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ABSTRACT

Substructure coupling is an important tool in several applications of modal analysis. Itis particularly relevantin virtual
prototyping of complex systems and responds to actual industrial needs, especially in an experimental context.
Furthermore, the reverse problem, the decoupling of a substructure from an assembled system, arises when a
substructure cannot be tested separately but only when coupled to neighboring substructures, a situation often
encountered in practice. In this paper, the dynamic behavior of the Ampair test bed wind turbine rotor, made by
three blades — each one bolted to the hub at three points — is analyzed. The aim is both to identify the dynamic
behavior of the rotor starting from the frequency response functions (FRFs) of blades and hub, and to select a
reduced set of relevant DoFs to represent the interface between blades and hub. FRFs to be used in the coupling
procedure are obtained starting from FE model of each substructure, by using a super-element based computational
approach. The decoupling problem, with the aim of identifying the dynamic behavior of each blade from the FRFs
of the assembled rotor and of the hub, is also considered.
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1 INTRODUCTION

In experimental dynamic substructuring two main problems can be defined: addition of substructures (coupling)
and subtraction of substructures (decoupling). Coupling is important to find out the dynamic behaviour of complex
structures from a dynamic description of their components. It is particularly relevant in virtual prototyping of complex
systems and responds to actual industrial needs, especially in an experimental context, i.e. when the model of at
least one subsystem derives from experimental tests. Decoupling can be important in built-up structures where
some components (critical subsystems or joints) cannot be removed or accessed easily. Decoupling involves the
identification of the dynamic behaviour of a structural subsystem, starting from information about the remaining part
of the structural system (residual subsystem) and from the known dynamic behaviour of the complete system.

Addition of substructures (coupling) can be seen as a structural modification problem [1]. Similarly, the decoupling
problem can be seen as a structural modification problem with negative modification. Due to modal truncation
problems, in experimental dynamic substructuring, the use of FRFs (Frequency Based Substructuring) is preferred
with respect to the use of modal parameters. The main algorithm for frequency based substructuring is the improved



impedance coupling [2] that involves just one matrix inversion with respect to the classical impedance coupling
technique that requires three inversions. A general framework for dynamic substructuring is provided in [3, 4]: in this
context, the so called dual domain decomposition is very useful for experimental application, since it allows to retain
the full set of global DoFs by ensuring equilibrium at the interface between substructures. A similar formulation for
the decoupling problem is developed and discussed in [5-8].

Whatever be the used approach, the dynamic behaviour (FRFs) at all the coupling DoFs must be determined.
Therefore, if coupling involves transmission of moments, either rotational measurements or techniques involving
a suitable selection of translational DoFs are required, such as the equivalent multi point connection [4, 9] or the
transmission simulator method [10, 11]. With regard to the decoupling problem, additional FRFs at some internal
DoFs of the residual subsystem can be used [6, 12, 13] to avoid ill-conditioning at some particular frequencies.

In this paper, dynamic substructuring is applied to the rotor of the Ampair 600 wind turbine. This system has
been proposed as a test bed by the Society of Experimental Mechanics focus group on experimental dynamic
susbstructuring, to enable advancements in experimental dynamic substructuring technology and theory. Several
specimens of the turbine have been bought. A description of the turbine with modifications made to the system to
make it more linear is presented in [14] together with results from a rudimentary modal test on the whole turbine.
The results of initial modal tests on six blades are reported in [15]. Geometry data about the blades and the hub
have also been made available to members of the focus group.

The aim of this paper is to select a reduced set of relevant DoFs to describe the interface between each blade and
the hub in order to identify the dynamic behavior of the rotor starting from the FRFs of the blades and the hub.
FRFs to be used in the coupling procedure are obtained starting from the FE model of each substructure, by using
a super-element based computational approach. The choice of using computational FRFs is dictated by the need
of being aware of the effect of each simplifying assumption, by comparing the results obtained at each step with the
reference ones. The decoupling problem, with the aim of identifying the dynamic behavior of each blade from the
FRFs of the assembled rotor and of the hub, is also considered

2 THEORETICAL BACKGROUND

The coupled structural system is assumed to be made by two (or more) subsystems joined through a number of
couplings (see Fig. 1). The degrees of freedom (DoFs) of the coupled system can be partitioned into internal DoFs
(not belonging to the couplings) and coupling DoFs (c¢).

