂M

the associated discrete H1 seminorm on Γ.

Now, we can define H1 discrete norms by:

∥uT ∥21,T = ∥uT ∥20,M + |uT |21,T , ∀uT ∈ RT and ∥u∂M∥21,∂M
= ∥u∂M∥20,∂M

+ |u∂M|21,∂M
, ∀u∂M ∈ R∂M.

3. Numerical scheme and energy estimates

3.1. Numerical scheme

We use a consistent two point flux approximation for Laplace operators in Ω and a consistent two point flux
approximation for the Laplace-Beltrami operator on Γ. For nonlinear terms, we use two different discretizations
described below: fully implicit and semi implicit so that we have to use a Newton method at each iteration.

We assume that cnT ∈ RT is given, the scheme is then written as follows.
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Problem 3.1. Find (cn+1
T , µn+1

M ) ∈ RT × RM such that ∀γT ∈ RT , ∀νM ∈ RM, we have:

∑
K∈M

mapp
K

cn+1
K − cnK

∆t
νK = −ΓbJµn+1

M , νMK1,T∑
K∈M

mapp
K µn+1

K γK =
σb

ε

∑
K∈M

mapp
K dfb(cnK, c

n+1
K )γK

+εσb

( ∑
σ∈Eint

mσdK,L

(
cn+1
K − cn+1

L

dK,L

)(
γK − γL

dK,L

)
+

∑
σ∈∂M

meσ

(
cn+1
K − cn+1

σ

dK,σ

)
γK

)
ε3

ΓbΓs

∑
σ∈∂M

meσ

cn+1
σ − cnσ

∆t
= −ε2σbσsJcn+1

∂M , γ∂MK1,∂M − σb

∑
σ∈∂M

meσd
fs(cnσ , c

n+1
σ )γσ

−εσb

∑
σ∈∂M

meσ

(
cn+1
σ − cn+1

K

dK,σ

)
γσ

(S)

The functions dfb and dfs represent the discretizations for nonlinear terms.
We can notice that in the scheme (S) the coupling between interior and boundary unknowns is performed by
the two boxed terms: one in the interior mesh M and the other on the boundary mesh ∂M.

In order to simplify the presentation and the analysis, we have written the scheme as a formulation which
looks like a variational formulation. However, if for each control volume we choose the indicator function of this
particular control volume as a test function in (S), we recognize a usual finite volume flux balance equation.

3.2. Energy estimate

In the section we give the definition of the discrete energy and the corresponding estimate.

Definition 3.2 (Discrete free energy). The discrete free energy associated with the continuous free energy (1)
is composed of a bulk energy Fb

M and a surface energy Fs
∂M such that for all cT ∈ RT :

FT (cT ) = Fb
M(cT ) + Fs

∂M(c∂M)

where:

Fb
M(cT ) =

σb

ε

∑
K∈M

mapp
K fb(cK) +

ε

2
σb |cT |21,T and Fs

∂M(c∂M) = σb

∑
σ∈∂M

meσfs(cσ) +
ε2

2
σbσs |c∂M|21,∂M

.

By using Problem 3.1 with νM = µn+1
M and γT = cn+1

T − cnT as test functions, we obtain the following energy
estimate.

Proposition 3.3 (General energy estimate). Let cnT ∈ RT . We assume that there exists a solution (cn+1
T , µn+1

M )
of Problem 3.1. Then, the following equality is holds:

FT (c
n+1
T )−FT (c

n
T ) + ∆tΓb

∣∣µn+1
M

∣∣2
1,T

+
ε3

ΓbΓs

1

∆t

∥∥cn+1
∂M − cn∂M

∥∥2
0,∂M

+
ε

2
σb

∣∣cn+1
T − cnT

∣∣2
1,T

+
ε2

2
σbσs

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

=
σb

ε

∑
K∈M

mapp
K

(
fb(c

n+1
K )− fb(c

n
K)− dfb(cnK, c

n+1
K )(cn+1

K − cnK)
)

+ σb

∑
σ∈∂M

meσ

(
fs(c

n+1
σ )− fs(c

n
σ )− dfs(cnσ , c

n+1
σ )(cn+1

σ − cnσ )
)
.

(2)
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3.3. Discretization for nonlinear terms

In this section, we detail the two discretizations for nonlinear terms used in the scheme (S) and we give the
associated energy estimates.

