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Abstract—This paper addresses the problem of competition
vs. cooperation in the downlink, between base stations (BSs),
of a multiple input multiple output (MIMO) interference, het-
erogeneous wireless network (HetNet). This research presents a
scenario where a macrocell base station (MBS) and a cochannel
femtocell base station (FBS) each simultaneously serving their
own user equipment (UE), has to choose to act as individual
systems or to cooperate in coordinated multipoint transmis-
sion (CoMP). The paper employes both the theories of non-
cooperative and cooperative games in a unified procedure to
analyze the decision making process. The BSs of the competing
system are assumed to operate at the maximum expected sum rate
(MESR) correlated equilibrium (CE), which is compared against
the value of CoMP to establish the stability of the coalition. It is
proven that there exists a threshold geographical separation, dth,
between the macrocell user equipment (MUE) and FBS, under
which the region of coordination is non-empty. Theoretical results
are verified through simulations.

I. INTRODUCTION

Small cells are an easily deployable solution to the increas-

ing demand for capacity. Underlay small cells improve the

capacity of the network through frequency reuse and higher

link gains due to shorter distances to the user equipment

(UE). On the downside the unplanned deployment of small

cells in the larger cell structure creates unforeseen interference

conditions. Such dynamic interference situations require novel

solutions [1].

Coordinated multipoint transmission (CoMP) introduces

dynamic interaction between multiple cells to increase network

performance and reduce interference. In our research we

consider the CoMP scheme of joint transmission (JT) [2]. We

begin with the hypotheses that JT must be a rational decision,

which is profitable for both macro- and femto-systems, since

these systems may belong to independent operators/users. In

human interactions, cooperation among a group is justifiable

if all the members are better off in that group than if they

were in any other group structure among themselves. This

rational behavior is embedded in the solution concept of core

in coalition formation games.

Past research of heterogeneous networks (HetNets) of

macro- femtocells, has used both non-cooperative and coop-

erative games. In [3] a Stackelberg game is formulated where

pricing is employed to move the equilibria towards a tolerable

interference level for the macrocell base station (MBS). In

[4] a potential game based analysis of Nash equilibrium (NE)

of power and subcarrier allocation, for a multicell interfer-

ence environment is presented. In [5] power distribution over

resource blocks of cognitive femtocell base stations (FBSs)

is analyzed for their correlated equilibrium (CE). In [6], [7]

ǫ-correlated equilibrium solution is presented for underlayed

femtocells to minimize interference to the macro-system. CE

is the form of equilibrium used in this paper as well.

In [8], [9] coalition formation games with externalities are

used to group the femtocells to mitigate collisions and reduce

interference. In [10] a coalition game together with the solution

concept of recursive core is used to model the cooperative

interaction between macrocell user equipment (MUE) and

femtocell user equipment (FUE). They conclude that forming

of disjoint coalitions increases the rates of both MUE and

FUE. In [11] a coalition formation game is employed to par-

tition a dense network of femtocells to minimize interference

where they introduce a polynomial time algorithm for group

formation. In [12] both transferable utility (TU) and non-

transferable utility (NTU) coalition formation games are used

for cooperation of receivers and transmitters in an interference

environment.

This paper is set apart from the above related research,

since it brings together both theories of non-cooperative and

coalition formation games to model femto-maro interaction in

CoMP. A similar analysis but, for non-CoMP case, is presented

in [13]. The terms non-cooperative and cooperative are in

accordance to their use in the game theory literature whereas

the terms coordination, CoMP, and JT are used synonymously.

The rest of the paper consists of the system model in Section

II, game-theoretic formulation and solution in Section III,

simulation results in Section IV and conclusion with summary

in Section V.

II. SYSTEM MODEL

The paper considers the downlink transmission of a two

tier HetNet, which consists of a single MBS m and a single

FBS f , separated by a distance d > 0. Each base station

(BS) has an active user equipment (UE). It is possible that the

BSs serve more than one user but the assumption is that at

any given instant each BS transmits to only one selected user.

The two BSs each possesses T number of transmit antennas

while each UE possesses R number of receive antennas. Fig.

1 depicts the system model. The origin of the plane is at MBS.

