N
N

N

HAL

open science

Stochastic flows and an interface SDE on metric graphs

Hatem Hajri, Olivier Raimond

» To cite this version:

Hatem Hajri, Olivier Raimond. Stochastic flows and an interface SDE on metric graphs. 2013. hal-

00872458v2

HAL Id: hal-00872458
https://hal.science/hal-00872458v2

Preprint submitted on 7 Nov 2013 (v2), last revised 30 May 2015 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00872458v2
https://hal.archives-ouvertes.fr

STOCHASTIC FLOWS AND AN INTERFACE SDE ON
METRIC GRAPHS

HATEM HAJRI®Y AND OLIVIER RAIMOND®

ABSTRACT

We study a stochastic differential equation (SDE) driven by a finite
family of independent white noises on a star graph, each of these white
noises driving the SDE on a ray of the graph. This equation extends
the perturbed Tanaka’s equation recently studied by Prokaj [14] and Le
Jan-Raimond [9] among others. We prove that there exists a coalescing
stochastic flow of mappings solution of this equation. This flow is
unique in law and is coalescing. Our proofs involve the study of a
Brownian motion in the two dimensional quadrant obliquely reflected
at the boundary, with time dependent angle of reflections. Filtering
this flow solution of the SDE with respect to the family of white noises
yields a Wiener stochastic flow of kernels also solution of this SDE. This
Wiener solution is also unique. Moreover, if N denotes the number of
rays constituting the star graph, the Wiener solution and the coalescing
solution coincide if and only if N = 2. When N > 3, the problem of
classifying all solutions is left open. Finally, we define an extention of
this equation on more general metric graphs to which we apply some
of our previous results |7]. As a consequence, we deduce the existence
of a flow of mappings and a unique Wiener flow solutions of this SDE.

1. INTRODUCTION AND MAIN RESULTS

In [14], Prokaj proved that pathwise uniqueness holds for the per-
turbed Tanaka’s equation

(1) dX; = sgn(X;)dW} + N\dW}?
for all X\ # 0 where W' and W? are two independent Brownian motions.
When )\ = 1, after rescaling, setting W+ = Wl\”/gw2 and W~ = %,

(1) rewrites
(2) dX, = 1{Xt>0}th+ + 1{Xt§0}dW;-
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Using different techniques, the same result in the case of (2) has been
obtained also by Le Jan and Raimond [9] (see also [4, 12]|) and they
proved in addition that (2) generates a stochastic coalescing flow. In-
tuitively, a solution to (2) is a Brownian motion that follows W on
its positive excursions and that follows W~ on its negative excursions.
In this paper, we first consider the analogous SDE on a star graph (by
a star graph, we mean a finite number of pieces of R, in which all
origins are identified). It is not difficult to see that a solution has to
be a Walsh’s Brownian motion on the graph. But it is less clear when
it is a strong solution and what are the flows solving this SDE. In this
paper, we give a complete answer to the first question and a partial
answer to the second one. Then we extend this SDE and these two
questions to more general metric graphs : To each edge of the graph is
associated a Brownian motion (such that the family of these Brownian
motions is independent) and the SDE considered here is such that if
X is a solution, then X is a Walsh’s Brownian motion which, when
moving on some edge, follows the Brownian motion associated to this
edge.

1.1. Notations.

e A star graph with N rays, with N > 2, is a metric graph G
with origin denoted by 0 and N edges (E;)i<i<y. Then G is
such that E; N E; = {0} if i # j and such that for each ¢, E; is
isometric to [0, oo via a mapping e; : [0, co[— Ej;. Define ~ the
equivalence relation on G by x ~ y if there exists ¢ such that x
and y both belong to E;, and when it is not the case, we use the
notation x ¢¢ y. Let d be the metric on G such that if z = e;(r)
then |z| := d(x,0) = r, if 2 ~ y then d(z,y) = ||ly| — |2|| and
if v ¢y, d(z,y) = |z| + |y|. We equip G with its Borel o-field
B(G) and set G* = G'\ {0}. For each i, set Ef = E; \ {0}.

e Fix N > 2 and py,...,pny > 0 be such that Zi]ilpi =1. Let G
be a star graph with N rays. We denote by CZ(G*) the set of all
continuous functions f : G — R such that for all i € [1,n], foe;
is C* on ]0, oo[ with bounded first and second derivatives both
with finite limits at 0. For f € C?(G*) and x = ¢;(r) € G*, set
fl(x) = (foe)(r), f'(x) = (foe;)(r). When x = 0 define
g’(o) = > pi(foe) (04) and f7(0) = 32, pilf 0 e)"(0+).

et

D={feCya): [(0)=0}.
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e The two-dimensional quadrant is the set Q := [0,00[%. Its

boundary is denoted by 0Q := 9, QU0D» Q, where 0, Q = [0, 0o[x{0}

and 0,Q = {0} x [0, 00[. We also set Q* = 9\ {(0,0)}.
e For X a continuous semimartingale, we will denote by L;(X)
its symmetric local time process at 0, i.e.

1 t

LX) =lim — 1 d(X),.

((X) = lim 26/0 {1x:1<rd(X)

e For a family of random variables Z = (Z,;)s<; and a process
X = (Xt)t>0, we will use the usual notations

Fli=0(Zyps<u<v<t), F=0(X,,0<u<t).

e A filtration generated by a finite or infinite family of indepen-
dent Brownian motions will be called a Brownian filtration.

e The Walsh’s Brownian motion on G is the Feller diffusion de-
fined via its Feller semigroup (P, ¢t > 0) asin [1]: Let (T;7,¢ > 0)
be the semigroup of reflecting Brownian motion on R, and let
(T, t > 0) be the semigroup of Brownian motion on R, killed
at 0, then for f € Cy(G) and = € E;, denoting f;(r) = foe;(r)

for 1 <j < Nand f(r) =5 pif;,

Pf(x) = T f(Jz]) + T (fi — F)(|2])-
e For a filtration (G;);, X is a (G;),-Walsh’s Brownian motion if

it is adapted to (G;), and if given G, (X;1s, s > 0) is a Walsh’s
Brownian motion started at X,.

1.2. The interface SDE on a star graph. Our main interest in this
paper is the following SDE, we call the interface SDE, which is the
natural extension of (2) to star graphs.

Definition 1.1. A solution of the interface SDE (E) on a star graph
G is a pair (X, W) of processes defined on a filtered probability space
(Q, (Fi)i, P) such that
1) W = (Wh...,WN) is a standard (F;)-Brownian motion in
RN,'
(ii) X is a (Fi)-adapted continuous process on G;
(iii) For all f € D,

N t 1t
3 F00) = F000) + 3 [ PO wemaWi + 5 [ 1(Xas
i=1 V0 0

We will say it is a strong solution if X s adapted to the filtration
(F)e.
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Note that it can easily be seen (by choosing for each i a function
f € D such that f(x) = |z| if = € E;) that on E;, away from 0, X
follows the Brownian motion W¢. Our first result is the following

Theorem 1.2. For all x € G,
(i) There exists a solution (X, W) with Xy = x, unique in law, of
the SDE (E). Moreover X is a Walsh’s Brownian motion.

(ii) The solution of the SDE (F) is a strong solution if and only if
N = 2.

To prove (ii), when N = 2, we will prove that pathwise uniqueness
holds for (E). Then, this implies that the solution (X, W) is a strong
one. The fact that when N > 3, (X, W) is not a strong solution is a
consequence of a result of Tsirelson [15] (see Theorem 3.6 below) which
states that if N > 3, there does not exist any (F;),-Walsh’s Brownian
motion on G with (F;); a Brownian filtration (see also [3]).

When N = 2, one can assume G = R, F} =] —00,0] and Ey = [0, o0.
Applying It6-Tanaka’s formula (or Theorem 3.1 below), we see that (E)
is equivalent to the skew Brownian motion version of (2):

(4) dXt = 1{Xt>0}th+ + 1{Xt§0}th7 + (2]9 - 1)st<X)
where p = p; (note that when p = 1/2, (2) and (4) coincide).

