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ABSTRACT  

Antibody microarrays are powerful and high-throughput tools for screening and identifying 

tumor markers from small sample volumes of only a few microlitres. Optimization of surface 

chemistry and spotting conditions are crucial parameters to enhance antibodies immobilization 

efficiency and to maintain their biological activity. Here, we reported the implementation of 

antibody microarray for the detection of tumor markers involved in colorectal cancer. 3D-

microstructured glass slide were functionalized with three different aminated molecules ((3-

aminopropyl) dimethylethoxysilane (APDMES), Jeffamine and chitosan) varying in their chain 

length, their amine density and their hydrophilic/hydrophobic balance. The physico-chemical 

properties of the resulting surfaces were characterized. Antibody immobilization efficiency 

through physical interaction was studied as a function of surface properties as well as a function 

of the immobilization conditions. The results show that surface energy, steric hindrance and pH 

of spotting buffer have great effects on protein immobilization. Under optimal conditions, 

biological activities of four immobilized anti-tumor marker antibodies were evaluated in 

multiplex immunoassay for the detection of the corresponding tumor markers. Results indicated 

that chitosan functionalized surface displayed the highest binding capacity and allowed to retain 

maximal biological activity of the four tested antibody/antigen systems. Thus, we successfully 

demonstrated the application of amino-based surface modification for antibody microarrays to 

efficiently detect tumor markers. 
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1. INTRODUCTION 

In the past decades, tumor markers have been routinely detected for cancer diagnosis in clinical 

oncology
1, 2

. However, due to the diversity and variation in different cancers, no single tumor 

marker is sensitive and specific enough to meet strict diagnostic criteria. Therefore, a 

combination of tumor markers is required to increase sensitivity and to establish distinct patterns 

to increase specificity
3
. Owing to multiplex detection, antibody microarrays appear as powerful 

tools for screening and identifying tumor markers, with the advantages of high-throughput, 

minimal sample volume requirement and low-cost. The immobilization procedure of antibodies 

is a crucial step in the elaboration of efficient antibody microarrays. Many studies have reported 

that analytical performance of microarray mainly depends on surface chemistry and detection 

conditions to prevent loss of biological activity as well as achieving high signal-to-noise ratio
4-10

.  

Methods for immobilizing probe proteins on solid support range from covalent binding and 

affinity ligand capture, to simple physical adsorption
11

. Covalent binding gives a durable and 

stable linkage to the solid substrate, but can lead to partial loss of biological activity of the 

immobilized proteins
12, 13

. Proteins can be covalently grafted onto chemically reactive surfaces, 

like epoxide or succinimide ester functionnalized surfaces, via their amino groups. Sometimes it 

is required to activate proteins for coupling and this may reduce the affinity of probe proteins. 

The pre-treatment of the probes burdens the preparation step and can limit the types of 

biomolecules that can be attached. Although the affinity capture retains the native conformation 

of immobilized proteins and should permit to control their orientation, it requires conjugation of 

the probe protein to be immobilized with an affinity tag (polyhistidine, biotin, etc) and surface 

modification of the substrate
14

. Compared to covalent binding and affinity, physical adsorption 

offers the simplest process for immobilization with ample binding capacity in some cases
6, 11

. 

Amino-functionalizations of the surface are convenient and popular methods for protein 
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immobilization via adsorption. Kusnezow and co-workers
6
 modified the glass slide with (3-

aminopropyl)trimethoxy silane (APTES) and poly-L-lysine to physically adsorb proteins onto 

surface, and evaluated the performances of such protein microarrays in comparison with other 

commercial glass slides. Signal intensity, background and spot morphology on poly-L-lysine 

modified surfaces were of sufficient quality. In contrast, APTES glass surfaces showed high 

background signal, which was about 4-5 times more intense than the background on poly-L-

lysine slides. Various reactive molecules (like functional polymers) with amine functionality 

have also been used to modify glass surface resulting in more selective and sensitive protein 

microarrays. Compared to the monolayers, multilayer coated surfaces with sufficient steric space 

better maintain the native conformation of proteins and prevent the loss of biological activities
6, 8, 

15, 16
. Kim et al

15
 modified the glass slide surfaces with either monolayers produced by 

silanisation or with polymer layers for protein chip implementation. Covalent immobilization 

yield and non-specific adsorption were examined by quantifying IgG-peroxidase conjugates 

immobilized to polymer-grafted glass substrates. Polymer-grafted glass substrates showed that 

non-specific adsorption was reduced by 10-60 % as compared with 3-aminopropyltriethoxysilane 

(APTES)-treated substrate. In particular, chitosan-grafted substrates exhibited very low non-

specific protein adsorption. However, the proteins were covalently bound onto aminated surfaces 

through activation of glutaraldehyde, which made the process more complicated and probably 

reduced the affinity of probe proteins. 