We define two modes of operation, namely uncoordinated
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Figure 1. System model. The attributes on arrows indicate the effective
distance between elements and their respective channel matrices.

and coordinated. In uncoordinated mode the two BSs act

as separate transmitters where MBS serves MUE while FBS

serves FUE. On the contrary if the two cells conform to the

coordinated mode, then the two BSs cooperate through CoMP.

The channel model includes large scale signal attenuation

as a function of distance. Channel gain matrix is multiplied

by a magnitude, which is a path loss function of distance

between BS and UE [14]. The received baseband equivalent

signal yi (resp. yj) at MUE i (resp. FUE j) for uncoordinated

transmission over Gaussian channel are

yi , d−α
imHimVmsi + d−α

if HifVfsj + ni, (1)

yj , d−α
jf HjfVfsj + d−α

jmHjmVmsi + nj , (2)

where dim, dif , djf , djm ≥ 0 are the effective distances

between the respective indexed elements, Him is the R × T
complex valued channel gain matrix from MBS m to MUE i
and Hif , Hjf , Hjm are interpreted analogously. The matrix

Vm (resp. Vf ) is the precoder at MBS (resp. FBS). The

independent symbol vector of unit variance at MBS m (resp. at

FBS m) to MUE i (resp. to FUE j) is denoted by si (resp. sj).

The exponent (−α), where α is a positive real valued scalar,

accounts for path loss, and ni, nj are circular symmetric,

uncorrelated additive withe Gaussian noise (AWGN) vectors.

The achievable rate, treating interference as noise, of the

macro system, Rm
uc , is given by (3) [15].

Rm
uc , log det

(

IR +
d−2α
im HimVmVH

mHH
im

d−2α
if HifVfV

H
f HH

if + σ2IR

)

, (3)

Rf
uc , log det

(

IR +
d−2α
jf HjfVfV

H
f HH

jf

d−2α
jm HjmVmVH

mHH
jm + σ2IR

)

.

(4)

Above σ2 is variance of circular symmetric noise and IR is

the R × R identity matrix. For a matrix X in the complex

field, XH denotes the Hermitian transpose. Analogously we

define the achievable rate, Rf
uc, of the femto-system (4).

Now suppose that the two BSs coordinate through JT. The

coordination is such that, FBS must transmit to both UE their

respective symbols. It is possible to extend this model to

include the case where both BSs transmit to both UE. The

paper only consider MUE receiving JT since FUE are mostly

home/office users who are less mobile and they have higher

downlink gains whereas MUE may be highly mobile and

operate under high signal fading and interference. The received

signals at MUE and FUE in coordinated transmission are then

given by (5) and (6) respectively. Note matrix augmentation

in (5).

yi , d−α
imHimVmsim + d−α

if HifVifsif + ni, (5)

yj , d−α
jf HjfVjfsj + d−α

jmHjmVmsim + nj , (6)

Rf
c , log det

(

IR +
d−2α
jf HjfVjfV

H
jfH

H
jf

d−2α
jm HjmVmVH

mHH
jm + σ2IR

)

. (7)

Above Vif (resp. Vjf ) is the precoder matrix at FBS for

MUE (resp. FUE), Vm is the MBS precoder. The signal model

assumes that the precoders Vif and Vjf are such that there

is no interuser interference from FBS to the two UE. To that

end block diagonalization (BD) can be employed at FBS [16].

The independent unit variance transmission streams from MBS

and FBS to MUE are sim and sif . Then the achievable rates

of FUE Rf
c , and MUE Rm

c , for the coordinated transmission

scheme are given by (7) and (8) respectively [17]. This paper

consider that the precoders at the two BSs are chosen from

a finite predefined code-book. The finite code book model

not only affords a finite action space game, but also reflects

the systems in practical implementations such as LTE, which

define a finite code-book.

III. CORE SOLUTION

Now the paper presents two non-cooperative games one for

the uncoordinated system, G1 and one for the coordinated

system, G2. The relation between G1 and G2 is established

in the ensuing development. Both games have identical set

of players N , {MBS, FBS}, i.e., the two BSs. The action

spaces of the players are their precoder code-books. In the

uncoordinated case (resp. coordinated case) the sets of pre-

coders of MBS and FBS are denoted by Amuc and Afuc (resp.