In this paper a stochastic flow of mappings as defined by Le Jan and
Raimond [10] will be called a SFM. We will be interested in SFM’s
solving (E) in the following sense.

Definition 1.3. On a probability space (2, A, P), let W = (W', 1 <
i < N) be a family of independent real white noises (see Definition 1.10
in [10]) and ¢ be a SEFM on G. We say that (o, W) solves (E) if for
alls <t, f €D andx € G, a.s.

feualo) = 1@+ 3 [ U NouaoDdWit 5 [ (gunl@)d

We will say it is a Wiener solution if for all s <t, F¢, C f;f\{.

It will be shown that as soon as (¢, W) solves (E), we have F)} C F?,
for all s <t and thus we may just say ¢ solves (E). Note that when ¢
is a Wiener solution, then .F;‘ft = .7-"8’/7\{ for all s < t.

Our main result is the following

Theorem 1.4. (1) There exists a SFM ¢ solution of (F). This
solution is unique in law.
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(ii) The SFM ¢ is coalescing in the sense that for all s € R and
(r,y) € G2, a.s.,

T8<x7y> = Hlf{t Z S %,t(%) = @s,t(y)} <00

and @s(x) = ps1(y) for allt > Ty(x,y).
(iii) The SEM ¢ is a Wiener solution if and only if N = 2.

Note that (iii) in this theorem is a consequence of (ii) in Theorem
1.2. Let ¢ be a SFM on G and W be a family of independent white
noises such that (¢, W) is a solution to (E). As F)Y C FY;, Lemma 3.2
in [10] ensures that there exists a stochastic flow of kernels K™V (see
[10] for the definition) such that : for all s < ¢, z € G, as.

KZ\;(I‘) = E[5@s,t(x)|‘F;/7\t}]'

A stochastic flow of kernels will be denoted from now on simply by
SFK. We will also be interested on SFK’s solving (£) in the following

sense.

Definition 1.5. Let K be a SFK on G and W = (W',1 <i < N) be
a family of independent real white noises. We say that (K, W) solves
(E) if foralls <t, f €D andx € G, a.s.

6) Ko@) = f@)+ Y [ Keallof Jo)dWit 5 [ Keut )

We will say it is a Wiener solution if for all s <t, FF, c F)Y.

Since we also have f;f\lf C fsﬁ, we may simply say that K solves
(E). Note that when K = §,, then K solves (E) if and only if ¢ also

solves (E). In this case, the SFK K will be called a SFM. We have the
following

Proposition 1.6. K" is the unique (up to modification) Wiener so-
lution of (F).

We do not give a proof of this proposition here. This can be done
following Proposition 8 in [6] where this result is proved when all the
W are equal, or following the proof of Proposition 3.1 in [9] where this
result is proved in the case of (2).

A consequence of Proposition 1.6 and Theorem 1.4 (ii) is

Corollary 1.7. K" is the only SFK solution of (E) if and only if
N =2.
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Proof. When N = 2, ¢ is a Wiener solution of (E). Suppose (K, W)
is another solution of (F), then E[K|W] is a Wiener solution of (E).
Since the Wiener solution is unique, for all s <t and x € G a.s.

54,95,2&(1') = E[Ks,t<x>|f;/,¥]
This yields that 6y, @) = Ks(x) a.s. O

For N > 3, the SDE (F) may have other SFK’s solutions different
from ¢ and K. The problem of a complete classification of the laws
of all these flows is left open.

1.3. Brownian motions with oblique reflections. To prove The-
orems 1.2 and 1.4 we shall study a Brownian motion in the two di-
mensional quadrant, obliquely reflected at the boundary and with time
dependent angles of reflections. We now give an application of our
methods to the obliquely reflected Brownian motion defined by Varad-
han and Williams in [16].

Fix 61,60, €]0,5[ and > 0. Let (B', B?) be a two dimensional
Brownian motion and (X,Y’) be the reflected Brownian motion in Q
started from (z,0) with angles of reflections on 9;Q and on 0,Q re-
spectively given by #; and 5, and Kkilled at time oq, the hitting time of
(0,0). More precisely, for ¢t < oy,

dX, = dB}!+dL,(X) — tan(6,)dL,(Y), Xo =
dY, = dB? —tan(6y)dL(X)+dL,(Y), Yy = 0.

Denote by L; = Li(X)+L(Y') the local time accumulated at 0Q. Then
it is known that oy and L, are finite (see [16] and [17]). Our next result
gives a necessary and sufficient condition for L,, to be integrable with
an explicit expression of its expectation.

Proposition 1.8. We have that
E[Ly,] < o0 if and only if tan(f;)tan(fy) > 1.

In this case

_ x(tan(fy) +1)
ElLo,] = tan(f;) tan(fy) — 1

The assumptions on the wedge and the angles considered here are
more suitable to our framework but our techniques may be applied to
give an expression of E[L,,] in other situations.
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1.4. Extension to metric graphs. Let G be a metric graph (see
section 2.1 in [7] for a definition) and denote by V', the set of its vertices,
and by {E;; i € I} the set of its edges. We suppose that [ and V' are at
most countable. To each edge E;, we associate an isometry e; : J; — E,
with J; = [0, L;] when L; < oo and J; = [0,00) when L; = co. When
L; < oo, denote {g;,d;} = {ei(0),e;(L;)}. When L; = oo, denote
{9i,d;} = {ei(0),00}. For all v € V, denote I} = {i € I; g; = v},
I, ={ielI; di=wv}and I, = I UI . Denote by N, the cardinal
of I,. We assume in this paper that for all v € V', N, < oo and that
inf,c; L; > 0. To each v € V and i € [,, we associate a parameter
pi € [0,1] such that } .., py = 1. Let G* = G \ V. We denote by
CZ(G*) the set of all continuous functions f : G — R such that for all
i € I, foe;is C? on the interior of J; with bounded first and second
derivatives both extendable by continuity to J;. For f € C%(G*) and
x=-e¢;(r) e G\V,set f'(z) = (foe)(r), () = (foe;)"(r) and for
allv € V, set f'(v) = f'(v) and f"(v) = f”(v) where for g a real valued
continuous function on G* such that g o ¢; is extentable by continuity
to J; for all i € I, we set for all v € V,

g(v) =Y pilgoe)(0+) = Y pilgoe)(Liv).
iel iely
Finally set
D={feC}G"): f'(v)=0forallveV}.

We can now define the different notions of solutions of the SDE
(E) on G simply by replacing in Definitions 1.1, 1.3 and 1.5 the set
{1,...,N} by I and by taking for D the domain of functions defined
above.

Note that if (X, W) solves (E), then up to the first hitting time of
two different vertices, (X, W) solves an SDE on a star graph. Using
this observation and Theorem 1.2, one can prove that

Theorem 1.9. For all x € G,
(1) There exists a solution (X, W) with Xy = x, unique in law, of
the SDE (E).
(ii) The solution of the SDE (E) is strong if and only if N, < 2 for
allveV.

Now, Theorem 3.2 in [7] can be applied to construct flows solving
the SDE (F). The idea is the following : suppose there exists a SFM
solution of (E) on G, then before hitting two distinct vertices, the
motion of any point under the flow is governed by a SFM solution
of an interface SDE on a star graph. Then the problem reduces to
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well concatenate flows solutions of SDEs on star graphs to get a flow
solution of the interface SDE (E) on G. More precisely, Theorems 3.2
and 4.2 in [7] with Theorem 1.4 and Proposition 1.6 permit to prove

Theorem 1.10. (i) There exists a SF'M solution of (E).
(ii) A SFM solution of (E) is a Wiener solution if and only if N,, <
2 forallveV.
(iii) There ezists a unique SFK Wiener solution of (E).