Our recent work
10, 17, 18

 demonstrated that immobilization of antibodies by physical adsorption 

onto chitosan functionalized surface could be better than covalent linking. Lower limit of 

detection and higher dynamic range were obtained depending on the tested antibody. In an effort 

to determine leading factors affecting performances of antibody microarray, different surface 

chemistries were investigated with respect to immobilization efficiency and biological activity of 
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probe proteins. In this study, we evaluated the effect of three different chain-length amino-

functionalizations ((3-aminopropyl) dimethylethoxysilane (APDMES), Jeffamine, and chitosan) 

on the performances of antibody microarrays for the detection of tumor markers (CEA, HSP60, 

PDI and DEFA6) involved in colorectal cancer. APDMES, Jeffamine and chitosan are primary 

amine-bearing molecules. APDMES is small chain molecule with a monovalent silane that 

cannot polymerize. Thus it cannot form a multilayer on the surface. Jeffamine is a longer chain 

diamine. Its chain is composed of ethylene glycol and propylene glycol units increasing the 

distance between the amine group and the surface, as well as the chain mobility. Moreover, the 

presence of the propylene glycol units enhances the hydrophobic behaviour of the molecule. 

Finally, chitosan is a long chain highly aminated biopolymer composed of glucosamine units 

which give it a hydrophilic behaviour. These three aminated surfaces should vary in terms of 

surface energy, surface hindrance and amine surface density. The immobilization efficiency of 

antibody and its biological activity were addressed as a function of these parameters. The 

spotting pH buffer was optimized for enhancing antibody immobilization while preserving 

biological recognition on the miniaturized system. 

 

2. MATERIALS AND METHODS 

2.1. Materials. 

All chemicals were of reagent grade or the highest grade commercially available. They were 

used as received unless stated otherwise. Bovine serum albumin (BSA) lyophilized powder 

fraction IV, dimethyl sulfoxide (DMSO, anhydrous, 99.9 %), 0.01 M phosphate-buffered saline 

(PBS, pH 7.4) at 25 
o
C (0.0027 M potassium chloride and 0.138 M sodium chloride), sodium 

dodecyl sulfate (SDS), sodium acetate, sodium bicarbonate, sodium carbonate, N-

Hydroxysuccinimide (NHS), Jeffamine M-600 (polyoxypropylenediamine, Mw = 600 g/mol), N, 
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N’-diisopropylcarbodiimide (DIC), tetrahydrofuran (THF) (purum grade), polyvinylalcohol 

(PVA), (3-aminopropyl)dimethylethoxysilane (APDMES) and Coomassie brilliant blue (CBB) 

( >95% purified dye), all were obtained from Sigma-Aldrich (St. Quentin Fallavier, France). 

Tween 20 was purchased from Roth-Sochiel (Lauterbourg, France). Chitosan (Mw=470 000 

g/mol) was modified to obtain 94 % of deacetylation degree (DD).  

Borosilicate flat glass slide (76 x 26 x 1 mm) were purchased from Schott (Mainz, Germany). 

Anti-tumor antibodies and tumor antigens were described in previous report
19

 for HSP60, in 

patent application WO2010/004214 for PDI and CEA
20

 and in patent application 

WO2010/112777 for DEFA6
21

. DL647 is a fluorescence dye (supplied by bioMérieux), used to 

conjugate with anti-CEA antibody for sandwich assay detection. Cy3-labeled goat anti-rabbit 

antibody immunoglobulin G (IgG) and Cy3-labeled streptavidin were purchased from Jackson 

ImmunoResearch and Sigma-Aldrich, respectively. Hydrogen peroxide (H2O2) solution (30 vol.) 

was obtained from Gilbert Laboratories (Hérouville Saint-Claire, France). Ultrapure water (18.2 

M) was delivered by an Elga water system. 

0.01 M PBS or PBS 1X (pH 7.4) was prepared by dissolving the content of one pouch of dried 

powder in 1 L of ultrapure water. 0.02 M sodium carbonate buffers at pH 10.7 were prepared 

from 0.1 M NaHCO3 and 0.1 M Na2CO3 solutions in ultrapure water. Washing buffer contained 

PBS 1X and 0.1 % Tween 20 (PBS-T) at pH 7.4. Blocking solution was prepared by dissolving 

10 g of BSA in 100 ml of PBS–T. 

2.2. Surface functionalization of microstructured glass slide. 

Flat microscope glass slides were microstructured as described previously
22-24

. In our 

microstructured glass slides, each well corresponds to independent microarray, which allows for 

multiplexed parameters detection (like buffer, tumor marker, surface chemistry etc) in one assay. 

Then they were aminosilanized with (3-aminopropyl) dimethylethoxysilane (APDMES) as the 
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following protocol: The slides were washed with fresh piranha (H2SO4/ H2O2, 7:3, v/v) for 30 

min in the ultrasonic bath and rinsed with DI water. The substrates were dried under nitrogen 

stream at 150
o
C for 2h. APDMES in pentane (dried over molecular sieves) was added (APDMES 

from 0.06 % to 0.6 %, v/v) and allowed to react at room temperature under stirring for 1h. 

Pentane was evaporated, and the reaction was allowed to proceed under nitrogen stream at 150
o
C 

overnight. Aminosilanized slides were rinsed with pentane, THF and dichloromethane in 

ultrasonic bath for 10 min each. 

Alternatively, microstructured glass slides were silanized with tert-butyl-11-(dimethylamino) 

silylundecanoate (TDSUM) and carboxylic acids were deprotected as described previously
9, 25-27

. 