2.1 Addition of subsystems

If addition of subsystems (coupling problem) is considered, all subsystems are assumed to be known whilst the
FRF of the coupled system is unknown. In the frequency domain, the equation of motion of a linear time-invariant
subsystem r may be written as:

Z"(wu(w) = f(w) + g (w) (1)
where:

Z" s the dynamic stiffness matrix of subsystem r;

u s the vector of degrees of freedom of subsystem r;

) is the external force vector;

g™ is the vector of connecting forces with other subsystems (constraint forces arising from compatibility conditions).
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Figure 1: Scheme of the substructuring problem.

For the sake of simplicity, the explicit frequency dependence will be omitted. Furthermore, the procedure will be
developed with reference to two subsystems, bearing in mind that it can be easily extended to more subsystems.

The equation of motion of the subsystems to be coupled can be written in a block diagonal format as:

' 200 07 (u® ) (g
Zu=f+g e o zo[lw@ (V@ (" g® (2)
The compatibility condition at the interface DoFs implies that any pair of matching DoFs u'" and u, i.e. DoF / on

subsystem 1 and DoF m on subsystem 2 must have the same displacement, that is u,(” —u®? =o.

This condition can be generally expressed as:

i 1 »] Jul”
Bu=0 i.e. [B( ) Bl )] uo (= 0 (3)

where each row of B corresponds to a pair of matching DoFs. Note that B is, in most cases, a signed Boolean
matrix and it can be written by distinguishing the contribution of the different subsystems.

The equilibrium condition for constraint forces associated with the compatibility conditions implies that, when the
connecting forces are added for a pair of matching DoFs, their sum must be zero, i.e. gi"’ + g% = 0: this holds for

any pair of matching DoFs. Furthermore, if DOF k on subsystem 1 (or 2) is not a connecting DoF, it must be gf(” =0:
this holds for any non-interface DoF.



Overall, the above conditions can be expressed as:

L'g=0 (4)

where the matrix L is a Boolean localisation matrix. Note that the number of rows of L' is equal to the number of
non-interface DoFs plus the number of pairs of interface DoFs.

Egs. (2-4) can be put together to obtain the so called 3-field formulation [3]:

Zu=f+g
Bu=0 (5)

L'g=0

2.1.1 Dual formulation in the frequency domain [3]

In the dual formulation, the total set of DoFs is retained, i.e. each interface DoF is present as many times as there
are substructures connected through that DoF. The equilibrium condition gf” + gf,z,) = 0 at a pair of interface DoFs

is ensured by choosing, for instance, g,(” = —\ and gf,z,) = A. Due to the construction of B, the overall interface
equilibrium can be ensured by writing the connecting forces in the form:

g=-B"\ (6)

where A\ are Lagrange multipliers corresponding to connecting force intensities. Since there is a unique set of
connecting force intensities A, the interface equilibrium condition (4) is satisfied automatically for any A, i.e.

L'g=-L'B"A=0 (7)

Then BT is the nullspace of L7, so Eq. (7) is always satisfied and the system of equations (5) becomes:

Zu+B )\ =1
Bu=0

In matrix notation:

BN ”

that is:



0o z® B(2)T u@ \ = ¢ §@ (10)

Note that B() and B extract the coupling DoFs among the full set of DoFs.
By eliminating A, it is possible to obtain a relation in the form u = Hf, which provides the FRF of the coupled
system [6]:

—1
u= <z—‘ ~z'87 (Bz—‘BT) Bz—‘> f (11)

In expanded notation:

With the dual formulation, the rows and columns corresponding to the coupling DoFs appear twice in HRY. Obviously,
only independent entries are retained.

2.2 Subtraction of subsystems using the dual domain decomposition [6]

If subtraction of subsystems (decoupling problem) is considered, the coupled structural system RU and a residual
subsystem R are assumed to be known whilst the FRF of subsystem U is unknown. The unknown subsystem (U)
and the residual subsystem (R) joined through a number of couplings (see Fig. 2). The degrees of freedom (DoFs)
of the coupled system can be partitioned into internal DoFs (not belonging to the couplings) of subsystem U (u),
internal DoFs of subsystem R (r), and coupling DoFs (c).

It is required to find the FRF of the unknown substructure U starting from the FRF of the coupled system RU.
The subsystem U can be extracted from the coupled system RU by cancelling the dynamic effect of the residual
subsystem R. This can be accomplished by adding to the coupled system RU a fictitious subsystem with a dy-
namic stiffness opposite to that of the residual subsystem R and satisfying compatibility and equilibrium conditions.
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Figure 2: Scheme of the decoupling problem.