Amc and Afc) respectively. Let 0 /∈ Afc (does not contain

zero precoder), which avoids the trivial case of non-JT. The

product sets of the action spaces are Auc , Amuc × Afuc

and Ac , Amc × Afc. The utility functions of the two

players in the uncoordinated case (resp. coordinated case) are

Rm
uc and Rf

uc (resp. Rm
c and Rf

c ). The joint action of G1 is

V , (Vm,Vf ) ∈ Auc where Vm ∈ Amuc and Vf ∈ Afuc

and the joint action of G2 is V ∈ Ac such that V , (Vm,Vf )
where Vm ∈ Amc and Vf ∈ Afc. Note that FBS’s action

Vf ∈ Afc, consists of two precoders Vf , (Vif ,Vjf ).
The MBS (resp. FBS) has identical maximum transmit

power in both uncoordinated and coordinated cases, i.e., for



Rm
c , log det

(

IR +
d−2α
im

σ2
HimVmVH

mHH
im +

d−2α
if

σ2
HifVifV

H
ifH

H
if

)

, (8)

0 ≺ IR + d′−2α
im

(

d−2α
if B+C

)

−1

2

A
(

d−2α
if B+C

)

−1

2

� IR + d−2α
im

(

d−2α
if B+C

)

−1

2

A
(

d−2α
if B+C

)

−1

2

, (9)

0 ≺ IR + d−2α
im A

1

2

(

d−2α
if B+C

)−1

A
1

2 � IR + d−2α
im A

1

2

(

d′−2α
if B+C

)−1

A
1

2 . (10)

FBS, max
V∈Afuc

{

Trace
(

VHV
)}

= max
Vf∈Afc

{

Trace
(

VifV
H
if

)

+

Trace
(

VjfV
H
jf

)}

and analogously for MBS.

Now one possesses all the ingredients necessary to define

the non-cooperative games, G1 and G2. The uncoordinated

game is give by the tuple G1 ,

〈

N ,Auc,
{

Rm
uc , R

f
uc

}〉

. The

game when the two systems are in coordination is G2 ,
〈

N ,Ac,
{

Rm
c , Rf

c

}〉

.

Let us set aside the above defined two games for a moment,

we come back to them shortly. To analyze the coordinated

system one must utilize coalitional games from the cooperative

game theory. The most widely used solution concept in coali-

tional games is the core. In order for the two BSs to coordinate

the core of the coalition game must be nonempty. A nonempty

core implies that the grand coalition, which includes all the

players, has a value, which is divisible among the players

so that no other partition of subsets of players can give a

better value to any of the players. The analysis of the core

requires that the cooperative game has TU, which means that

the sum utility of the coalition (the two cells in this case)

renders itself to be shared between the members. But one

observes, from the system model, that the sum rate of the

coordinated system is not arbitrarily transferable between the

two players. Therefore we follow a usual trick employed in

such situations, introduce a monitory transfer i.e., payment,

between the macro and femto systems. It is imperative to

understand that such a monitory transfer is not merely a tool

to make the problem amenable to coalitional game analysis,

but also has an important engineering and economic aspect:

coordination between the systems require sharing power with

external users and communication of symbol information

and channel state information (CSI) between the BSs. Such

transactions have to be compensated in any practical system

in order to provide an incentive to take part in CoMP. After

introducing the payment c, the utility of MBS, Um
c , and FBS,

Uf
c , is given by (11). The payment is of units of rate, which

can be interpreted in monitory terms as applicable.

Um
c ,Rm

c − c, Uf
c , Rf

c + c. (11)

A coalitional game in characteristic form requires a set of

players and a value function [18]. In this paper the set of

players is N , which has three nonempty subsets.

To define the value function we revisit the games G1

and G2. There are multiple definitions of equilibria for non-

cooperative games. This research is interested in CE, which is

a generalization of NE [18].

Definition 1. CE of the game G1 is a probability distribution

p̃uc (·) on the joint action space Auc such that ∀ V ∈ Auc, ∀
V′

m ∈ Amuc, and ∀ V′
f ∈ Afuc

∑

V:Vf∈Afuc

p̃uc (V)Rm
uc (V) ≥

∑

V:Vf∈Afuc

p̃uc (V)Rm
uc (V

′
m,Vf ) ,

(12)
∑

V:Vm∈Amuc

p̃uc (V)Rf
uc (V) ≥

∑

V:Vm∈Amuc

p̃uc (V)Rf
uc

(

V′
f ,Vm

)

.