Activation of carboxylic acid was carried out with a mixture of NHS/DIC (molar ratio 1:1, 0.1 M 

in THF) overnight at room temperature to obtain NHS surface. Then slides were washed for 10 

min in THF and 10 min in dichloromethane under ultrasound.  

NHS slides were substituted with Jeffamine (0.1 M, THF) overnight at room temperature to 

generate amino groups on the surface (Jeffamine surface). The slides were then washed for 30 

min with 0.1% SDS at 70
o
C and rinsed with ultrapure water. Chitosan surface was obtained by 

derivatization of the NHS surface with chitosan solution at 1 mg/mL dissolved in acetic acid/DI-

H2O mixture. The concentration of acetic acid was determined by the degree of deacetylation 

(DD) of the chitosan and the expected concentration of chitosan. The structure formulas of the 

three amine reagents and surface modification steps are illustrated in Scheme 1. 
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Scheme 1. Scheme of structure formula of APDMES, Jeffamine M-600 and chitosan; Successive 

surface modification steps with carboxysilane, aminosilane, jeffamine and chitosan derivatives. 
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2.3. Evaluation of amine grafting density on amino-functionalized surfaces. 

The grafting density of amino groups on the surface was determined using the modified 

ADECA ((amino density estimation by colorimetric Assay) method 
28

 developed by Coussot et 

al.
29, 30

. ADECA method allows estimating from 0.03×10
14

 to 40×10
14 

N
+
/cm

2
. 

Solution S1 was prepared by mixing 100 ml methanol, 50 ml glacial acetic acid and 850 ml DI 

water. CBB solution (S2) was prepared by dissolving 50 mg of CBB in 50 mL methanol and 25 

mL acetic acid under ultrasonic bath. Following complete dissolution, DI water was added to a 

final volume of 500 mL. The final composition was 0.1 mg/ml CBB in mixed solution of 10% 

(v/v) methanol, 5% (v/v) acetic acid and 85% (v/v) H2O. The detection solution (S3) was 

prepared by mixing 50 mL of 1 M ammonia buffer with 50 mL of methanol. 

Amino surfaces were protonated in solution S1 for 10 min, followed by immersion in solution 

S2 for 15 min for coloration of the surface, then washed with solution S1 for 3 x 10 min and DI 

water for 10 min under stirring. After drying by centrifugation, slides were transferred into 

solution S3 for 5 min under stirring for de-coloration, and this solution was collected for 

absorption measurement at 611 nm. Added volume of solution S1, S2 and S3 was set in order to 

fully immerse glass slide sample. The amine density of the sample was quantified by the amount 

of CBB released in solution S3. Each surface was tested at least for four times, and negative 

control was freshly pirhanized glass slide.  

2.4. X-ray Photoelectron Spectroscopy (XPS). 

The XPS analysis was performed using an imaging Kratos Axis Ultra (UK) X-ray 

photoelectron spectrometer equipped with a conventional hemispherical analyzer. A 

monochromatized Al Kα (1486.6 eV) operating at 150 W was employed. Spectrum acquisitions 

were performed under ultrahigh vacuum conditions (UHV, 10
-9

 Torr). Sample analysis area were 

0.21 mm
2 

and take off
 
was 90° relative to the substrate surface. The pass energies were 80 and 20 



 

11 

eV for wide-scan and high-resolution elemental scans, respectively. Charge compensation was 

performed with low-energy electrons (0.1 eV).  The C-C, C-H contribution was adjusted to 285 

eV. The data reduction (atomic concentration, shift, curve fitting,etc.) was performed with 

CasaXPS Version 2.3.14 software. 

The operating software Vision 2, corrects for the transmission function. The relative sensitivity 

factors (RSF) were 0.278, 0.477, 0.780 and 0.339 for C 1s, N 1s, O 1s and Si 2p respectively,  

used for determining the atomic concentrations (%AC) of the surface composition. Background 

type was Shirley and Gaussian-Lorentzian peak shape (30%) was used for peak fitting. Full 

widths at half-maximum (FWHM) for the component peaks of Si 2p, C 1s, N 1s and O 1s were 

constrained to be 1.5 eV, 1.4 eV, 1.7 eV and 1.5 eV, respectively.  Component peak positions of 

Si 2p were based on the results by Alexander et al. 
31

 who reported the binding energies of Si(-

O)1, Si(-O)2, Si(-O)3, and Si(-O)4 to be around 101.5, 102.1, 102.8, and 103.4 eV, respectively. 

2.5. Contact angle measurement of amino-funtionalized surfaces 

Amino-functionalized glass slides were characterized for surface energy by contact angle 

measurements (Digidrop Goniometer, GBX, France). De-ionized water, Ethylene-glycol and 

Diiodomethane were used as the probe liquid in all measurements. To minimize the experimental 

error, the contact angle was measured at five random locations for each sample and the average 

value was reported. The surface energies were determined according to Owens-Wendt model. 