Proof Following [7], to each v € V can be associated a star graph
G, with N, rays and an interface SDE (E”) on G,. To understand
how it works, we first consider only adjacent edges to v, then G, is
obtained by extending to infinity these edges without modifying their
skew parameters (p?);es,. The SDE (EY) is the one defined on G, in
section 1.2 by associating for each i € I,,, the white noise € W' to the
infinite length extension of E; where ¢/ = 1if g; = v and € = —1 if
not. Let now W := (W?%),c; be a family of independent white noises
and let (_f(”)vev be a family of SFK’s respectively on G, such that for
allv e V, (K, W) solves (E*) where W¥ = (¢! W*),c;, and such that

L((E er W) = [T £(E" ")
veV
where £ stands for the conditional law. Such a family exists (since by
Theorem 1.4 there exists a SFK solution of E”). Theorem 3.2 in [7]
states that there exists K a SFK on G such that (K,V) solves (E)
and K is obtained by well concatenating the flows K¥. When the flows
K" are SFM’s, then K is a SFM and (i) is proved.

Theorem 4.2 in [7] states that out of a solution (K, W = (W)
of (E) can be constructed a family of SFK’s (K*),cy such that for
all v € V, (K, W") solves (E,) with W* defined as above. If K is
a SFM and if K is a Wiener solution of (E), then for all v € V, K
is a SFM and is a Wiener solution, which is possible only if N, < 2
(by Theorem 1.4 (iii)). Conversely suppose that N, < 2 for all v, then
if (K, W) solves (E), the flows K constructed by Theorem 4.2 in [7]
are SEFM’s and are Wiener solutions. Therefore K is a SFM and is a
Wiener solution.

Theorem 4.1 in [7] with Proposition 1.6 easily imply (iii). O

It has been remarked in [7]| (see the lines before Proposition 2.5 in
[7]) that on general oriented metric graphs when the SDE is driven by
one Brownian motion, we do not have uniqueness in law of a SFM.
Here, this problem is not obvious and is left open.
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Question. Is the SFM given in Theorem 1.10 (i) the law unique
SFM solving (E) 7.

Let us now remark that if (K, W) is a solution of (F), then the law
of (K, W) depends on the choice of the isometries (e;);c; which define
the orientation on GG. However the law of K do not depend on this
choice, and is thus independent of the orientation of G.

Let us finally remark that when N, < 2 for all v € V, then there
exists a unique solution of (£), this solution being a SFM and a Wiener
solution.

1.5. Outline of contents. Let us describe the content of this paper.
In section 2, we study a variation of the obliquely reflected Brownian
motion in Q, where the angles of reflections depend on time and which
is absorbed when it hits the corner. In section 3, we prove Theorem
1.2. In section 4, we prove Theorem 1.4 (i) and (ii), using in particular
the results of section 2.

2. BROWNIAN MOTION IN THE QUADRANT WITH TIME DEPENDENT
ANGLES OF REFLECTION

In this section, we study a variation of the obliquely reflected Brow-
nian motion in @ where the angles of reflections depend on time and
which is absorbed when it hits the corner. This process is defined in
section 2.2. We will be interested in the following two questions:

(I) Is the hitting time oy of (0,0) finite a.s.?

(IT) Is Ly,, the local time accumulated at 9Q at time oy, finite a.s.?
In sections 2.3 and 2.4, we prove that, under some assumptions on the
sequence of the angles of reflections, the answer to these two questions
is positive. The tools used are a scaling property and a precise study,
done in section 2.1, of an obliquely reflected Brownian motion on the
quadrant started at (z,0), with > 0, and stopped when it hits {y =
0}. Finally in section 2.5, we calculate E[L,,].

2.1. Brownian motion on the half-plane with oblique reflec-
tion. We fix 0 €]0,7/2[. Let Z = (X,Y) be the process started from
(z,y) in R x R, obliquely reflected at {y = 0}, with angle of reflection
given by 6. More precisely,

dX, = dB} —tan(0)dL;, Xo ==

dY, = dB}+dL, Yo=y
where B! and B? are two independent Brownian motions and L, is the
local time at 0 of Y. Set S = inf{s: X, = 0}. Denote by P? the law
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of (Z; t < S) when y =0 and z > 0. Note that for all t < S5, Z, € Q.
Observe that we have the following scaling property:

Proposition 2.1. For all x > 0, if the law of (Z; t < S) is Y, then
the law of (xZ,—2; t < 225) is PY.

For z € C, arg(z), R(z) and Z(z) will denote respectively the ar-
gument, the real part and the imaginary part of z. Following [16], if
f is holomorphic on an open set U containing Q* such that f(z) € R
for all z €]0, 00|, then ¢(z,y) := R(f(z + iy)e ") is harmonic on U.
Moreover,

(6)  v1(0).Vo(x,0) =0 for x > 0, where v1(f) = (—tan(d),1).
Indeed, the fact that f is holomorphic with the condition f(z) € R for
all z €]0, co[ implies that f'(z) € R for all z €]0, co[. Thus

Vo(z,0) = (R(f'(x)e ), R(if'(x)e ™)) = f'(x)(cos(f),sin(0))
and (6) follows. These properties imply in particular that (¢(Zias)):
is a local martingale. For b € R and f(z) = z° the function ¢ defined
above will be denoted ¢y.
Lemma 2.2. Let (Z; t < S) be a process of law PY.

(i) If0 <b < 1+420/7, then for all a > z,

x\b
P(suplzsl >a) <a(*),
s<S a

where ¢, = 1 if br /2 < 0 and ¢, = cos(0)/ cos(br /2 — ) other-
wise.
(i) If0 <b<1—20/m, then for all a < z,

anb
: P
P (imglz1 <o) <o ()"
where ¢, = cos(0)/ cos(bm /2 + 0).

Proof. Using the scaling property we may take x = 1. For a > 0, set
o, = inf{t : |Z;| = a}. Recall that for all b € R, (¢p(Zias)): is a local
martingale.

Proofof (i): Fixa > 1and 0 < b < 1420 /7. For ¢ = inf{cos(6), cos(br /2—
0)} and t < S, we have

AV VAR VAL

Moreover
P(sup | Zs| > a) = P(o, < 5).

s<S
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By the martingale property, for all t > 0,
cos(0) = ¢u(1) = E[¢p(Zinsans)]

which is larger than
E[¢6(Zinoa ) 1{oa<s}]-
As t — oo, this last term converges using dominated convergence to

El¢y(Zoo )1 10u<sy] > cha"P(a, < 9).

This easily implies (i).
The proof of (ii) is similar: Fix a < 1 and 0 < b < 1 —26/7. For
cf = cos(br/2+6) and t < S,

CiIZtl’b < op(Zy) < |Zt|7b-
We also have that
P(;2£|Zs| <a) =P, <89).

By the martingale property, for all ¢ > 0,

cos(0) = ¢—p(1) = E[¢_t(Ztnguns)]
which is larger than
E[¢*b(ZtA0a>1{Ua<S}]
and this converges as t — oo to

Bp 1(Zou) L pucs)] > cha B0, < 5).
This easily implies (ii). O

Corollary 2.3. Let (Z,; s < S) be distributed as P?. If =1 +20/7 <
b<1+20/m, then
E(sup | Z,|") < oo.

s<S

Proof. To simplify, assume x = 1. For b €]0,1 + 20/x[, let b’ €]b,1 +
20/7[. Then

Bup|Z) = [ Plup|Z| > a")da
0

s<S s<S
< 1+ cb/ a""’da < 0.
1
For b €] — 1+ 20/m,0[, let ' €] — 1+ 20/7,b]. Then

Bup|Z) = [ Pl |2] < a/da
0 S5

s<S

< 1+cb/ a ""’da < 0.
1
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U

Corollary 2.4. Let (Zy; s < S) be distributed as P°. Let f be an
holomorphic function on an open set containing Q* such that f(z) € R
for all z €]0,00[. Assume there exists C' > 0, by €]0,1 + 20/7[ and
b_ €]0,1 — 20/x[ with

If(z)] < C(|Z\_b’ + \z|b+) for all z € Q.
then setting ¢(x,y) = R(f(x + iy)e*w), we have
Blp(i¥s)] = cos(0) f (x).

