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STOCHASTIC FLOWS AND AN INTERFACE SDE ON
METRIC GRAPHS

Hatem Hajri(1) and Olivier Raimond(2)

Abstract

We study a stochastic differential equation (SDE) driven by a finite
family of independent white noises on a star graph, each of these white
noises driving the SDE on a ray of the graph. This equation extends
the perturbed Tanaka’s equation recently studied by Prokaj [14] and Le
Jan-Raimond [9] among others. We prove that there exists a coalescing
stochastic flow of mappings solution of this equation. This flow is
unique in law and is coalescing. Our proofs involve the study of a
reflected Brownian motion in the two dimensional quadrant obliquely
reflected at the boundary, with time dependent reflections. Filtering
this flow solution of the SDE with respect to the family of white noises
yields a Wiener stochastic flow of kernels also solution of this SDE. This
Wiener soltution is also unique. Moreover, if N denotes the number of
rays in the star graph, the Wiener solution and the coalescing solution
coincide if and only if N = 2. When N ≥ 3, the problem of classifying
all solutions is left open. Finally, we define an extension of this equation
on a general metric graph with finite sets of vertices and edges to which
we apply our previous results [7]. As a consequence, we get a flow of
mappings and a Wiener flow solutions for this SDE.

1. Introduction and main results

In [14], Prokaj proved that pathwise uniqueness holds for the per-
turbed Tanaka’s equation

(1) dXt = sgn(Xt)dW
1
t + λdW 2

t

for all λ 6= 0 where W 1 and W 2 are two independent Brownian motions.
When λ = 1, after rescaling, setting W+ = W 1+W 2

√
2

and W− = W 2−W 1
√
2

,
(1) rewrites

(2) dXt = 1{Xt>0}dW
+
t + 1{Xt≤0}dW

−
t .
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Using different techniques, the same result in the case of (2) has been
obtained also by Le Jan and Raimond [9] (see also [4, 12]) and they
proved in addition that (2) generates a stochastic coalescing flow. In-
tuitively, a solution to (2) is a Brownian motion that follows W+ on
its positive excursions and that follows W− on its negative excursions.
In this paper, we consider first the analogous problem on a star graph
(by a star graph, we mean a metric space consisting of a finite number
of pieces of R+ in which all origins are identified) and then extend this
framework to more general metric graphs.

1.1. Notations.

• In all this paper, we fix N ≥ 2 and p1, . . . , pN > 0 such that
∑N

i=1 pi = 1 and let G be a star graph with origin denoted by
0 and N edges (Ei)1≤i≤N . Then G is such that Ei ∩ Ej = {0}
if i 6= j and such that for each i, Ei is isometric to [0,∞[ via a
mapping ei : [0,∞[→ Ei. Define ∼ the equivalence relation on
G by x ∼ y if there exists i such that x and y both belong to Ei,
and when it is not the case, we use the notation x 6∼ y. Let d be
the metric on G such that if x = ei(r) then |x| := d(x, 0) = r, if
x ∼ y then d(x, y) =

∣

∣|y| − |x|
∣

∣ and if x 6∼ y, d(x, y) = |x|+ |y|.
We equip G with its Borel σ-field B(G) and set G∗ = G \ {0}.
For each i, set E∗

i = Ei \ {0}.
We denote by C2

b (G
∗) the set of all continuous functions f :

G → R such that for all i ∈ [1, n], f ◦ ei is C2 on ]0,∞[ with
bounded first and second derivatives both with finite limits at
0. For f ∈ C2

b (G
∗) and x = ei(r) ∈ G∗, set f ′(x) = (f ◦ ei)′(r),

f ′′(x) = (f ◦ ei)
′′(r). When x = 0 define f ′(0) =

∑N
i=1 pi(f ◦

ei)
′(0+) and f ′′(0) =

∑N
i=1 pi(f ◦ ei)′′(0+). Set

D =
{

f ∈ C2
b (G

∗) : f ′(0) = 0
}

.

• The two-dimensional quadrant is the set Q := [0,∞[2. Its
boundary is denoted by ∂Q := ∂1Q∪∂2Q, where ∂1Q = [0,∞[×{0}
and ∂2Q = {0} × [0,∞[. We also set Q∗ = Q \ {(0, 0)}.

• For X a continuous semimartingale, we will denote by Lt(X)
its symmetric local time process at 0, i.e.

Lt(X) = lim
ǫ→0

1

2ǫ

∫ t

0

1{|Xs|≤ǫ}d〈X〉s.

• For a family of random variables Z = (Zs,t)s≤t and a process
X = (Xt)t≥0, we will use the usual notations

FZ
s,t = σ(Zu,v, s ≤ u ≤ v ≤ t), FX

t = σ(Xu, 0 ≤ u ≤ t).
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• A filtration generated by a finite or infinite family of indepen-
dent Brownian motions will be called a Brownian filtration.