2.6. Protein microarray manufacturing and multiplex immunoassays 

Anti-CEA, anti-HSP60, anti-PDI and anti-DEFA6 capture antibodies were spotted 

(Biorobotics, Scienon) at the bottom of microwells of functionalized microstructured glass slides 

(1 type of antibody per microwell) at 10 µM. Spotting buffers were composed of 0.1 M  sodium 

acetate (pH=4.5), PBS 1X (pH=7.4) or 0.05 M sodium carbonate (pH=9.6) with 0.05 % (v/v) 

PVA as additive. Spotting buffers alone and goat anti-rabbit IgG-Cy3 at 0.6 µM were spotted at 

the meantime for negative control and reference protein, respectively. Antibodies were allowed 
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to react with functionalized surfaces under water-saturated atmosphere overnight at 4
o
C. Slides 

were then washed for 2 x 5 min with PBS and for 5 min with PBS-T, and then dried by 

centrifugation for 3 min at 1300 rpm. The slides were blocked with 10% BSA/PBS-T solution to 

limit further non specific adsorption (2 h at room temperature), washed for 3 x 5 min with PBS-T 

and then dried. 

Microwells were then incubated with antigens (CEA, HSP60, PDI and DEFA6 diluted in 4% 

BSA/PBS 1X) at different concentration (one antigen concentration per microwell, CEA and 

HSP60:  0.001 nM, 0.01 nM 0.1 nM, 1 nM, 10 nM and 50 nM; PDI and DEFA6: 0.1 nM, 1 nM, 

10 nM, 50 nM 100 nM and 500 nM). The slides were left to react for 1 h at room temperature in 

a water-saturated atmosphere, thoroughly rinsed for 3 x 5 min with PBS-T and then dried.  

Microwells were then incubated with 0.5 µM labeled detection antibodies (anti-CEA-DL647, 

biotinylated anti-HSP60, biotinylated anti-PDI, biotinylated anti-DEFA6 diluted in 4% 

BSA/PBS-T), for 1 h at room temperature in a water-saturated atmosphere. After washing and 

drying, microwells were then incubated with 1 µM streptavidin-Cy3 for 1 h at room temperature 

in a water-saturated atmosphere, except for the wells incubated with anti-ACE-DL647. The 

slides were washed for 3 x 5 min with PBS-T and for 1 min with DI water, followed by drying. 

2.7. Fluorescence scanning 

Slides were scanned with the Microarray scanner, GenePix 4100A software package (Axon 

Instruments) at wavelengths of 532 nm with photomultiplier tube (PMT) 500. The fluorescence 

signal of each antibody was determined as the average of the median fluorescence signal of six 

spots, and the value was divided by the signal of background from surface to get the signal-to-

noise ratio (SNR).  
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3. RESULTS AND DISCUSSION 

3.1. Amine density of functionalized glass slides. 

Organosilanes are widely used in the fields of biosensors and biochip technology. In previous 

studies we reported use of silanizations for effectively introducing carboxylic group on the 

surface of silicon/glass slides for biochip manufacturing
26, 32

. The grafting reaction of a 

monofunctional silane (APDMES and TDSUM) was selected because it is simpler and more 

reproducible than those of multifunctional silanes. Indeed, compared to the grafting of 

multifunctional silanes (e.g. APTES), monofuncitonal silanes are less sensitive to experimental 

conditions like moisture for example. The grafting process (by impregnation) used in our 

experimental set-up allows to overcome the lower reactivity of such monofunctional silanes. As a 

follow-up of this work, microstructured glass slides were functionalized with APDMES at 

various concentrations and quantitative analysis of amine density was performed as described in 

references
29, 30, 33

. Indeed, Coussot et al. have developed a rapid method based on the 

adsorption/desorption of Coomassie Brillant Blue (CBB) for the estimation of available N
+
 

groups on surfaces of polymeric and silica-based materials. 

As shown in Figure 1A, the amine density on aminosilanized glass slides reached a maximum 

around 1.3 x 10
14

 amino groups/cm
2
 and did not depend on the concentration of APDMES 

introduced in the reaction mixture, in the range tested. Our results are in agreement with Oh et 

al.
34

 who have prepared aminosilane layers on glass slides with APDMES and determined the 

amine density as being 10
14

 amino groups/cm
2
. In another study

35
, covalently bound monolayers 

of aminosilane were deposited on dehydrated silicon surface by chemical vapor deposition. The 

results showed that aminosilane concentrations over a wide range did not affect surface coverage 

because the number of reactive sites on the surface was limited. Dugas et al. have demonstrated 

the complete reaction of all surface accessible substrate silanols with monofunctional silane
36

. 
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Similarly, in the present study, the limiting factor is most probably the number of reactive 

silanols on the substrate surface. Complete reaction is achieved with 0.05% of APDMES. 

  

A B 

 

Figure 1. Effect of APDMES concentration (v/v in pentane) on grafting density on glass slide 

(A), and  (B) comparison of functionalized glass slides with APDMES (0.1 % v/v), Jeffamine 

(0.1M) and chitosan (1 mg/mL). 

Jeffamine and chitosan were grafted by reaction with NHS activated carboxylic groups from 

TDSUM modified surfaces (Scheme 1). The reaction leads to the formation of an amide bond. 