According to this point of view, the interface between the coupled system RU and the fictitious subsystem should
not only include the coupling DoFs between subsystems U and R, but should as well include the internal DoFs of
subsystem R. However, it can be shown that the problem can be solved by considering a number of interface DoFs
at least equal to the number of coupling DoFs n.. Therefore, three options for interface DoFs can be considered:

e standard interface, including only the coupling DoFs (c) between subsystems U and R;
e extended interface, including also some internal DoFs (i C r) of the residual substructure;

e mixed interface, including some coupling DoFs (d C c¢) and some internal DoFs (i C r) of the residual
substructure.

In the framework of the dual formulation in the frequency domain (see Section 2.1.1), the union between the coupled
system RU and the fictitious subsystem can be written (see Eq. 10) as:

ZRU 0 BRUT uRY fRU
0 -—zR BRT|QuR}=0(1fR (14)
B BR 0 A 0

Following the same procedure used in Section 2.1.1, it is possible to obtain the FRF of the unknown subsystem U.

T T
BRU |:BRU BR:| HRU 0 BRU [BRU BR} HRU 0
BR’ 0 -—HR||pgR' 0 —HFR

Note that HRY and HR are the FRFs at the full set of DoFs of the coupled system and the residual subsystem.

HU - (15)

0 —HR 0 -—HFR

HRU o] lHRU 0




Figure 3: Assembled Hub FE model (a), a cross section of the model showing the different parts of the assembly
(b) and the first four modal shapes (c,d,e,f).

Figure 4: FEM model of the blade (a) and first four modal shapes (b,c,d,e).

3 CASE STUDY

In this paper the dynamic behavior of the rotor of the Ampair 600 wind turbine is analyzed. The rotor is made by
three blades clamped to the hub by three bolts and two plates that sandwich the blade. The blades are made of
glass reinforced polyester and they are coated with a white epoxy. The hub to which the blades are attached has an
overspeed mechanism to vary the pitch of the blades: the mechanism is activated by centrifugal masses that are
fixed through bolts in the holes at the greatest radial distance from the rotation axis of the hub.

One of the most interesting features in the study of coupling and decoupling problem is the possibility to use both
experimental and numerical data. In this case a Finite Element Model of the whole rotor is developed to extract the
Frequency Response Functions needed to apply the Frequency Based Substructuring methods. In this model all
the alteration to the commercial turbine introduced to reduce the nonlinear behavior are considered. The overspeed
mechanism was potted to reduce the rattling and the free play between the different parts of the mechanism and it
is not considered in this modeling. Moreover, the centrifugal masses that activate the mechanism are not taken into
account and lastly the internal shaft is considered to be directly bonded to the hub.

Four substructures are defined inside the whole rotor: the central hub and the three blades which are identical to
each other, so only two different substructures have to be modeled to find the dynamic behavior of the whole system.
The hub is made of isotropic material whit a negligible damping. For the sake of simplicity it is modeled entirely
in Aluminum Alloy, keeping the chance to eventually consider different materials for each component. The Finite
Element Model of the hub (Fig. 3) is made of around 130000 tetrahedral elements with linear shape function. The
blades are made of Fiber Reinforced Polyester but the mechanical properties are unknown. Here a linear material
is considered and the Finite Element Model of each blade (Fig. 4) is made of around 50000 tetrahedral elements.



Figure 5: FEM model of the rotor (a) and first four modal shapes (b,c,d,e).

Figure 6: RBE at the interface.

The whole rotor, composed by the three blades fixed on the central hub, is also modeled (Fig. 5) with the aim to
compare its behavior to the coupling results and to approach the decoupling of the system. Although the connection
between the substructures is ensured by contacting surfaces, efforts to simplify as much as possible the interface
are undertaken, with the aim to minimize the DoFs involved in the coupling without losing important information
about the dynamic behavior of the interface. After several analysis the connection between the substructures is
modeled by enforcing compatibility only at the translational DoFs of the master nodes of the Rigid Body Elements
(RBEs) which are realized on both edges of each hole (Fig. 6). This 6 points connection (18 DoF) introduces a
relative error lower than 3% in the determination of the first modal frequencies in the range 0-250 Hz compared
to the modal frequencies when the compatibility is enforced on each node on the contact surface. Moreover this
highlights the low influence of the rotational DoFs in the connecting points considered.