Proof. Recall that (¢(Zias)): is a local martingale (stopped at time S).
Using Corollary 2.3, it is a uniformly integrable martingale. And we
conclude using the martingale property. U

Note that the functions f(z) = 2%, for b €] — 1+ 20/7,1 + 20/7],
f(2) = log(2)¢ for £ > 0 satisfy the assumptions of Corollary 2.4.

Corollary 2.5. Let (Zy; s < S) be distributed as P?. Then

cos(0)
cos(f — brr/2)

o Ellog(Ys)] = log(x) — g tan(f),

o E[Y{] =2 forbe] —1+4+20/m, 1+ 20/x],

o E[(log(z7'Yy))* = 7;(1 + 2 tan*(0)).

Proof. The calculation of E[Y?] is immediate. Using the scaling prop-
erty one only needs to do the next calculations when x = 1. Now, for
all ¢ >0 and x =1,

E[R((log(Ys) + im/2)'e )] =0.

Applying this identity for £ = 1, we get the value of E[log(Ys)]. For
(=2, we get

E[((log(Ys))* — (7/2)?) cos(8) + mlog(Ys) sin(d)] = 0.
Thus

E[(log(Ys))?] = (7/2)* — nE[log(Ys)] tan(6)
(m/2)* + 2(7/2)*(tan(0))>.
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2.2. Brownian motion on the quadrant with time dependent
reflections. In all this section, we fix z = (z,0) with = > 0, and
Omin €]0, 5[. Suppose we are given on some probability space (€2, .4, P)
a sequence of random variables (0,,),>0 and a sequence of processes
(Z")p1, with Z" = (Z] = (X", Y}"); t < S,,), such that:

(i) With probability 1, for all n > 0, ©,, €]0n, 5.

(ii) Set Up = x and for n > 1, U, = Y . Set also for n > 0,

Gn=0((0r,2%); 1 <k <n)Va(O).
Then given G,, Z" is distributed as Pp".

Define for 6 €]0, /2],

v1(0) = (—tan(0), 1) and vy(0) = (1, — tan(@)).

Our purpose in this section and in section 2.3 is to construct a process
Z = (X,Y), a reflected Brownian motion in Q stopped at time oy, the
first hitting time of (0,0) by Z.

Set Ty =0 and T, = >}, Sy for n > 1. For n > 0, set

Zt = (Xffiln, }/;%n;;i) forall t € [T2n7 T2n+1[7

Zt = (3/;27”7:23+1’Xt2f7—t22n+1> for all t € [T2n+17 T2n+2[-

Using this procedure, we have defined a process (Z;; t < T,), where
To = lim, o T),. Set for t > T, Z, = (0,0). Then, by construction,
T = 0p. It will be checked in section 2.3 (see Corollary 2.7) that Z is
a continuous process.

Note that there exists B a two-dimensional Brownian motion such
that for n > 0,

dZt = dBt + ’Ul(@zn)dL% forall ¢t € [T2n7 T2n+1[7
dZt = dBt + ’U2(62n+1)d[/? forall t € [T2n+17 T2n+2[7
with L' and L? being the local times processes of X and Y. Define
(vg; t < 0g) by: forn >0
V¢ = U1<@2n) for all ¢t € [T2n7 T2n+1[7
V¢ = Ug(@2n+1) for all ¢ € [T2n+1, T2n+2[-

Then for all ¢ < oy,
t
(7) Zy = Zy+ By +/ vsd Ly
0

where Zy = (2,0) and L = L' + L? is the accumulated local time at
0Q until ¢.

The purpose of the following sections is to answer the questions (I)
and (IT) addressed in the beginning of section 2.
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2.3. The corner is reached. For a > 0, denote o, := inf{t; |Z;| =
a}. Following [16], we will first prove that P(og A o < o0) = 1 for all
K > x. This is the major difficulty we encountered here although the
proof when the angles of reflections remain constant on each boundary
is quite easy (Lemma 2.1 [16]). The main idea is inspired from [2].
Define forn > 1, V,, = UZ*_L -. Then using the scaling property (Propo-
sition 2.1) and the strong Markov property, we ?a"f that f01: alln > 0,
given G,, V41 is distributed as Yg, where ((Xt,Yt); t < S) has law
Po-.

Lemma 2.6. With probability 1, »_ .U, is finite.

Proof. For all n > 1, we have that

U, = zexp <k§n; log(Vk))

We denote by Eg, the conditional expectation with respect to Gj.

By Corollary 2.5, for all k& > 1, Eg, ,[log(Vi)] = —5 tan(©;_;) and

Eg, . [(log(Vk))?] = %2(1 + 2tan?(0_;)). Note now that

> log(Vi) = M, + > Eg,_,[log(V4)]

k=1
where M, := >, (log(Vi) — Eg, ,[log(Vk)]) is a martingale. Denote
by (M), its quadratic variation given by

n 2

> Eo, ., [(log(Vi) — Eq,_, [log(Vi)])"] = vy (1 + tan®(©41)).
k=1 k=1
Thus (M) = oo and a.s. lim, . M,/n = 0. Since infz>o 0, >
Omin > 0, this easily implies the lemma. O

A first consequence of Lemma 2.6 is
Corollary 2.7. With probability 1, lims,, Z: = (0,0).
Proof. For e > 0 and n > 0, set
A ={ sup |Z| > €}

SE€[Th, Thn+1]
By Lemma 2.2 (i), with b = 1, for all n > 0,

P(AS|G,) < sup  cotan(f) U, = cotan(0,i,) U,.

ee]emzn ) % [

Thus by Lemma 2.6, ) P(A|G,) < oo and the corollary follows by
applying the conditional Borel-Cantelli lemma. U
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Lemma 2.6 will be also used to prove
Lemma 2.8. For all K >z, P(og AN og < 00) = 1.
Proof. For all n > 0 and t € [0, S,,41], set
Wt = cos(0,) (X[ —U,) +sin(6,)Y,"!

Recall 0p = lim,,, T},. Define the continuous process (Wy; t < o)
such that Wy = 0 and for n > 0 and ¢ €|T,,, T),11], Wi = V[Q"len +Wr,.
Then, it is straightforward to check that (W;; ¢ < 0y) is a Brownian
motion stopped at oy. Since for all n > 0, U, > 0 and O,, €]0,7/2],
we get that on the event {ox > T}, 11},

sup Wy <2K 4+ Wrp,.

tE[TnyTn+l]

Thus, on {ox = oo}, sup;c,, Wi < 2K + sup,»o Wr,. Now for all
n >0, ngtll = sin(0,)U,4+1 — cos(0,)U, < U,.1. Note that for all
n >0,

Wr,, — Wr, = Wit

Sn+1

This implies that on the event {ox = 0o}, sup,c,, Wi < 2K+3_ -, U,
which is a.s. finite using Lemma 2.6. This shows that a.s. {ox = 00} C
{09 < oo} and finishes the proof. O

And following [16], we can prove
Theorem 2.9. With probability 1, we have oy < c0.

Proof. Set b = 49%”1. Let ¢(z,y) = R((z + iy)be_iemi”) then ¢ is
harmonic on some open set U containing Q*. Using b = M , we have
that

Vo(z,0) = bz’ (cos(Omin), Sin(Opin)),
Vo(0,y) = byb_l(sin(emm),cos( min) )-

Thus for all ¢t < g9 with Z; € 0Q, we have v,.V¢(Z;) < 0. It follows
by (7) and Ito’s formula that for all 0 < e <z < K and ¢t > O

E[¢(Zinoonor)) < &(,0).
Letting ¢ — oo and using dominated convergence, we deduce
E[¢(Zo rox)) < O(,0).

Obviously ¢(2) > cos(0pmin)|2|® for all z € Q. Setting p.x = P(o. <
oK), we get

COS<9min> (Ebpe,K + Kb<1 - pa,K)) S xb-
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From this, we deduce

(K* — 2%/ cos(Omin))
pé,K Z Kb _ €b .

As in [16], since g A ok < 00, lim o pe x = P09 < o), this yields

:L‘b

K coS(Omin)
Letting K — oo, it comes that P(gy < 00) = 1. O

(8) P(oy < o) > 1

Remark 2.10. Using the inclusion {sup,_, |Z;| > ¢} C {0 < 0o}
and (8), we deduce that for all € > 0,

9) lim P(sup |Z;] >¢€) =0

z—0+ t<oo

This fact will be used in section 3.