Jeffamine is a diamine that can either react with only one NHS ester group leading to an 

aminated surface or react with two adjacent NHS ester groups leading to “bridge” formation with 

no available amine. Chitosan is a polyaminated polymer, whose amine density was also 

determined with the ADECA method (Figure 1B). Results indicated that functionalization with 

these two polymers led to about three time less amine density than with APDMES (Jeffamine: 

4.5 x 10
13

 amino groups/cm
2
,
 
chitosan: 5.3 x 10

13
 amino groups/cm

2
). 

The chitosan used in this study was of high molecular weight (Mw = 470 000 g/mol) with a 

high degree of deacetylation (94 %). These characteristics correspond to a long-chain structure 
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bearing a large amount of amino groups. The lower amine density observed on chitosan surface 

suggests that, steric hindrance or electrostatic repulsion between chitosan molecules may occur 

leading to low amount of available amino groups on the surface. It is also possible that CBB 

could not reach all surface amino groups due to steric hindrance or diffusion limitations related 

to the long polymeric chains. However, the amine density of chitosan modified surfaces was 

similar to the one observed on Jeffamine surfaces. 

3.2 XPS analysis of modified surfaces. 

Tables 1a and 1b summarize the XPS atomic percentage and contributions of C 1s, N 1s, Si 2p 

and O 1s lines.  

Table 1a. Atomic concentration calculated from XPS analysis, N/Si (-O)1: ratio between 

nitrogen and silicon atomic concentrations. 

Surfaces 
Atomic concentration (AC%) 

Si (-O)1 (%) N/Si (-O)1 
C  Si N O 

APDMES 14.6 27.7 1.24 56.4 4.9 1.0 

TDSUM 10.6 29.0 - 60.4 1.1 - 

Jeffamine 22.1 25.0 0.56 52.4 1.4 - 

Chitosan 14.0 27.6 0.42 58.0 2.8 - 

 

Table 1b.  XPS contributions of the C 1s, N 1s, Si 2p and O 1s lines for APDMES, Jeffamine 

and chitosan surfaces. 

Surfaces 

C-C 

C-H 

C-O 

 C-N 

C=O 

O-C-O 

N-C=O 

O-C=O 
NH2-C 

N-C=O 
+
H

3
N-C 

Si(-O)1 Si(-O)4 O-C O=C 

BE 

(eV) 
% 

BE 

(eV) 
% 

BE 

(eV) 
% 

BE 

(eV) 
% 

BE 

(eV) 
% 

BE 

(eV) 
% 

BE 

(eV) 
% 

BE 

(eV) 
% 

BE 

(eV) 
% 

BE 

(eV) 
% 

APDMES 285 74.2 286.1 17.6 287.5 4.5 288.9 3.7 400 67.1 401.5 32.9 101.6 4.8 103.6 95.2 530.7 14 532.8 98.6 

Jeffamine 285 65.3 286.5 33.4  -  - 288.2 1.4 399.7 39.9 401.7 60.1 101.6 1.4 103.5 98.6 532.6 99.2 533.8 0.8 

Chitosan 285 81.2 286.2 13.6 288 4.1 289.3 1.1 399.8 100 - - 102 2.8 103.6 97.2 532.7 98.6 534.1 1.4 
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Figure 2 shows the high-resolution XPS spectra of Si 2p and N 1s of piranha cleaned silica 

surface and mono-functional silane APMDES modified silica. The presence of nitrogen (Table 1) 

on APMDES surface confirmed that APDMES was successfully introduced with our protocol. 

Besides, two fit peaks were present on the high-resolution N 1s spectra (Figure 2 B2) revealing 

two contributions, which were associated with a free amine NH2-C (around 400 eV) and 

protonated amine NH
+

3-C (around 401.6 eV)
37

, respectively. The protonated amine component 

peak is attributed to interactions between the APDMES amine groups and surface silanols on the 

silica substrate, resulting in proton transfer to the amine group 
38

. The presence of the mono-

functional silane on APDMES surface is further supported by the peak at 101.6 eV on the Si 2p 

peak corresponding to Si(O-)1. Indeed, Alexander and co-workers
31

 have shown that the Si 2p 

component peaks in Si (-O)x films can be resolved and quantitative peak fitting can be performed 

based on two assumptions: (1) each Si atom has a valence of four, resulting in four component 

peaks within the Si 2p envelope and (2) the shift of the Si binding energies depends primarily on 

the number of oxygen atoms attached to the Si. The four component peaks of the Si 2p envelope 

are referred to as Si(-O)1, Si(-O)2, Si(-O)3, and Si(-O)4, where the oxygen subscript indicates how 

many oxygen atoms are attached to the Si atom. This deconvolution is widely used to 

characterize Si(-O)x containing films on solid surfaces.
39, 40

 The covalent attachment of a mono-

functional silane to SiO2 results in the formation of a single siloxane bridge between the 

monovalent silane and the silanol groups of the surface. The silicon atom of the silane is then 

involved in only one bond with an oxygen atom and three bonds with carbon atoms. This silicon 

atom can be distinguished from the silicon atoms of the underlying silica involved in four bonds 

with oxygen atoms. As shown in Figure 2 A for the piranha cleaned surface, only one component 

corresponding to Si(-O)4 is observed. In Figure 2 B1, curve fitting of APDMES grafted silica 
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demonstrated the presence of the same contribution at 103.6 eV and an additional contribution at 

101.6 eV. According to Alexander et al.
31

, this new contribution was assigned to the Si (-O)1 

component peak, which is indicative of the Si(-O)1 of APDMES bonded to the silica surface. 