3.3.1. Fully implicit discretization

For the fully implicit discretization in time, we choose dfb and dfs independent of cnT , for all K ∈ M and for
all σ ∈ ∂M, we have:

dfb(cnK, c
n+1
K ) = f ′b(c

n+1
K ) and dfs(cnσ , c

n+1
σ ) = f ′s(c

n+1
σ ).

Then, by using the energy estimate (2) and dissipativity assumptions (Hdiss), we obtain the following discrete
energy inequality:

Proposition 3.4 (Discrete energy inequality). Let cnT ∈ RT . We assume that there exists a solution (cn+1
T , µn+1

M )
of Problem 3.1. Then, there exists ∆t0 > 0 such that for all ∆t ≤ ∆t0, we have:

FT (c
n+1
T ) +

∆tΓb

2

∣∣µn+1
M

∣∣2
1,T

+
ε3

ΓbΓs

1

2∆t

∥∥cn+1
∂M − cn∂M

∥∥2
0,∂M

+
ε

4
σb

∣∣cn+1
T − cnT

∣∣2
1,T

+
ε2

2
σbσs

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

≤ FT (c
n
T ).

We can notice that ∆t0 depends on parameters of the equation so with this discretization, we have to choose
∆t small enough. This is why we introduce below an other discretization.

3.3.2. Semi implicit discretization

We would like to obtain an energy estimate without condition on ∆t. Thus, we choose a discretization for
nonlinear terms such that the right terms in (2) are equal to 0:

dfb(x, y) =
fb(y)− fb(x)

y − x
and dfs(x, y) =

fs(y)− fs(x)

y − x
, ∀x, y.

We obtain the following energy equality available for all ∆t > 0:

Proposition 3.5 (Discrete energy equality). Let cnT ∈ RT . We assume that there exists a solution (cn+1
T , µn+1

M )
of Problem 3.1, then we have:

FT (c
n+1
T ) + ∆tΓb

∣∣µn+1
M

∣∣2
1,T

+
ε3

ΓbΓs

1

∆t

∥∥cn+1
∂M − cn∂M

∥∥2
0,∂M

+
ε

2
σb

∣∣cn+1
T − cnT

∣∣2
1,T

+
ε2

2
σbσs

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

= FT (c
n
T ).

4. Existence and convergence

We give general assumptions on the discretization of nonlinear terms dfb and dfs to demonstrate existence
and convergence theorems.
dfb and dfs are of C1 class and there exist two constants Cb, Cs ≥ 0 and two reals p, q such that 2 ≤ p, q < +∞,∣∣dfb(a, b)∣∣ ≤ Cb

(
1 + |a|p−1 + |b|p−1

)∣∣D (dfb(a, .)) (b)∣∣ ≤ Cb

(
1 + |a|p−2 + |b|p−2

) (Hdfb )

and ∣∣dfs(a, b)∣∣ ≤ Cs

(
1 + |a|q−1 + |b|q−1

)∣∣D (dfs(a, .)) (b)∣∣ ≤ Cs

(
1 + |a|q−2 + |b|q−2

)
.

(Hdfs )
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4.1. Existence

The existence of a solution to discrete Problem 3.1 is based on the topological degree theory and the a priori
energy estimates obtained above.

Theorem 4.1 (Existence of discrete solution). Let cnT ∈ RT . Assume that dissipativity assumptions (Hdiss),

growth conditions (Hdfb ) and (Hdfs ) hold and that there exist constants K
cnT
b ,K

cnT
s (depending possibly on cnT )

such that, for all γT ∈ RT , ∑
K∈M

mapp
K

(
fb(γK)− fb(c

n
K)− dfb(cnK, γK)(γK − cnK)

)
≤ K

cnT
b ,∑

σ∈∂M

meσ

(
fs(γσ)− fs(c

n
σ )− dfs(cnσ , γσ)(γσ − cnσ )

)
≤ K

cnT
s .

(3)

Then, there exists at least one solution (cn+1
T , µn+1

M ) ∈ RT × RM of Problem 3.1.

4.2. Convergence

In order to prove the convergence result we have to define a solution of Problem (P) in a weak sense.