2.4. The local time process. Following Williams [17]|, we prove in
this section that

Theorem 2.11. With probability 1, L,, = limye, Ly is finite.

Proof. In what follows, we refer to the proof of Theorem 1 in [17] for

more details. Let 8 €]0, 0, A 7/4] and set b = %. Le ¢ be defined
as the function ¢ in the proof of Theorem 2.9, with the parameters
(b, Omin) Teplaced by (b, ). Then there exists ¢ > 0 such that for all ¢
for which Z; € 99, we have v;.V¢(Z;) < —c|Z|*~1. For each v > 0,
define f, = e?. Then f, is twice continuously differentiable in Q*
and

Afy(2) = P £,(2)(b]2]"71)? for = € Q"
Moreover for all ¢ such that Z;, € 00,
Ut-vf'y<Zt) = —’}/ffy<Zt) (’UtV(b(Zt))

For t < oy, set
t

a== [C.vozaL.+ 2 [z
and A, = limy,, A;. Then

Ay > oy /UO |Z, P, + 7; /OO(E|ZSIB_1)2ds.
[t6’s formula implies th(;t for t < oy, 0

F(Z)e = f,(Z) +/ e~ (V(Z).dBy).

0
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Taking the expectation, we get

E[exp < —cy /000 |ZS|?’1dLS)} > f1(Zy).

This easily implies that for all » > 0,

~ o0
E[exp(—ycrbl/o 1{ZS|§T}dLS)} > f1(Zy).

Letting v | 0, we get a.s.

oo
(10) / 1{|Zs|§7"}dLs < 00.
0

Let S, = sup{t > 0 : |Z;| > r}, then by the continuity of Z, S, < oy
and thus Lg, < 0o. By combining this with (10), we get Ly, < co. O

2.5. On the integrability of L,,. In this section, Proposition 1.8 is
proved. We use the notation of section 2.2 in which the process Z is
constructed. Note that L,, = >, L¢ , where L™ is the local time at
0 of Y™ and where Z™ = (X", Y™). Recall that for n > 0, given G,,
the law of Z"*! is IP’?:, where Uy = x and U, =Yg forn > 1.

Let Z° = (X?,Y,%)i<s0 be a process of law P?. Then, if L = L,(Y?),
for all t > 0, Yt(/]\s0 = Bf/\so + L?/\SO where (Bf/\so)t is a Brownian
motion stopped at time S°. Thus E[Y o] = E[L?, ¢0]. Taking the limit
as t — oo and using Corollary 2.3 leads to E[L,] = E[YS]. But
E[Y&] = cotan(f) by Corollary 2.5. This implies that

E[L&t! 1G] = U, cotan(©,,).

Sn+1
Consequently
E[Ls,] = ZE[Un cotan(0,,)].
n>0
Assume that for all n, U, and ©,, are independent, then

n

E[U,, cotan(©,,)] = E[cotan(0,)|E[U,] =--- == HE[cotan(@k)].
k=0
Therefore .
E[L,] =z Z H E[cotan(©y)].

This gives a necessary and sufficient condition to get E[L,,] < co.
Assume that ©,, = 0 €]0,7/2[ for all n, we get

E[L,,] == Z ((:otan(ﬁ))n+1

n>0
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which is finite if and only if 6 €]x /4, 7/2[. In this case
_ xcotan(d) x
1 —cotan(d)  tan(d) — 1’

Assume that ©,, = 6; and Og, 1 = 5. Set ¢; = cotan(f;) and
¢y = cotan(fy). Then

E[L,,] = z(ci +cico+Fey+EcE+--1)
= C1(1+02+clcg—|—clc§+...)
= ca((l+e)+ (1 +e)cca+--)
which is finite if and only if ¢;co < 1. In this case, we have

BlL,,) = )

E[Lq,]

1-— C1C2

Proposition 1.8 is proved.

3. PROOF OF THEOREM 1.2

Theorem 1.2 (i) is proved in section 3.1. For the construction of a
solution, we will use Freidlin-Sheu formula for the Walsh’s Brownian
motion (see Theorem 3.1 below). The uniqueness in law of the solution
of the SDE (F) will follow from the fact that the Walsh’s Brownian
motion is the unique solution of a martingale problem.

Theorem 1.2 (ii) is proved in section 3.2. To prove pathwise unique-
ness for (E) when N = 2, we proceed as in [4] using the local times
techniques introduced in |8, 13]. The fact that the solution of (E) is
not a strong solution when N > 3 is a consequence of a Theorem by
Tsirelson (see Theorem 3.6 below).

We prove Theorem 1.2 only for x = 0, the case x # 0 following easily.

3.1. Proof of Theorem 1.2 (i). Let us recall Freidlin-Sheu formula
(see [5] and also Theorem 3 in [6]).

Theorem 3.1. [5] Let (X;)i>0 be a Walsh’s Brownian motion on G
started from Xo and Bf = |X|; — |Xo| — Li(|X]|). Then B¥ is a
Brownian motion and for all f € CZ(G*), we have

t 1 t
FO0) = £ + [ OaBY 45 [ Ce)ds + FO)L(X)).
0 0
We call BX the Brownian motion associated to X .

Remark that in this formula the local martingale part of f(X;) is
always a stochastic integral with respect to B~. This is an expected
fact since BX has the martingale representation property for (F7*),
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(Theorem 4.1 [1]). This martingale representation property will be
used to prove the uniqueness in law of the solutions to (E).

3.1.1. Construction of a solution to (E). Let X be a Walsh’s Brownian
motion with Xy, = 0 and let BX be the Brownian motion associated
to X. Take a N-dimensional Brownian motion V = (V! ... V%)
independent of X. Let (F;) denote the filtration generated by X and
V. For i € [1, N|, define

t t
Wi :/ 1{XseEi}dB;X+/ Lix.gmpdVs.
0 0

Then W := (W', ... W) is a N-dimensional (F;)-Brownian motion
by Lévy’s theorem and

N t
i=1 70

Then, using Theorem 3.1, (X, W) solves (E). Denote by u the law of
(X, W).

3.1.2. Uniqueness in law. To prove the uniqueness in law, we will apply
the two following lemmas. The first Lemma states that the Walsh’s
Brownian motion is the unique solution of a martingale problem. The
second Lemma gives conditions that ensure that a Walsh’s Brownian
motion is independent of a given family of Brownian motions.

Lemma 3.2. Let (F;) be a filtration and let X be a G-valued (F;)-
adapted and continuous process such that for all f € D,

(1) M= 5000 - 50 - 3 [ 7).

is a martingale with respect to (F), then X is a (F;)- Walsh’s Brownian
motion.

Proof. We exactly follow the proof of Theorem 3.2 of [1] and only check
that with our conventions for f’(0) and f”(0) when f € D, we avoid
all trivial solutions to the previous martingale problem (with the hy-
pothesis of Theorem 3.2 of [1], the trivial process X; = 0 is a possible
solution of the martingale problem (3.3) in [1]). For i € [1, N], set
¢ =1 —p; and let f; and g; be defined by

filz) = alzlpery — pilv|lagn,
2
gi(x) = (fi(x)" = G|zl Lwery + pil2)* L ngr,)-

Then f; and g; are C* on G*. We have f/(x) = ¢; for x € E}, f!(x)

—p; for x ¢ E; and f/(0) = 0. Moreover, for all x € G, f/(x) = 0.
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We also have ¢i(z) = 2¢?|z| for z € E}, gi(x) = 2p?|z| for € E; and
gi(0) = 0. Moreover, g/(z) = 2¢? for x € E;, g/(x) = 2p? for x & E;
and ¢/(0) = 2p;q;. Set Y, := fi(Z;). Although f; is not bounded, by a
localization argument, we have that Y} is a local martingale. Using the

function g;, we also have that (Y;)*—3 Otgg’(ZS)ds is a local martingale.