This is further supported by the fact that the ratio of the Si(-O)1 over the area of the N 1s after 

correction by the RSF is close to 1 as expected from the molecule structure (one Si(-O)1 for one 

N). 

  

A  

  

B1 B2 

 

Figure 2. High-resolution XPS spectra of piranha cleaned silica surface Si 2p (A) and of 

APDMES functionalized silica surface Si 2p (B1) and N 1s (B2). 
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Table 1 gives the respective atomic concentration (AC %) of C, Si, N, O as well as the relative 

contribution of Si(-O)1 in the Si 2p for APDMES, TDSUM, Jeffamine and chitosan modified 

surfaces. The relative contribution (%) of Si(-O)1 was calculated as the contribution of the Si(-

O)1  determined by curve fitting over the total area of the Si 2p (Si(-O)1 and Si(-O)4). As 

mentioned above, Si(-O)1 signal originated only from the silane molecule while the Si(-O)4 

originated from the underlying silica. Therefore, this ratio is independent on subsequent surface 

layers as far as they do not contain silicon. On the contrary, due to the mean inelastic free path of 

electrons (constant probing depth), increased surface coverage results in decreased signal 

originating from the substrate and therefore the decrease of Si 2p atomic percentage. The 

percentages of Si(-O)1 for APDMES and TDSUM modified silica were 4.9 % and 1.7 % 

respectively. The Si(-O)1 for TDSUM was the mean of 1.1%, 1.4% and 2.8 % corresponding to 

TDSUM, Jeffamine and chitosan surfaces. A lower Si atomic percentage was observed on 

APDMES surface (27.7 %) compared to TDSUM surface (29.0 %). These results suggest that a 

slightly higher surface coverage was obtained with APDMES compared to TDSUM but remained 

in the same order of magnitude for both surfaces. 

   Upon reaction of TSDUM surface with either Jeffamine or chitosan, the N 1s AC% increased 

from 0 to 0.56 and 0.42 % respectively, whereas the Si 2p AC% decreased as expected. 

According to the N 1s AC%, the amine surface densities are lower for these two surfaces 

confirming the results obtained from the amine colorimetric titration. 

 Figure 3 presents the spectra of N 1s and C 1s of Jeffamine and chitosan surfaces obtained 

after reaction with TDSUM modified surfaces (XPS spectra not shown)
26, 41

 leading to the 

formation of amide bonds. Unreacted amine groups are also present as demonstrated by CBB 
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titration. The four peaks corresponded to C-C, C-H at 285 eV, C-O, C-N at 286.1 eV, C=O, O-C-

O at 287.5 eV and very weakly N-C=O, O-C=O at around 289 eV were observed on both 

surfaces.
42, 43

 The contribution at 286.1 eV can be attributed to the polyoxypropylene backbone 

of Jeffamine or to the polysaccharide backbone of chitosan. On N 1s spectra of Jeffamine, two 

peaks are observed at 399.7 eV and 401.7 eV; These contributions can be assigned to NH2-C or 

N-C=O respectively. Alternatively, they can be attributed to N-C=O and 
+
H3N-C or NH2-C and 

+
H3N-C (Figure 3 A2). The reaction proceeds in tetrahydrofuran, an aprotic solvent. So most 

probably the contribution at 399.7 eV corresponds to NH2-C and the contribution at 401.7 eV to 

a nitrogen involved in an amide bond. In the case of chitosan, the contribution at 401.7 is not 

observed and would suggest that reaction between the NHS ester and the amine of the chitosan 

did not occur. This suggests that chitosan is mostly physisorbed on the TDSUM surface despite 

the washing step with 18.2 M water. 
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A1 A2 

  

B1 B2 

 

Figure 3. High-resolution XPS spectra for Jeffamine (A) and chitosan (B) surfaces.  A1, B1 are 

relative to N 1s spectra. A2 and B2 are relative to C 1s spectra. 

3.3. Surface energy of amino-functionalized glass slides. 

The three amine surfaces were characterized by contact angle measurements to evaluate surface 

energy. The surface energies, viz., the total energy (ET), the dispersive energy (ED) and the polar 

energy (EP) were calculated from the wetting angle (θ) accordingly to the Owens–Wendt 

equations. As is shown in Table 2, the total surface energy was higher for polymer functionalized 
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surface than for aminosilane and Jeffamine functionalized surfaces. Although APDMES and 

Jeffamine displayed comparable polar energy 6.2 mJ/m² and 7.1 mJ/m², respectively, Jeffamine 

surface was more hydrophilic than APDMES surface as indicated its higher total surface energy. 

This could be attributed to the polyoxyproplene backbone of Jeffamine compared to the alkyl 

chain of ADPMES. While Jeffamine and chitosan present comparable dispersive component of 

the surface energy, chitosan surface was the most hydrophilic surface due to its high polar energy 

which was about two times that of APDMES and Jeffamine surfaces. Indeed, chitosan is a 

natural polysaccharide with hydrophilic characteristic as already described
44, 45

, and results 

obtained for APDMES surface is also in agreement with published data
35, 46

. 