To have an idea of the dynamic behavior of the system and of the subsystems, the natural frequencies of the blade
subsystems, of the hub subsystem and of the coupled rotor system are shown in Table 1. For the coupled system,
the values are referred to the simplified connection described above.

Receptance matrices to be used for the coupling with Frequency Based Substructuring techniques are obtained
through a superelement based computational approach (Fig. 7). In this way, the receptance matrix is determined
only on a subset of physical points that are relevant to solve the coupling problem. First, superelements are defined
using a Craig-Bampton reduction of the Finite Element Model; then, the receptance matrix is directly computed
using the mass and stiffness matrices of the reduced system. In the Craig-Bampton method, the reduced mass
M and stiffness K matrices are defined for a subset of physical DoFs and a set of fictitious DoFs representing the
modes of the structure constrained at the connecting points. After condensation, the reduced mass and stiffness

matrices are extracted from the FEM and imported in Matlab environment to find the receptance matrix of the

subsystem at each frequency of interest H(w) = [K — w?M] -



TABLE 1: Natural frequencies of the systems [Hz]

System

Mode Blade Hub Rotor
1-6 0 0 0

7 42,64 1977,77 21,43
8 123,93 1977,77 28,77
9 238,6 2284,54 28,77
10 251,83 3091,28 73,34
11 329,22 3091,29 76,62
12 430,24 3424,74 76,63
13 532,22 3643,71 124,47
14 702,64 3643,79 124,47
15 781,74 3643,81 165,08
16 942,22 4863,77 175,97

Super-Element

72 DoF

(Coupling and
Measurement nodes)

V
Craig-Bampton

reduction

FRFs in relevant DoF

FEM (Nastran)
50000 DoF

6

5

Magnitude [m/N]
6:«

Mass & Stiffness 10 ’ —Computed|
extraction. - Reference

X . "
Direct FRF calculation % 50 100 150 200 250
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Figure 7: SuperElement computational approach for the determination of the receptance matrix.

3.1 Coupling one blade with the rest of the rotor

Coupling between substructures is performed using the dual formulation. The coupled receptance matrix Hg is
defined as:

Hc =H — HB'(BHB') 'BH (16)

where H is the receptance matrix of the whole system assembled using the dual approach, and B is the signed
boolean matrix that defines the compatibility condition.

The receptance matrix of the hub substructure (HM) is determined at 18 coupling nodes (6 for each blade, see
Fig. 8a), by considering 16 modes for the Craig Bampton reduction. The receptance matrix of the blade substructure
(HB) is determined at 18 nodes (6 coupling nodes and 12 internal nodes, see Fig. 8b), by considering also in this
case 16 modes for the CB reduction. To analyze the single coupling interface, a substructure composed by the hub
and 2 blades is also considered, in this case the receptance matrix (HH+2B) is defined at 42 nodes (6 coupling nodes
and 36 internal nodes, see Fig. 8c). In this case, due to the more complex behavior of the substructures, 20 modes
are considered for the CB reduction.

The reference system of the blade is different from the reference system of the hub, so a rotation is applied to the
receptance matrix of the blade, in order that the two reference systems are coincident and the matrix B is boolean.
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Figure 8: Relevant nodes for coupling in the hub (a), in each blade (b) and in the subsystem composed by the
hub and 2 blades (c).

The two substructures (hub with two blades + blade) are coupled using the dual approach. The receptance matrices
of the substructures have size H"+2B = [126 x 126] and HB = [54 x 54]. The interface among the two substructures
is first assumed at the 18 translational DoF of the 6 coupling nodes. The receptance matrix assembled in the dual
way is expressed as:

Hi5ey 106 Ol126x54]
H= HB (17)
Osaxi2e)  Hisaxsg
The matrix B that defines the compatibility condition is:
B = |lisx18] Opsx114) —lisx1g 0[18><36]} (18)

where matrices ljnxn) and Opnxm) are respectively the square diagonal unit matrix of size n and the null matrix of
size [n x m].

The receptance matrix of the assembled system is computed using Eq. (17) with a frequency resolution of 0.1 Hz.
The natural frequencies (estimated from peaks of the receptance modulus) are determined very accurately: in fact,
the coupling procedure itself does not introduce any error in the natural frequencies, when compared to the natural
frequencies obtained from the FEM with the simplified interface shown in Fig. 6.