Thus

t
(Y = / (%21{25657} +p?1{zngi} +Pz‘q@'1{zs:0})d8-
0

Set
Uy = / (Qi_ll{Ysi>0} +pi_11{Y;'<0} + (pi%) 1{Y;:0})dYZ'
0

Then U} is a local martingale with (U*), = t; that is U} is a Brownian

motion. Let ¢(y) = ¢lgysop + pilyy<oy + /PiGily—oy. Then Y is a
solution of the stochastic differential equation

t
v =Yg+ [ ovaus
0

As in [1], the solution of this SDE is pathwise unique and following the
end of the proof of Theorem 3.2 of [1], we arrive at

E[f(Z)|Fs] = Pr—s f(Z)
for all s < ¢t and f : G — R a bounded measurable where P; is the

semigroup of the Walsh’s Brownian motion. O

Lemma 3.3. Let (G;) be a filtration. Let X be a (G;)-Walsh’s Brownian
motion, BX its associated Brownian motion and B = (B*,--- , B) be a
(G:)-Brownian motion in R?, withd > 1. If BX and B are independent,
then X and B are independent.

Proof. Let U be a bounded o(B)-measurable random variable. Then

d S
U =E[U] + Z/ H!dB!
i=1 /0

where H* predictable for the filtration F? and E[[°(H!)?ds] < oco.
Let U’ be a bounded o(X )-measurable random variable. Since BX has

the martingale representation property for FX (Theorem 4.1 [1]), we
deduce that

U =E[U]+ / H,dB¥
0
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with H predictable for F* and E[[;*(H,)?ds| < co. Then H and
(H")1<i<q are also predictable for (G;). It is also easy to check that BX
is a (G;)-Brownian motion. Now

E[UU'] = E[UJEU]+E

d o0 [e.9]
> / H'dB! / H,dBX
i=1 70 0

= E[UE[U] + zd:E UOOO H{H.d(B', BX%}

— E[UIE[V].

O

Let (X, W) be a solution of (£), defined on a filtered probability
space (€2, (F3),P), and such that Xy = 0. Without loss of generality, we
can assume that J;, = FXVFY. Forall f € D, S0 [ /(X)) x,emdW!
is a martingale, and therefore X is a solution to the martingale prob-
lem of Lemma 3.2. Thus X is a Walsh’s Brownian motion. Let B be a
Brownian motion independent of (X, W), denote by BX the Brownian
motion associated to X and set G; = F, V FP. Note that BX is a
(Gy)-Brownian motion. For ¢ € [1, N], define

t t
V;fl — / 1{XS€E¢}st +/ 1{XS§ZEZ}dWSZ
0 0

Then V := (V!,--- V¥) is a N-dimensional (G;)-Brownian motion
independent of BX. By the previous Lemma V is also independent of
X. It is easy to check that for all i € [1, N],

t t
.[/‘/vtZ :/ 1{XS€EZ}dB§ —|—/ ]‘{XS¢E1}d‘/Sl
0 0
This proves that the law of (X, W) is p.
3.2. Proof of Theorem 1.2 (ii).

3.2.1. The case N = 2. To prove that the solution is a strong one, it
suffices to prove that pathwise uniqueness holds for (E). Fix p €]0, 1],
and set § = %.

Lemma 3.4. Let B" and B~ be two independent Brownian motions.
Let also X andY be two continuous processes, with Y; = BX;1{x>0y +
Xilyx,<oy. Then (X, B*,B7) is a solution to (E) or equivalently of

(12)  dX, = lix,s01dB; + 1x,<0ydB; + (2p — 1)dLi(X)
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if and only if (Y, BT, B™) is a solution of the following SDE
(13) dY; = Blyvi=oydB," + 1{vi<0yd By -
Proof. Suppose (X, Bt, B™) solves (12). Set B, = fot Lix,>0pdB +
lix,<oydB; . Then B, is a Brownian motion, and (X, B) is a solution

of the SDE X; = By + (2p — 1)L(X). It well known (see for example
section 5.2 in the survey [11]) that (Y, B) solves

dY;g - ﬁl{yt>0}dBt + 1{Yt§0}dBt

and thus that (Y, B*, B™) solves (13). The converse can be proved in
the same way. O

Proposition 3.5. Pathwise uniqueness holds for (E).

Proof. Lemma 3.4 implies that the proposition holds if pathwise unique-
ness holds for (13). Let (Y, B, B~) and (Y, B, B™) be two solutions
of (13) with Yy =Yy = 0. Set sgn(y) = 1gy~0y — L{y<oy. We shall use
the same techniques as in [4] (see also [8] and [13]) and first prove that
a.s.

d
(14) / Loy —v)2 < .
10,4+00] a

By the occupation times formula
da K Y =Y’
LYY —YN— = [ 1y _yisp—.
/](J,+oo] i ) a /0 Dm0y Y/
It is easily verified that
d(Y — Y, < Clsen(Y3) — sen(¥7)|ds

where C' = (1+4%)/2. Let (f,), € C'(R) such that f,, — sgn pointwise
and (fy), is uniformly bounded in total variation. By Fatou’s Lemma,
we get

da ' o (Ys) = fu(Y))]
LYy —Y’ < Climinf | 1y _ys e s d
/}07+Oo] P ( )a > 1 in /0 {Ys—Y!>0} Y, — V! S

t 1
S Chm lnf/ 1{YS_YSI>O} / f/l(Z:)du ds
n 0 0

where
Z' =(1—=u)Ys+uY,.

It is easy to check the existence of a constant A > 0 such that for all
s> 0and u € [0,1], (Z"), > A~'. Hence, setting C' = A x C, we
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have

1 t
/ Lg(Y—Y’)@ < ('liminf / / | f(Z24)]d(Z") sdu.
]0,+-00] " 0o Jo

a

1
< (C'lim inf/ / | fr(a)| L¢(Z*)dadu.
" 0 JR
Now taking the expectation and using Fatou’s Lemma, we get

d
E{/ Lf(Y—Y’)—a} SC'liminf/ |fi(a)|da sup E[L{H(Z")].
10,+00] a " R a€R,uel0,1]
It remains to prove that sup,cg ,eo1 E[Lg(Z“)} < 00. By Tanaka’s
formula, we have

E[L{(ZY)] = E[|Z'—a|] —E[|Z§ — ] —E{/O sgn(Z" — a)dZ"

< El|zy -z

It is easy to check that the right-hand side is uniformly bounded with
respect to (a,u) which permits to deduce (14). Consequently, since
lim, o L*(Y —=Y') = LY%(Y —Y”), (14) implies that LY(Y —Y”) = 0 and
thus by Tanaka’s formula, |Y — Y”| is a local martingale which is also
a nonnegative supermartingale, with |Yy — Y| = 0 and finally Y and
Y’ are indistinguishable. O

3.2.2. The case N > 3. Let (X, W) be a solution to (F). Then X is
a (F;)-Walsh’s Brownian motion, where F; = F~ v FV. If (X, W)
is a strong solution we thus have that X is a (F}")-Walsh’s Brownian
motion, which is impossible when N > 3 because of the following
Tsirelson’s theorem :

Theorem 3.6. [15]| There does not exist any (G;);- Walsh’s Brownian
motion on a star graph with three or more rays with (G;); a Brownian
filtration.

4. PROOF OF THEOREM 1.4

In this section, we prove assertions (i) and (ii) of Theorem 1.4. We
first construct a coalescing SFM solution of (E). To construct this
SFM, we will use the following

Theorem 4.1. [10] Let (P™ n > 1) be a consistent family of Feller
semigroups acting respectively on Co(M™) where M is a locally compact
metric space such that

(15) PPz, x) = PV f2(x) for all f € Co(M), z € M, t > 0.
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Then there exists a (unique in law) SFM ¢ = (ps4+)s<t defined on some
probability space (2, A,P) such that

P f(x) = E[f(pou(@1), - pou(@))]
foralln>1,t>0, f € Co(M") and x € M™.