Table 2. Wetting properties of amino-functionalized surfaces determined with Owens-Wendt 

model; ET, EP and ED are relative to the total, polar and dispersive energy, respectively.  

Surfaces 
ET 

(mJ/m²) 

EP 
(mJ/m²) 

ED 

(mJ/m²) 

Contact angle (θ /°) 

water 
Ethylene- 

Glycol 

Diiodo- 

methane 

APDMES 31.6 ±2.1 6.2±0.7 25.4±1.9 79.5±0.2 64.6±0.4 59.6±0.5 

Jeffamine 38.4±3.2 7.1±0.5 31.3±2.8 74.1±0.2 50.5±0.5 51±0.4 

Chitosan 43.7±3.5 12.4±1.0 31.4±2.4 62.4±0.5 44.5±0.7 47.2±0.7 

 

3.4. Characterization of antibody immobilization on amino-functionalized surfaces. 

Antibody immobilization was characterized by fluorescence scanning using a goat anti-rabbit 

IgG labelled with cyanine 3 (Cy3). The labelled antibody was spotted at 0.6 µM in various pH 

buffers in order to evaluate the antibody immobilization capacity of the amino-functionalized 

surfaces. The results are expressed as signal to noise ratio (SNR) (Figure 4). For the three 

surfaces, the SNR increased with increasing pH values of buffer suggesting charge dependence 

for the antibody immobilization. The electrostatic interactions between positively charged amino 
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groups on the surface and antibodies bearing negative charge, increased with increasing pH value 

of buffer (in the range of pH studied) except for chitosan functionalized surface. Moreover, 

considering one buffer, the immobilization yield of antibodies is 2 to 6 times higher on chitosan 

surface than on the other two amino-functionalized surfaces. Whereas Jeffamine surface 

displayed half lower amine density than APDMES (Figure 1B), its immobilization density for 

antibodies was slightly higher. Wetting properties of both surfaces suggested that Jeffamine 

surface developed more Van der Waals and non-site-specific interactions, relative to the 

dispersive energy of the surface, with antibodies than APDMES surface. Chitosan surface 

displayed the same amine density as Jeffamine surface, but three main physico-chemical 

differences could explain the higher antibody immobilization density of chitosan surfaces. First, 

the chitosan sample used has a high molecular weight, Mw = 470 000 g/mol, hence developing 

high immobilization surface area. Second, chitosan surface was shown to be more hydrophilic 

than the other two surfaces, with higher polar energy part. Third at pH 7.4 and above, chitosan is 

poorly charged and most probably the interactions developed with antibodies are hydrogen 

bonding. These low energy interactions do not block the protein at the outer surface of the 

polymer layer but allows, by successive H-bond breaking and forming steps, a penetration of the 

immunoglobulin within the polysaccharide layer. However, the immobilization capacity of a 

surface was not directly correlated to its ability to preserve the biological activity of the 

immobilized proteins.  
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Figure 4. Signal to noise ratio from immobilization of IgG-Cy3 in different spotting buffer 

(sodium acetate, pH=4.5; PBS, pH=7.4; sodium carbonate, pH=9.6) on APDMES, Jeffamine and 

chitosan surfaces.  

3.5. Detection of tumor markers on antibody microarray. 

According to previous results 
10

, four monoclonal antibodies directed against tumor markers 

involved in colorectal cancer (anti-CEA, anti-HSP60, anti-PDI and anit-DEFA6) were spotted at 

10 µM on the amino-functionalized surfaces in the different pH buffers (sodium acetate pH 4.5, 

PBS pH 7.4 and sodium carbonate pH 9.6). These capture antibodies were allowed to interact 

with corresponding tumor markers at various concentrations. Detection of the biological 

recognition was performed using biotinylated monoclonal antibodies directed against another 

epitope of the corresponding tumor marker, followed by incubation with Cy3-labeled 

streptavidin. Figure 5 presents the effects of the buffer pH on the biological activity of anti-CEA 

antibody immobilized on chitosan surface for the detection of CEA. The four anti-tumor marker 

antibody/tumor marker systems displayed the same behavior on each amino-functionalized 

surface (data not shown). Typically, SNR increased with the increasing tumor marker 
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concentration and pH value of spotting buffer. The best immunoassay response was obtained 

with carbonate buffer (pH 9.6) in agreement with data obtained for IgG-Cy3 immobilized on the 

various amino-functionalized surfaces. This result demonstrated that carbonate buffer (pH 9.6) as 

the spotting buffer not only facilitated the immobilization of antibodies on aminated surfaces but 

also allowed to maintain their biological activity. Therefore, sodium carbonate buffer at pH 9.6 

was chosen as spotting buffer in the following experiments. 

 

 

Figure 5. Signal to noise ratio (SNR) relative to biological recognition of anti-CEA antibody 

spotted in different pH buffers on chitosan surface, versus CEA concentrations. 