(13)

Similarly we define the CE of the game G2, the probability

distribution p̃c (·) on the action space Ac, which satisfies ∀
V ∈ Ac, ∀V′

m ∈ Amc, and ∀V′
f ∈ Afc

∑

V:Vf∈Afc

p̃c (V)Rm
c (V) ≥

∑

V:Vf∈Afc

p̃c (V)Rm
c (V′

m,Vf ) ,

(14)
∑

V:Vm∈Amc

p̃c (V)Rf
c (V) ≥

∑

V:Vm∈Amc

p̃c (V)Rf
c

(

V′
f ,Vm

)

.

(15)

While a finite game is guaranteed to have at least one

CE, in most cases there are an infinite set of CE [18]. Out

of this set of CE this paper choose the equilibrium, which

maximizes the expected sum rate. The maximum expected sum

rate correlated equilibrium (MESR-CE) of game G1 is the

probability distribution obtained through solving the following

linear system;

maximize
puc

∑

V∈Auc

puc (V)
(

Rm
uc (V) +Rf

uc (V)
)

,

subject to (12) , (13) , (16)
∑

V∈Auc

puc (V) = 1,

puc (V) ≥ 0, ∀V ∈ Auc,

where puc (V) is the probability of joint action V ∈ Auc and

puc , (puc (V))v∈Auc
. The expected rate of each player at CE

of G1 is

Rm
uc,cor ,

∑

V∈Auc

p̃uc (V)Rm
uc (V) , (17)

Rf
uc,cor ,

∑

V∈Auc

p̃uc (V)Rf
uc (V) , (18)



where p̃uc (·) is the MESR-CE solution of the linear program

(16).

Analogously one can obtain the MESR-CE of game G2 as

the solution to the following linear system;

Rc, cor , maximize
pc

∑

V∈Ac

pc (V)
(

Rm
c (V) +Rf

c (V)
)

,

subject to (14) , (15) , (19)
∑

V∈Ac

pc (V) = 1,

pc (V) ≥ 0, ∀V ∈ Ac,

where pc , (pc (V))V∈Ac
. Let p̃c (·) be the MESR-CE

distribution of game G2. The expected rate of each player at

CE of G2 is

Rm
c,cor ,

∑

V∈Ac

p̃c (V)Rm
c (V) , (20)

Rf
c,cor ,

∑

V∈Ac

p̃c (V)Rf
c (V) . (21)

Now the value function v (·) of the coalition game is as

follows;

v (S) ,











Rm
uc,cor S = {MBS} ,

Rf
uc, cor S = {FBS} ,

Rc, cor S = N .

(22)

At this point let us recap the development of this section so

far: in the above definition of the value function v (S), Rm
uc,cor

in (17) (resp. Rf
uc, cor in (18)) is the expected rate obtained

by the macro system (resp. femto system) while playing the

MESR-CE in G1. On the other hand the value of the grand

coalition, Rc, cor in (19), is the MESR of the two BSs while

playing the MESR-CE in G2. Then the coalitional game in

characteristic form is defined by the tuple G3 , 〈N , v (·)〉.

Definition 2. The core is the set of allocations such that no

subgroup within the coalition can do better by leaving to form

other coalitions [18].

In our game the set of allocations are Um
c and Uf

c in (11),

such that Um
c + Uf

c = Rc, cor.

A. Region of Coordination

As MUE moves closer to FBS, signal level drops and

interference level rises, hence one expects cooperation with

FBS to be preferable to MBS. Since the sum rate can be

apportioned between the two systems through the monitory

transfer, one expects to find a c, at which the core is non

empty. The region where the core is non empty is called, the

region of coordination or identically CoMP region. In a single

input single output (SISO) system a signal to interference plus

noise ratio (SINR) based argument easily demonstrates the

existence of a core but the argument for MIMO requires a bit

more analysis.

Proposition 1. v (N ) ≥ v (MBS)+v (FBS) if and only if there

exists a payment c such that Um
c ≥ Rm

uc,cor and Uf
c ≥ Rf

uc,cor.