To apply this Theorem, we construct a consistent family of n-point
motions (i.e. the Markov process associated to P™) up to their first
coalescing times in section 4.1. After associating to the two-point mo-
tion an obliquely reflected Brownian motion in Q in section 4.2, we
prove the coalescing property in section 4.3 and the Feller property in
section 4.4. It is then possible to apply Theorem 4.1 and as a result we
get a flow . In section 4.4, we also show that ¢ solves (F). Finally,
we prove in section 4.5 that ¢ is the unique SFM solving (E).

Note finaly that in the case of Le Jan and Raimond [9], all the angles
of reflection of the obliquely reflected Brownian motion associated to
the two-point motion are equal to /4. This simplifies greatly the study
of section 2.

4.1. Construction of the n-point motion up to the first coa-
lescing time. Fix zy,---,x, € G such that |z1| < --- < |z,| and let
(X, W) be a solution of the SDE (FE), with X, = z;.
Set, for t > 0, X"* = X, and for all j € [2,n], if x; € E;, define
X7 = el + W),
Set
7o=inf{t >0:3j £ 1: X}’ =0}.
For t < 7, set X™ = (X}, .-+, X™M0).
Assume now that (74)r<¢ and (Xt("))tgn have been defined such that
a.s.
o (Tx)1<k<¢ is an increasing sequence of stopping times with re-
spect to the filtration associated to (Xt("))tgn;
e for all &, there exists an integer j, such that XJ* = 0.
Now introduce an independent solution (X, W) of the SDE (£), with
Xo = 0. Define ()(t("))te[mﬂZ ., by analogy with the construction of

(Xt(n))te[o,n} by replacing (1, - - - , ) with (X2, 7Xﬁ[€), where (j¢, . ..

are such that ) )
0=[XI] < <[ X
Thus, we have defined Xt(n) for all t < 7., where 7o 1= lim;_, 7.

We denote by P{"° the law of (Xt(n))KToo. Notice that if we denote
X™ = (X',...,X"), then for all i and all ¢, (X, ) is a Walsh’s

+Jn)
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Brownian motion stopped at time 7,. Thus a.s. on the event {7, < oo},

X = limgy,, X{™ exists. Note also that a.s. on the event {7, < 00},
there exist ¢ # j such that X7 = X/ =~ = 0 for infinitely many ’s.
This implies that a.s. on the event {7,, < oo}, there exist i # j such

that limy, X; = limg,., th = 0, and thus that Xﬁfj € A,, with

Ay, = {(z1,-,2,) € G": Fi # j,x; = x;}. Now, by construction, 7.
coincides with
(16) Ta, =inf{t >0: X™ € A,}.

Note that in the particular case n = 2, on the event {7, < oo}, a.s.
x® = (0,0). We will prove in section 4.3 that 7., < oo a.s.

4.2. An obliquely reflected Brownian motion associated to the
2-point motion. Fix z € G, and let i such that = € E;. Recall the
construction of (X,Y") of law IP’E?O). We have 75 = 0 and for k£ > 0,

Tok+1 — ll’lf{t Z T - Xt = 0},

Tok+2 = inf{t Z Tok+1 - Y;g = 0}
For n > 0, let iy, and 79,1 bein {1,..., N} such that X,, € F;
Y, ek Then for n > 0,

T2n+1

,, and

2n+1"°

Xt = Ciy, (|X7'2n| + Wtim - W;;:) for ¢ € [7—2"’ 7_2"+1[’

o 12041 ion
i = Ciont1 <‘Y7'2n+1‘ + Wt =Wz +1) for t € [7-2n+17 T2n+2['

T2n+1
Define, for i € [1, N], f': G — R by
fix)=—lz|ifx € B; and f'(x) = |z| if not.
Define now (U, V;)i<r., such that for n >0

(U, V) = (|Xt|,f22”(yt)) for ¢ € [Ton, Ton+1]
o (fr2r+1(Xe), [Yi])  for t € [Tony1, Tonyol

Remark that (Uy, Vi), is a continuous process with values in {(u, v) €
R?*: w+ v > 0} and such that for all n > 0, U,,, > 0, V,, = 0,

Unpiw = 0and V,, ., > 0. Note that the excursions of this process
outside of Q occur on straight lines parallel to {y = —x}.
Let, for n > 0,

©,, = arctan (L)
L —pi,
Define for t < 7.,

t t
A(t) = / ]-{(US,VS)EQ}dS = / 1{X376Ys}d5-
0 0
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Set v(t) = inf{s > 0 : A(s) > t}. Set for n > 0, T,, = A(7,) and
Spi1 = Tni1 — T,,. Define for t < T, := lim,, o T},

(UL V) = Uy, Vo)

and for ¢t > T.., (U], V;") = (0,0). Note that Ty, = inf{t > Ty, :
V' =0} and Ty,q0 = inf{t > Ty,41 : U] = 0} and that ~(7},) = 7.

Lemma 4.2. Given Oy, the law of (U, V' )i<s, is P

Ed
The proof of this lemma is given at the end of this section.

Notice that since a.s. |Y;,| = V7. # 0, then the sequence (73); defined
above is a.s. strictly increasing. It is also a sequence of stopping times
with respect to the filtration F; = a((Xs, Yy); s < t),t > 0.

Define the sequence of processes (Z"),>; such that for n > 0,

T

2n+1 r
Z - ( t+T2n7‘/;+T2n)t§52n+l7

2n+2 r r
Z - (‘/;+T2n+1 ) Ut+Tgn+1 )tSSQn+2 .

Set also for n > 0, Uy, = Uy, and Uz, = VTTMH.
Applying Lemma 4.2 and using the strong Markov property at the
stopping times 7, with the fact that if (X,Y") is distributed as P20

(z,y)’
then (Y, X) is distributed as IP’E?’O, one has the following

71')
Lemma 4.3. For alln > 0, given F,,, the law of Z"* is Py,

This lemma shows that the sequences (0,,),>0 and (Z"),>; satisfy
(i) and (ii) in the beginning of Section 2.2 since for all n > 0,

G, = cr((@k,Zk); 1<k< n) Vo(By) C Fr.

Thus (U], V)<t is a Brownian motion in Q* started from (|z|,0),
with time dependent angle of reflections at the boundaries given by
(O1)n>0 and stopped when it hits (0, 0), as defined in section 2. In par-
ticular, (U", V") is a continuous process and limyr, (U/, V") = (0,0).
We will now denote the process (U", V") by Z .

Remark 4.4. Note that (i,)n>0 is an homogeneous Makov chain started
from ig = 1 with transition matriz (P, ;) given by : for (i,7) € [1, N]?,

P ;= Z::ipk' Remark also that given G,, 2™ and i, are indepen-

dent and a fortiori Z" and ©,,4, are also independent.

Proof of Lemma 4.2. Let i be such that x € E;. Let (Y,W) be a
solution of (E) with Yy = 0 and define X; = ¢;(|z|+W}) for 0 <t <7
where 71 = inf{s > 0 : |z| + W! = 0}. Set for t > 0, (U, V;) :=
(|Jz| + W, f4(Y:)) where fi(y) = |y|l,¢m — |y|lyer,. Note that for
t S 71, Ut = |Xt|



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 27

Since Y is a Walsh’s Brownian motion started at 0, it is well known
that V is a skew Brownian motion with parameter 1 — p;. This can be
seen using Freidlin-Sheu formula, which shows that

t
(17) Vi = / (Lpv,s0p — Lgv<op)dBY + (1 = 2p;) Ly(V).
0

Define A(t) = fot 1y >0ds = fot 1gy,¢p,ds and y(t) = inf{s > 0 :
A(s) > t}. It is also well known that V" := V) is a reflecting Brownian
motion on Ry. Set M, = [ 1v,20ydVi = [y 1iv,¢p,ydBY . Then B} =
M4 is a Brownian motion. We also have that V; vV 0 = M, + (1 —
pi)Li(V'), which implies that V;" = B} + (1 — p;) L)(V) and therefore
that L,(V") = (1 — p;) Ly (V). Note finally that L(V) = L(|Y]).