Figure 6 illustrates the results of multiplex immunoassays for the detection of the four tumor 

markers tested on the various aminated surfaces developed for antibody microarray 

implementation. Our recent report 
10

 showed that CEA and HSP60 had more sensitive responses 

than PDI and DEFA6 on various surfaces including chitosan surface. Therefore the concentration 

scale for CEA and HSP60 was set from 0.001 nM to 50 nM and for PDI and DEFA6 was set 
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from 0.1 nM to 500 nM. Comparison of the graphs demonstrated that, on the three amino-

functionalized surfaces, SNR increased with increasing the tumor marker concentration. But the 

range of SNR values depended both on the tumor marker and on the kind of aminated surface. 

SNR was related to the biological recognition between the anti-tumor marker antibody and its 

tumor antigen. All four antibody/antigen systems displayed the lowest SNR on APDMES surface 

and the highest one on chitosan surface, Jeffamine surface showing an intermediate behaviour. 

However, the most significant variations were obtained for the detection of DEFA6 with up to 7 

times SNR on chitosan surface than on Jeffamine or APDMES surfaces (Figure 6D). For the 

other tumor markers, a maximum of 5 times SNR was obtained on chitosan surface compared to 

APDMES surface. These results confirmed that the binding capacity of chitosan surface for the 

immobilisation of antibodies is higher than that of Jeffamine and APDMES surfaces (Figure 4). 

Moreover, chitosan surface allowed maintaining the biological activity of the immobilized anti-

tumor marker antibodies in order to efficiently detect tumor markers. 
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A B 

  

C D 

Figure 6. Detection of tumor markers in multiplex immunoassays on aminated surfaces. (a) 

CEA, (b) HSP60, (c) PDI and (d) DEFA6; capture anti-tumor marker antibody concentration was 

10 µM spotted in sodium carbonate buffer pH=9.6.   

Additionally, SNR curves obtained for CEA and DEFA6 on chitosan surface showed saturation 

plateau from 10 nM and 100 nM of tumor marker, respectively. This result suggested that 

maximum binding efficiency of biologically active immobilized antibodies was reached. For 

HSP60 and PDI, the saturation plateau was not reached in the tested range indicating that the 

detection of these two tumor markers was less efficient than the detection of CEA and DEFA6. 
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On chitosan surface, the limit of detection for each tumor marker can reach their lowest tested 

concentration (CEA and Hsp60 1 pM, PDI and DEFA6 100 pM). Recently we reported that 

DEFA6 has the best analytical performance (a lowest limit of detection at 10 pM and a broad 

dynamic range of 4.7 log) on chitosan surface under the protein spotted in 20 % (v/v) 

glycerol/PBS (pH 7.4) 
10

. In this paper, the signal could be detected even in the case of CEA and 

Hsp60 at 1 pM or below under optimal condition on chitosan surface.  

Although APDMES surface displayed 2 times more amine density than Jeffamine and chitosan 

surfaces, it showed the lowest antibody immobilization efficiency and maintenance of biological 

activity. This was attributed to its low surface energy leading to poor wettability properties and to 

the shortness of the amino chains reducing binding surface capacity. On the contrary, chitosan 

surface was demonstrated to be the most hydrophilic surface leading to more efficient 

immobilization of antibodies and better biological activity. According to our results, surface 

energy and chain length were the leading parameters for protein immobilization. However, it may 

well be that the amine density of chitosan surface was underestimated due to diffusion limitation 

(steric hindrance). Other researchers also indicated
6, 47

 that the most hydrophilic and 

biocompatible surfaces were favourable for the immobilization of proteins and limiting non-

specific adsorption. Moreover, the high antibody immobilization efficiency of chitosan surface 

could be attributed to its long amino chains increasing specific surface. Finally, chitosan is a 

hydrosoluble biopolymer suitable to preserve the biological activity of adsorbed proteins.  
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4. CONCLUSION 

We designed and developed three different aminated surfaces, APDMES, Jeffamine and 

chitosan, on 3D microstructured glass slide to implement antibody microarray for the detection of 

tumor markers involved in colorectal cancer. Influences of amino chain length and physico-

chemical characteristics (surface energy, amine density) on antibody immobilization and on the 

ability to maintain their biological activity were studied. The efficiency of antibody 

immobilization was evaluated using fluorescent-labeled antibody allowing to compare the 

relative surface density obtained with the three aminated surfaces. Similarly, the relative 

biological activity of immobilized antibody on each surface was addressed using a sandwich 

assay with secondary fluorescent-labeled detection antibody. For all tested antibody/antigen 

systems, significantly enhanced signal-to-noise ratio was obtained on chitosan surface. This 

surface displayed the highest surface energy and chain length. Furthermore, sodium carbonate 

buffer (pH 9.6) was found to be the optimal spotting buffer on the three amino-functionalized 

surfaces. Thus to improve the analytical performance of protein microarray it is required to 

optimize surface chemistry and immobilization conditions. In conclusion, antibody microarrays 

based on physical adsorption of proteins on aminated surfaces were successfully developed to 

supply simple and effective tools for the detection of tumor markers. Future work will focus on 

the detection of tumor markers from colorectal cancer sera using our optimized antibody 

microarray. 
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