Proof: We provide a constructive proof. By (11) and while

G2 system is in CE the utilities are Um
c = Rm

c,cor −c and Uf
c =

Rm
c,cor + c. Let us consider the LHS of iff, which is equivalent

to Rc, cor ≥ Rm
uc,cor + Rf

uc,cor, which implies either Rm
c,cor ≥

Rm
uc,cor or Rf

c,cor ≥ Rf
uc,cor or both. Let us take the case where

Rm
c,cor ≥ Rm

uc,cor and Rf
c,cor ≤ Rf

uc,cor, all other cases can be

similarly proven. Then there exists a positive constant c such

that
(

Rm
c,cor − c

)

= Um
c ≥ Rm

uc,cor and
(

Rf
c,cor + c

)

= Uf
c ≥

Rf
uc,cor since

(

Rm
c,cor − c

)

+
(

Rf
c,cor + c

)

≥ Rm
uc,cor + Rf

uc,cor.

Converse (RHS =⇒ LHS) is proven simply by summing the

two inequalities Um
c ≥ Rm

uc,cor and Uf
c ≥ Rf

uc,cor.

Proposition 1 claims that Rc, cor ≥ Rm
uc,cor + Rm

uc,cor is a

necessary and sufficient condition for the core of G3 to be

nonempty.

In order to establish the final result we need the following

propositions.

Proposition 2. Rm
uc is monotonically decreasing in dim and

monotonically increasing in dif .

Proof: The proof depends on Loewner ordering of pos-
itive semidefinite (PSD) matrices ( [19] 7.7). For two PSD
matrices A, B, we write A � B (resp. A ≻ B) if A−B � 0
is PSD (resp. A − B ≻ 0 positive definite (PD)). Let

A , HimVmVH
mHH

im, B , HifVfV
H
f HH

if and C , σ2IR.

A,B are PSD and C is PD, also d−2α
if B+C is PD. Then the

capacity of maro-system (3) can be reformulated as

R
m
uc = log det

(

IR + d
−2α
im

(

d
−2α
if B+C

)

−

1

2 A
(

d
−2α
if B+C

)

−1

2

)

.

Let 0 < dim < d′im, so (9) (see page above) holds, therefore

the determinant of (24) is no less than the determinant of

(23), which implies that the determinant is monotonically

decreasing in dim.

IR + d′−2α
im

(

d−2α
if B+C

)

−1

2

A
(

d−2α
if B+C

)

−1

2

. (23)

IR + d−2α
im

(

d−2α
if B+C

)

−1

2

A
(

d−2α
if B+C

)

−1

2

. (24)

Next we reformulate (3),

Rm
uc = log det

(

IR + d−2α
im A

1

2

(

d−2α
if B+C

)−1

A
1

2

)

,

and let 0 < dif < d′if . Then (10) holds and by a similar

argument to above we have that the determinant is increasing

in dif . This completes the proof.

Now we consider the properties of Rm
c .

Proposition 3. Rm
c (·) is monotonically increasing in d−2α

if

and d−2α
im and is bounded from below by

γm (dif ,Vif ) , log det

(

IR +
1

σ2
d−α
if HifVifV

H
ifd

−α
if HH

if

)

.



Proof: The proof utilizes Weyl’s inequality for Hermitian

matrices [20]. Let us first consider d−2α
if .Suppose X, Y

are two Hermitian matrices of size n × n, then the Weyl’s

inequality states that

λi(X)+λn(Y) ≤ λi(X+Y) ≤ λi(X)+λ1(Y), i = 1, . . . , n,

where λi(X) is the ith largest eigenvalue of X, i.e., largest

eigenvalue is λ1 (X) and smallest is λn (X). If X, Y are

positive semidefinite (PSD) note that the inequality reduces to

0 ≤ λi(X) ≤ λi(X+Y) ≤ λi(X) + λ1(Y), i = 1, . . . , n.

Let X = IR +
d
−2α
im

σ2 HimVmVH
mHH

im +
d
−2α
if

σ2 HifVifV
H
ifH

H
if

and Y = δ
σ2HifVifV

H
ifH

H
if where δ ∈ R+. Then mono-

tonicity in d−2α
if follows from

0 < det (X) =
∏

i

λi(X) ≤ det (X+Y) =
∏

i

λi(X+Y).

Similarly the proof extends to d−2α
im . Then setting d−2α

im = 0
the lower bound is achieved.

Theorem 1. For some d > 0 under Assumption 1, ∃ dth such

that for dif ≤ dth, the region of cooperation is nonempty1.