• The Walsh’s Brownian motion on G is the Feller diffusion de-
fined via its Feller semigroup (Pt, t ≥ 0) as in [1]: Let (T+

t , t ≥ 0)
be the semigroup of reflecting Brownian motion on R+ and let
(T 0

t , t ≥ 0) be the semigroup of Brownian motion on R+ killed
at 0, then for f ∈ C0(G) and x ∈ Ei, denoting fj(r) = f ◦ ej(r)
for 1 ≤ j ≤ N and f̄(r) =

∑N
j=1 pjfj,

Ptf(x) = T+
t f̄(|x|) + T 0

t (fi − f̄)(|x|).
• For a filtration (Gt)t, X is a (Gt)-Walsh’s Brownian motion if it

is adapted to (Gt) and if given Gt, (Xt+s, s ≥ 0) is a Walsh’s
Brownian motion started at Xt.

1.2. The interface SDE on a star graph. Our main interest in this
paper is the following SDE, we call the interface SDE, which is the
natural extension of (2) to star graphs.

Definition 1.1. A solution of the interface SDE (E) on a star graph
G is a pair (X,W ) of processes defined on a filtered probability space
(Ω, (Ft)t,P) such that

(i) W = (W 1, . . . ,WN) is a standard (Ft)-Brownian motion in
RN ;

(ii) X is a (Ft)-adapted continuous process in G;
(iii) For all f ∈ D,

(3) f(Xt) = f(X0) +

N
∑

i=1

∫ t

0

f ′(Xs)1{Xs∈Ei}dW
i
s +

1

2

∫ t

0

f ′′(Xs)ds.

We will say it is a strong solution if X is adapted to the filtration
(FW

t )t.

Note that it can easily be seen (by choosing for each i a function
f ∈ D such that f(x) = |x| if x ∈ Ei) that on Ei, away from 0, X
follows the Brownian motion W i. Our first result is the following

Theorem 1.2. For all x ∈ G,

(i) There exists a solution (X,W ) with X0 = x, unique in law, of
the SDE (E). Moreover X is a Walsh’s Brownian motion.

(ii) The solution of the SDE (E) is a strong solution, if and only if
N = 2.

To prove (ii), when N = 2, we will prove that pathwise uniqueness
holds for (E). Then, this implies that the solution (X,W ) is a strong
one. The fact that when N ≥ 3, (X,W ) is not a strong solution is a
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consequence of a result of Tsirelson [15] (see Theorem 3.6 below) which
states that if N ≥ 3 , there does not exist any (Ft)-Walsh’s Brownian
motion on G with (Ft) a Brownian filtration (see also [3]).

When N = 2, one can assume G = R, E1 =]−∞, 0] and E2 = [0,∞[.
Applying Itô-Tanaka’s formula (or Theorem 3.1 below), we see that (E)
is equivalent to the skew Brownian motion version of (2):

(4) dXt = 1{Xt>0}dW
+
t + 1{Xt≤0}dW

−
t + (2p− 1)dLt(X)

where p = p1 (note that when p = 1/2, (2) and (4) coincide).

In this paper a stochastic flow of mappings as defined by Le Jan and
Raimond [10] will be called a SFM. We will be interested in SFM’s
solving (E) in the following sense.

Definition 1.3. On a probability space (Ω,A,P), let W = (W i, 1 ≤
i ≤ N) be a family of independent real white noises (see Definition 1.10
in [10]) and ϕ be a SFM on G. We say that (ϕ,W) solves (E) if for
all s ≤ t, f ∈ D and x ∈ G, a.s.

f(ϕs,t(x)) = f(x) +
N
∑

i=1

∫ t

s

(1Ei
f ′)(ϕs,u(x))dW

i
u +

1

2

∫ t

s

f ′′(ϕs,u(x))du.

We will say it is a Wiener solution if for all s ≤ t, Fϕ
s,t ⊂ FW

s,t .

It will be shown that as soon as (ϕ,W) solves (E), we have FW
s,t ⊂ Fϕ

s,t

for all s ≤ t and thus we may just say ϕ solves (E). Note that when ϕ
is a Wiener solution, then Fϕ

s,t = FW
s,t for all s ≤ t.

Our main result is the following

Theorem 1.4. (i) There exists a SFM ϕ solution of (E). This
solution is unique in law.

(ii) The SFM ϕ is coalescing in the sense that for all s ∈ R and
(x, y) ∈ G2, a.s.,

Ts(x, y) = inf{t ≥ s : ϕs,t(x) = ϕs,t(y)} < ∞
and ϕs,t(x) = ϕs,t(y) for all t ≥ Ts(x, y).