Definition 4.2 (Weak formulation). We say that a couple (c, µ) ∈ L∞(0, T ;H1(Ω))×L2(0, T ;H1(Ω)) such that
Tr(c) ∈ L∞(0, T ;H1(Γ)) is solution to the continuous Problem (P) in the weak sense if for all ψ ∈ C∞

c

(
[0, T [×Ω

)
,

the following identities hold:∫ T

0

∫
Ω

(−∂tψc+ Γb∇µ · ∇ψ) =
∫
Ω

c0ψ(0, .), (4)∫ T

0

∫
Ω

(
−µψ + εσb∇c · ∇ψ +

σb

ε
f ′b(c)ψ

)
+

∫ T

0

∫
Γ

(
− ε3

ΓbΓs

∂tψc+ σsσbε
2∇∥c · ∇∥ψ + σbf

′
s(c)ψ

)
(5)

=
ε3

ΓbΓs

∫
Γ

c0ψ(0, .).

Theorem 4.3 (Bounds of solutions). Assume that assumptions (Hfb), (Hdiss), (Hdfb ), (Hdfs ), (3) hold and
that there exists a constant C > 0 such that, for all n ∈ N,

FT (c
n+1
T ) + C

(
∆tΓb

∣∣µn+1
M

∣∣2
1,T

+
ε3

ΓbΓs

1

∆t

∥∥cn+1
∂M − cn∂M

∥∥2
0,∂M

+
ε

2
σb

∣∣cn+1
T − cnT

∣∣2
1,T

+
ε2

2
σbσs

∣∣cn+1
∂M − cn∂M

∣∣2
1,∂M

)
≤FT (c

n
T ). (6)

Then, there exists M > 0 independent of T and ∆t such that:

sup
n≤N

∥cnT ∥1,T ≤M, sup
n≤N

∥cn∂M∥1,∂M
≤M,

N−1∑
n=0

∆t
∥∥µn+1

M

∥∥2
1,T

≤M,

∆t

N−1∑
n=0

∆t

∥∥∥∥cn+1
T − cnT

∆t

∥∥∥∥2
1,T

≤M and ∆t

N−1∑
n=0

∆t

∥∥∥∥cn+1
∂M − cn∂M

∆t

∥∥∥∥2
1,∂M

≤M.

These bounds are one of the key elements to prove the convergence result below by using discrete H1

compactness and Kolmogorov theorem. We also notice that we have nonlinearities in the domain Ω and on the
boundary Γ. Thus L2((0, T )×Ω) compactness is not sufficient and we have to prove uniform estimates of time
and space translates on Ω and Γ.
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Theorem 4.4 (Estimation of time and space translates). Let (c∆t
T , µ∆t

M ) be a solution of Problem 3.1, then there
exists C > 0 (not depending on size(T ) and ∆t) such that:∥∥∥c̃∆t

M (.+ τ, .)− c̃∆t
M (., .)

∥∥∥2
L2(R×R2)

≤ Cτ,
∥∥∥c̃∆t

M (., .+ η)− c̃∆t
M (., .)

∥∥∥2
L2(R×R2)

≤ C|η| (|η|+ size(T )) ,∥∥∥c̃∆t
∂M(.+ τ, .)− c̃∆t

∂M(., .)
∥∥∥2
L2(R×Γ)

≤ Cτ,
∥∥∥c̃∆t

∂M(., τη(.))− c̃∆t
∂M(., .)

∥∥∥2
L2(R×Γ)

≤ C|η| (|η|+ size(T )) ,

where we denote by c̃∆t
M (respectively c̃∆t

∂M) the extension by 0 of c∆t
M (respectively c∆t

∂M) on R × R2 (respectively
R× Γ) and τη represent the shifting of length η along the boundary Γ (an orientation being given on Γ).

The Theorem 4.4 is proved by using bounds of solutions of Theorem 4.3 and the scheme (S). This Theorem
is essential to apply Kolmogorov theorem and to prove the following convergence result.