Proof: Let V = (Vif ,Vjf ) ∈ Ac, V′ ∈ Auc be any two

actions from the respective spaces and let the location of the

FUE be fixed relative to the FBS at
(

d̄jf , θ̄j
)

. Then Rf
c (V)

and Rf
uc (V′) are constants irrespective of location of MUE.

Now consider that MUE moves along a trajectory with de-

creasing dif and increasing dim. By Proposition 2, Rm
uc (V

′) is

decreasing. As dif → 0, by Proposition 3, Rm
c (dif , ·) → ∞.

Therefore there must exist dif ≤ dth, such that Rm
c (dif , ·) +

Rf
c (V) ≥ Rm

uc (V
′) + Rf

uc (V′). Since the action choice

was arbitrary ∃ dth such that, min
V∈Ac

(

Rm
c (V) +Rf

c (V)
)

≥

max
V∈Auc

(

Rm
uc (V) +Rf

uc (V)
)

.

Therefore ∀ probability distributions p̃uc and p̃c,

we have
∑

V∈Ac
p̃c (V)

(

Rm
c (V) +Rf

c (V)
)

≥
∑

V∈Auc
p̃uc (V)

(

Rm
uc (V) +Rf

uc (V)
)

. This completes

the proof.

Theorem 1 together with Proposition 1 suggests the exis-

tence of a region around the FBS where the core is nonempty.

Thus we establish the rationality of CoMP scheme JT.

IV. NUMERICAL RESULTS

The distances are measured in meters (m), we locate MBS at

(0, 0), FBS at (1000, 0), and FUE (990, 0). Unless otherwise

stated, the default maximum transmit power of MBS is 5 W

and of FBS is 1 W. The two BSs each has 4 antennas and each

UE has 2 antennas. In the coordinated mode of transmission,

by default FBS distributes the power evenly among FUE and

MUE. The AWGN power is set at 10−4 W. In the Fig. 2

MUE moves from far negative x region towards the FBS in

linear trajectories. One such trajectory is shown in the figure.

1Distances are absolute values. See Fig. 1, Section II for distance notation.
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Figure 3. Dependence of CoMP region on FBS transmit power.

The region where coordination is preferred over uncoordinated

transmission is marked. The symmetry in the region is due to

the use of symmetric channel matrices on either side of the

FBS.

In the rest of the figures the trajectory of the MUE is on the

x axis (y coordinate is 0). Fig. 3 denotes the expansion of the

CoMP region as the FBS transmit power increases. One also

sees from the figure that Rc, cor far exceeds Ruc, cor as MUE

approaches FBS. Fig. 4 shows, on the plan of (x, y), the excess

value of the coalition over the value of uncoordinated system.

Fig. 5 demonstrates that as the amount of power allocated

to MUE increases the diameter of the coordination region

shrinks. The term diameter is loosely used to mean the distance

between the entry point and exit point of CoMP region when

the MUE’s trajectory is on x axis (y coordinate 0). Consider

the two MUE power ratios of a and c such that c > a. Then

the explanation for the phenomenon seen in Fig. 5 is that

while operating at ratio c if the FBS switches to CoMP at

the coordination boundary of the ratio a then the reduction

of FUE rate is higher than the increase in MUE rate as still

MUE is further away from FBS than FUE, thus discouraging
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the formation of the coalition till MUE moves closer to FBS.

V. CONCLUSION

This paper considered the downlink of a HetNet consisting

of a maro- and a femtocell. Two non-cooperative games were

devised. The first game, G1, had the two cells in competition.

In the second game, G2, the cells were in coordination (CoMP).

In each game the cells operated in the respective maximum

expected sum rate-correlated equilibria (MESR-CE). Then a

third game, G3, was defined which is a coalition game in

characteristic form with transferable utility. In G3 the value of

the coalition was allowed to be arbitrarily transferred between

the two cells via a payment. The solution mechanism of core,

was used in the coalitional games G3 with value function

based on MESR-CE of G1 and G2. Then the paper proved

the existence of a region where the core of the game G3

is nonempty, which demonstrates that CoMP is a rational

decision in some region and the CoMP decision making

is reduced to identifying a threshold separation dth. CoMP

decision mechanisms for more complex channel models with

more than two cells can be considered in future work.
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