Set for t > 0, B} = Oy(t) Liv,>o3dW!. By Lévy’s theorem B! and B?
are two independent Brownian motions. Finally, set U = U,(;). Then
(U7, VI )t<y(r) is equal in law to the process (U], V/ );<s, given in the
statement of Lemma 4.2.

Lemma 4.2 is a direct consequence of the following.
Lemma 4.5. For allt > 0,
T Pi
U/ = ||+ B - 1—ps
Vi = B+ LJ(V").
Proof. We closely follow the proof of Lemma 4.3 in [9]. Let € > 0 and
define the sequences of stopping times o}, and 7 such that 7§ = 0 and
for k > 0,

Ly(V")

o, = inf{t > 7 Vi = —¢},
Ty = inf{t >o5; Vi =0}
Note first that (17) implies that
> (Vorm = Vegrao)
k>0

converges in probability as € — 0 towards B} + (1 — 2p;) L) (V). Since
Vi =B+ (1 —p;) Ly (V), if we set

Ly =" (Ve ) = Vo)
k>0

as € = 0, Ly" converges towards p; L) (V') in probability. Now for
t >0,

U/ = |z + Z (UT,EH/W(t) - UT,E/W(t))'

k>0
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Set for t > 0,
el 7 i
B =3 (Wairow = Wicn)-
k>0

Note that d(Us +V5) =3, 1iv,er,3dW{ and thus when Y, € Ef (i.e.
when Vj is negative), Us + V; remains constant, and we have

U = el + ) Us, ity = Usins) + Y (Usgngy = Urtmo)

k>0 k>0
= ol = L7+ By

Since B; 1 converges in probability towards B}, we get
Uy = |zl + By = piLy (V).
And we conclude using that L;(V") = (1 — p;) Ly (V). O

4.3. Coalescing property. Our purpose in this section is to prove
that 7., defined above is finite a.s. By symmetry and the strong Markov
property, it suffices to prove this for n = 2 and (X, Yy) = (,0) for
some x € G*. We use the notations of section 4.2.

Proposition 4.6. With probability 1, 7., < 0.

Proof. In order to show that 7., < oo a.s., we prove that a.s. L. _(]X]) <
00. Since (| X[, t < 7o) is a reflected Brownian motion stopped at time
Too, this implies that 7., < oo a.s.

Denote by L} and L? the local times accumulated by Z respectively
on {u = 0} and {v = 0} up to t and L; = L} + L?. First, note
that for ¢ < Sy, Ly(V") = (1 — pi) Ly (V) = (1 — pi) Ly (|Y]). Thus

L., ([Y]) = 22 Note also that Ly, (| X|) = 0. Thus
1 1—p; 1
Ls

By induction, we get that
Lo (XD + Lo (Y] = ) ———=
n>0

with C' = supg <,y (1 — p;) " By Theorem 2.11 a.s. Ly, < 0o, and
0 L (1X]) + Lo (1Y) < oo .

The fact that when n > 3, 7, < o0 a.s., with 7, defined in section
4.1, is an immediate consequence of Proposition 4.6.



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 29

4.4. Construction of ¢. Let (P™ n > 1) be the unique consistent
family of Markovian semigroups such that
(i) PW is the semigroup of the Walsh’s Brownian motion on G.
(ii) The n-point motion of P™ started from x € G™ up to its

entrance time in A,, is distributed as IP’;(,;n)’O.

(iii) The n-point motion (X', ..., X™) of P(™ is such that if X! = X7
then X/ = X/ for all t > s.
We will prove that all P are Feller and that (15) holds. By Lemma
1.11 [10], this amounts to check the following condition.

Lemma 4.7. Let (X,Y) be the two point motion associated to P,
then for all positive € > 0
1 (2)70 —
i PESACGY) > =0
Proof. Asin the proof of Proposition 4.6, we take y = 0. Then using the
same notations, for all positive €, {d(X,Y;) > €} C {sup,,, |Z;| > €}.
Now the result of the lemma follows from Remark 2.10. U

By Theorem 4.1, a SFM ¢ can be associated to (P™),,.

Proposition 4.8. Let ¢ be a SFM associated to (P™),,. Then there
exists a family of independent white noises W = (Wi, 1 <i < N) such
that

(i) FUY € F&, forall s <t and

(ii) (¢, W) solves (E).

Proof. Let V;.(z) be the Brownian motion associated to ¢,.(x). For
all i € [1, N] and s <, set
Wi, = lim Vii(z).
’ |x|—>00,z€Ey,|x|€Q
For alli € [1, N] and s < t, with probability 1, this limit exists. Indeed
if z,y € E; are such that |z| < |y|, then a.s. Vii(z) = Vi4(y) for all
s <t <78 =inf{u > s; pu(r) = 0}. Moreover W' = (W, s < t)
is a real white noise. Indeed, W is centered and Gaussian, and by the
flow property of ¢ and using .. () = e(|z] + Wi,) if s < u < 77
and = € E;, we have W{ , = W{, + W/ . It is also clear that W has
independent increments with respect to (s, t). Thus, W is a real white
noise. The fact that W = (W1 < i < N) is a family of independent
real white noises easily holds.
Forz € Gandt >0,

t
<W527~7 ‘/;,(x>>t = lim <‘/37(y)7 ‘/87(',1:))15 = / 1{@s,u($)€Ei}du'

ly|—o0,yeE;,|y|€Q
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This yields

N oot
Vaalz) =) / L, u(@)emydW,.
i=1 /s
By Theorem 3.1, we deduce that (¢, W) solves (F). O
Denote by Pg the law of (o, W).

4.5. Uniqueness in law of a SFM solution of (£). In this section,
we show that the SFM ¢ constructed in section 4.4 is the only SFM
solution of (E). More precisely, we show

Proposition 4.9. Let (¢, W) be a solution of (E), with ¢ a SFM.
Then the law of (o, W) is Pg.

Proof. We start by showing

Lemma 4.10. For all © = e;(r) € G, we have @g4(x) = e;i(r + W/,
forall s <t < 77 =inf{t > s : ps4(x) = 0}. In particular for all
1<i<N, s<t, wehavefsl/}fC]:;‘jt.

Proof. Let f € D such that f(z) = |z| for all x € E;. By applying f in
(E), we deduce the first claim. The second claim is then an immediate
consequence by taking a sequence (xy)r C E; converging to co. O

With this Lemma and Theorem 1.2 we prove the following

Lemma 4.11. Let v = (2, - ,2,) € G". Let S = inf{t > 0 :
(po(z1), -+, 0or(wn)) € Ant. Then (poi(1), -+, ot(Tn))ics is dis-
tributed like IP&"*O.

Proof. Suppose |z1| < -+ < |z,]. For k € [1,n], set ¥ = g (x1)
and Y, = (Y;!,...,Y"). Set for i € [1,N], W} = Wi, and W, =
(WL ...,Wm). Note that for all k& € [1,n], (Y*, W) is a solution of
(E). Set
oy =inf{t >0: Ik #£1:YF =0}
and for £ > 1, set
o =inf{t >0,: I € [1,n]: YF=0,YF #£0}.

b ay

Let S™ = limy_, o, 0y, then S™ = S = inf{t : Y;(n) € A,}. From Theorem
1.2, the law of (Y, W) is uniquely determined. Now, for k € [2,n]
with z;, € E;, we have that for t < oy, Y}* = ¢;(|zx| + W}). This shows
that (Yt("))tgal is distributed as (Xt(n))tgn, constructed in Subsection
4.1. Adapting the previous argument on the time interval [0y, 04, 1], we
show that for all ¢ > 1, (Yt(n))tgw is distributed as (Xt(n))tSTe' This
thus shows the Lemma. O
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Lemma 4.11 permits to conclude the proof of Proposition 4.9. In-
deed, the law of a SFM is uniquely determined by its family of n-point
motions X ™. Using the fact that A, is an absorbing set for X
the strong Markov property at time 7" = inf{t; Xt(n) € A,} and the
consistency of the family of n-point motions, we see that the law of a
SFM is uniquely determined by its family of n-point motions stopped
at its first entrance time in A,,. O
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