Theorem 4.5 (Convergence theorem). Assume that conditions (Hfb), (Hdiss), (Hdfb ), (Hdfs ), (3) and (6)
hold. Consider the Problem (P) with initial condition c0 ∈ H1(Ω) such that Tr(c0) ∈ H1(Γ). Then, there

exists a weak solution (c, µ) on [0, T [ (in the sense of Definition 4.2). Furtheremore, let
(
c(m), c

(m)
Γ

)
m∈N

and(
µ(m)

)
m∈N be a sequence of solutions to Problem 3.1 with a sequence of discretizations such that the space and

time step, size
(
T (m)

)
and ∆t(m) respectively, tends to 0. Then, up to a subsequence, the following convergence

properties hold, for all q ≥ 1, when size
(
T (m)

)
,∆t(m) → 0:

c(m) → c in L2(0, T ;Lq(Ω)) strong,

c
(m)
Γ → Tr(c) in L2(0, T ;Lq(Γ)) strong,

and µ(m) → µ in L2(0, T ;Lq(Ω)) weak.

Remark 4.6. We choose the initial concentration in the scheme equals to the mean-value projection:

c0T =

((
1

mK

∫
K
c0

)
K∈M

,

(
1

mσ

∫
σ

c0

)
σ∈∂M

)
.

5. Numerical simulations

In this section, we present numerical experiments for three different choices of the nonlinear surface free
energy density. We choose here the semi-implicit discretization in time for nonlinear terms in order to take
∆t large enough. We notice that we have to choose the interface thickness ε of the same order (and not
more large) than the mesh size size(T ). For each simulation we consider the usual double well bulk potential
fb(c) = c2(1− c)2.
We are interested here by two domains with a delaunay triangular mesh:

• a rectangle (0, 8)× (0, 4) with periodic boundary conditions in the lateral direction and dynamic bound-
ary conditions in the vertical direction;

• a smooth curved domain whose diameter is equal to 2 and dynamic boundary conditions everywhere on
Γ.

In these cases, xK is the circumcenter of the control volume K and yσ is the middle of the chord eσ.
For each domain, we choose a random initial c0 ∈ RT between 0.4 and 0.6 and we keep this initial data for each
simulation with the same domain. We can then observe the influence of the boundary conditions on the phase
separation dynamics.

5.1. Influence of the surface diffusion term

First, we choose fs = fb for the surface potential and to compare the results in [4, 5], we begin with the
rectangular domain (Fig. 3) and the following parameters: ε = 0.3, Γb = σb = 0.1 for the bulk, Γs = 10 for the
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surface and T = 0.75, dt = 0.05 for the time. We observe the influence of surface diffusion by computing the
scheme with two different values for the surface coefficient σs.
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(a) σs = 0 (b) σs = 5

Figure 3. Spinodal decomposition for rectangular domain

In both case, we have lateral anisotropic structures but their length scale is different. Indeed, when we have
σs = 0 (Fig. 3a) the structure length scales are shorter than when we have σs = 5 (Fig. 3b). These results are
very close to those observed in [4].

Now, we test the scheme with our curved domain (Fig. 4) with following parameters: ε = Γb = σb = 0.1 for
the bulk, Γs = 10 for the surface and T = 0.025, dt = 0.005 for the time.
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Figure 4. Spinodal decomposition for curved domain

We observe the same behavior as for the rectangular domain (Fig. 3): for σs = 0 (Fig. 4a), we have small
typical structures on the boundary while for σs = 5 (Fig. 4a) the structures are large except where the domain
is too narrow.

5.2. Preferential attraction by the wall

For the following computation (Fig 5), we want to observe the influence of the surface potential by taking
fs(c) = gsc

2−(hs+gs)c where hs ̸= 0 describes the possible preferential attraction of one of the two components
by the wall. Thus, we choose fixed parameters: ε = 0.2, Γb = σb = 0.1 for the bulk, Γs = 10, σs = 0, gs = 10
for the surface and T = 0.37, dt = 0.001 for the time and we modify the coefficient hs.

First, we notice than the parallel structures observed when hs = 0 (Fig. 5a) are similar to those observed
in [2,7]. Then, we confirm the preferential attraction of the phase c = 1 by the boundary when hs > 0 (Fig. 5b)
and we notice that this attraction changes all the behavior in the domain Ω.
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Figure 5. Influence of hs

Conclusion

We propose here a finite volume scheme to deal with the 2D Cahn-Hilliard model with dynamic boundary
conditions. With this method the coupling between the equation in the domain and the equation on the
boundary is easy to implement with a curved geometry for the mesh. Furthermore, the convergence result
enables to obtain the existence of weak solutions for the continuous problem. We can notice that some authors
are interested by the Cahn-Hilliard equation with logarithmic potential (see for example [1,6] and the references
therein) but it is not the case in this work.
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