However, a large number of measurements should be performed to determine the receptance matrices of the
substructures at all the translational DoFs of the coupling nodes. Therefore, efforts are undertaken to reduce the
number of DoFs involved in the coupling procedure. The aim is to find a subset of relevant DoFs to solve the
coupling problem without losing information.

After several analyses, a subset of 9 relevant DoFs is found (see Fig. 9a). In order to have a limited error, the
selected DoFs should be able to represent the type of connection that in this case is a rigid joint, enforcing con-
straints on 6 DoFs. So all the translational and rotational actions should be reproduced through forces acting on the
selected DoFs.

Trying to further reduce the number of interface DoFs, using for instance the set of 7 DoFs shown in Fig. 9b,
drastically worsens the results. The Frequency Response Function for the selected subset of 9 DoFs and for the
further reduced subset composed of 7 DoFs is shown in Fig. 10 compared to the reference model. The subset
composed by 7 DoFs introduces a much larger error compared to the subset of 9 DoFs. Analyzing the FRFs and
reading the values of the natural frequencies in Table 2, the whole FRF appears to be shifted to the left: this is an
effect of a drop in the stiffness of the joint, due to the removal of some coupling DoFs.
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Figure 9: Interface DoFs selected for coupling.
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Figure 10: FRF of the coupled system: reference (—), after coupling 1 blade at 9 DoFs (—) or 7 DoFs (—).

3.2 Coupling the three blades with the hub

The study carried out on a single blade is extended to the problem of coupling the three blades with the hub. Now,
three coupling interfaces have to be considered. To manage all coupling interfaces in a similar manner, a different
reference system is introduced for each coupling interface, having the y axis parallel to the longitudinal direction
of the blade, the z axis perpendicular to the coupling surface, and the x axis defined accordingly. Therefore, the
receptance matrix considered for any of the three blades is always the same, whereas the receptance matrix of the

TABLE 2: Natural frequencies of the coupled system (1 blade with the rest of the rotor).

Mode Reference 7 DoF 9 DoF

number [HZ] [HZ] [Err%e] | [HZ] [Err%]
7 21,4 21,2 -0,93% 21,3 -0,47%
8-9 28,8 28,4 -1,39% 28,6 -0,69%
10 73,3 71,4 -2,59% 72,4 -1,23%
11-12 76,6 73,8 -3,66% 75,2 -1,83%
13-14 1245 114,5 -8,03% 120,8 -2,97%
15 165,1 158,6 -3,94% 162,6 -1,51%
16 176 170,6 -3,07% 174,9 -0,62%
17-18 185,6 181,1 -2,42% 182,6 -1,62%
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Figure 11: FRF of the coupled system: reference (—), after coupling 3 blades (—).

hub, rotated in these references systems, highlights the axial symmetry of the hub.

HHY =

HI
HIII
HII

HII HIII
HI HII
HIII HI

(19)

The receptance matrices of the hub and the blades have the the following sizes: HH = [54 x 54] and HB = [54 x 54].
In the formulation of the coupling problem by considering all the coupling DoFs, the matrices H and B are as follows:

Hiicss Omsaxsay Opsaxsa)  Opsaxss)
O(54x54] HE4X54] Osaxsa)  Opsaxsa)
H= B (20)
Opsaxsa)  Opaxsa)  Higaxsa Osaxsa)
Osaxs4)  Osaxsa)  Opsaxsa HE4 «54]
liex18] Opiex1s] Opisx1s] —li1ex18) Opexss)  Opexi1g)  Opax3ss)  Opisx1s]  Opisxag
B = |Onsxig) lsx1s] Opiex1s]  Opsxis)  Opiexzs) —lisx1s] Opiex3s)  Opisxis]  Opiexas) (21)
Opisx1s] Opsxie]  liex18]  Opsxi18]  Opisxse]  Opisxi1g)  Opisxss) —liex1s]  Opisxae)

The FRF of the whole system coupled by means of the 9 DoFs selected above is shown in Fig. 11 compared to the
reference FRF of the rotor. Moreover, natural frequencies of the coupled system are shown in Table 3, compared to

the reference ones.

3.3 Decoupling

In this case, the dynamic behavior of the 3 blades is found starting from the dynamic behavior of the whole rotor
(Fig. 5) and of the central hub (Fig. 3). The problem is tackled in the simplest way, by using the standard interface:



TABLE 3: Natural frequencies of the 3 blades coupled system [Hz]

Mode Reference Coupl. 3 Blades
number [Hz] [Hz] [Err%]
7 21,4 21,1 -1,40%
8-9 28,8 28,6 -0,69%
10 73,3 71,3 -2,73%
11-12 76,6 74,2 -3,13%
13-14 124,5 119,2 -4,26%
15 165,1 158,8 -3,82%
16 176 172,8 -1,82%
17-18 185,6 179,4 -3,34%

only the DoFs that physically connect the residual substructure (the hub) and the unknown subtructure (the 3 blades)
are used as interface DoFs. In this way, all decoupling techniques bring to the same results. To decouple the
systems in order to find the dynamic behavior of the blades, the dual decoupling technique is used. It is expressed
by the following relation that allows to find the receptance matrix of the unknown system:

e [0 ] o] (B 0[5 ] o]) e

where HR is the receptance matrix of the whole rotor and H is the receptance matrix of the hub. The previous
matrices are both defined only for the standard interface DoFs, which connect the residual substructure and the
unknown substructure to each other and their size is [54 x 54]. In this analysis, 60 modes for the whole rotor and
16 modes for the hub are taken into account. Furthermore:

HR 0
0 _HH‘| (22)

liex18]  Opisx1s] Opex1s] —li1sx1g)  Opsx1g]  Opisxig
{BR BH} = [BR BH} = |Opsx1g] lisx1s]  Opexig)  Opsx1g)  —liisx1s]  Opisxig (23)
Oprex18] Opsx1e] liiexis;  Opsx1g]  Opsxigy  —lisxig

Also in this case, three different reference systems — one for each blade — are introduced to express the FRFs
in coupling nodes. The three blades that represent the unknown structure are not connected together, so that the
receptance matrix of the unknown system H®8 is expected to be a block diagonal matrix composed by three matrices
nominally identical to each other, because of the radial symmetry:

HB1 ~ ~0
H3B - |~0 HB2 =~0 (24)
~0 ~0 HB

The decoupling problem is solved using all the translational DoFs of the reduced interface. The identified dynamic
behavior (Fig. 12) of the blade reproduces exactly the reference behavior of the blade except for frequencies be-
tween 0 and 13 Hz. This is probably due to numerical problems related to the computation of rigid body modes,
that are often troublesome for FE software. The dashed line represents the FRF between two DoFs belonging to
different blades. As stated previously, it should be theoretically zero. Actually, due to the approximations involved in
the use of the reduced interface, it is not zero, but it is several orders of magnitude lower than other FRFs, except at
resonances, whose amplitude is not significant being the model undamped.
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Figure 12: FRF of a blade: reference (—), after decoupling (—); FRF between two different blades (- - -).

4 SUMMARY AND DISCUSSION

In this paper, the rotor of the Ampair 600 wind turbine is considered as a test bed for dynamic substructuring, with
the aim of selecting a reduced set of relevant DoFs to describe the interface between each blade and the hub.
The connection between these two items is ensured by mechanical contact, and therefore compatibility should be
enforced between all facing nodes on the contact surface. A first significant reduction is achieved by enforcing
compatibility only at the translational DoFs of 6 points, representing the edges of the holes trough which the blade
is bolted to the hub. Such simplified connection (18 DoFs for each blade) introduces a relatively low error in the
natural frequencies in the range 0-250 Hz. A second reduction is achieved by enforcing compatibility only at 9 DoFs,
selected so as to obtain a behavior similar to that of a rigid joint: the additional error introduced by this operation is
quite low. Any further attempt to reduce the number of interface DoFs drastically increases the error.

The reduced 9 DoFs interface provides good results in both the considered coupling cases: (a) hub plus two blades
coupled with one blade and (b) hub coupled with three blades. In the decoupling case, good results are obtained
using the 18 DoFs interface, meaning that the implementation of the procedure is correct. The next step will consider
the use of the reduced 9 DoFs interface.

Further developments are envisaged in several directions. First of all, the model of the blade is not very precise,
since it considers a homogeneous and isotropic fiber reinforced polyester. On the contrary, it has been pointed
out that the reinforcing glass fabric is placed only in the outer part of the blade, and therefore a non homogeneous
orthotropic material should be considered. A second line of development is to consider noise polluted FRFs to
check the robustness of the technique. Thirdly, experimentally measured FRFs should be used for sub structuring.
In fact, the use of computational FRFs is justified by the need of checking the effect of each simplifying assumption,
but in view of the use of experimental FRFs.
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