(iii) The SFM ϕ is a Wiener solution if and only if N = 2.

Note that (iii) in Theorem 1.4 is a consequence of (ii) in Theorem
1.2. Let ϕ be a SFM on G and W be a family of independent white
noises such that (ϕ,W) is a solution to (E). As FW

s,t ⊂ Fϕ
s,t, Lemma 3.2

in [10] ensures that there exists a stochastic flow of kernels KW (see
[10] for the definition) such that : for all s ≤ t, x ∈ G, a.s.

KW
s,t(x) = E[δϕs,t(x)|FW

s,t ].
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A stochastic flow of kernels will be denoted later on simply by SFK.
We will also be interested on SFK’s solving (E) in the following sense.

Definition 1.5. Let K be a SFK on G and W = (W i, 1 ≤ i ≤ N) be
a family of independent real white noises. We say that (K,W) solves
(E) if for all s ≤ t, f ∈ D and x ∈ G, a.s.

(5) Ks,tf(x) = f(x)+
N
∑

i=1

∫ t

s

Ks,u(1Ei
f ′)(x)dW i

u+
1

2

∫ t

s

Ks,uf
′′(x)du.

We will say it is a Wiener solution if for all s ≤ t, FK
s,t ⊂ FW

s,t .

Since we also have that FW
s,t ⊂ FK

s,t, we simply say that K solves
(E). Note that when K = δϕ, then K solves (E) if and only if ϕ also
solves (E). In this case, the SFK K will be called a SFM. We have the
following

Proposition 1.6. KW is the unique (up to modification) Wiener so-
lution of (E).

We do not give a proof of this proposition here. This can be done
following Proposition 8 in [6] where this result is proved when all the
W i are equal, or following the proof of Proposition 3.1 in [9] where this
result is proved in the case of (2).

A consequence of Proposition 1.6 and Theorem 1.4 (ii) is

Corollary 1.7. KW is the only SFK solution of (E) if and only if
N = 2.

Proof. When N = 2, ϕ is a Wiener solution of (E). Suppose (K,W)
is another solution of (E), then E[K|W] is a Wiener solution of (E).
Since the Wiener solution is unique, for all s ≤ t and x ∈ G a.s.

δϕs,t(x) = E[Ks,t(x)|FW
s,t ].

This yields that δϕs,t(x) = Ks,t(x) a.s. �

For N ≥ 3, the SDE (E) may have other SFK’s solutions different
from ϕ and KW . The problem of a complete classification of the laws
of all these flows is left open.

1.3. Brownian motion with oblique reflection. To prove Theo-
rems 1.2 and 1.4 we shall study a Brownian motion in the two di-
mensional quadrant, obliquely reflected at the boundary and with time
dependent angles of reflections. We now give an application of our
methods to the obliquely reflected Brownian motion defined by Varad-
han and Williams in [16].
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Fix θ1, θ2 ∈]0, π
2
[ and x > 0. Let (B1, B2) be a two dimensional

Brownian motion and (X, Y ) be the reflected Brownian motion in Q
started from (x, 0) with angles of reflections on ∂1Q and on on ∂2Q
respectively given by θ1 and θ2, and killed at time σ0, the hitting time
of (0, 0). More precisely, for t < σ0,

dXt = dB1
t − tan(θ1)dLt(X) + dLt(Y ), X0 = x;

dYt = dB2
t + dLt(X)− tan(θ2)dLt(Y ), Y0 = 0.

Denote by Lt = Lt(X)+Lt(Y ) the local time accumulated at ∂Q. Then
it is known that σ0 and Lσ0

are finite (see [16] and [17]). Our next result
gives a necessary and sufficient condition for Lσ0

to be integrable with
an explicit expression of its expectation.

Proposition 1.8. We have that

E[Lσ0
] < ∞ if and only if tan(θ1) tan(θ2) > 1.

In this case

E[Lσ0
] =

x(tan(θ2) + 1)

tan(θ1) tan(θ2)− 1
.

The assumptions on the wedge and the angles considered here are
more suitable to our framework but our techniques may be applied to
give an expression of E[Lσ0

] in other situations.

1.4. Extension to oriented metric graphs. Instead of considering
only star graphs, it is natural to define an analogous version of (E) on
more general metric graphs. Let G be a metric graph (see section 2.1
[7] for the definition) and denote by V , the set of its vertices, and by
{Ei; i ∈ I} the set of its edges. We suppose that I and V are finite. To
each edge Ei, we associate an isometry ei : Ji → Ēi, with Ji = [0, Li]
when Li < ∞ and Ji = [0,∞) or Ji = (−∞, 0] when Li = ∞. When
Li < ∞, denote {gi, di} = {ei(0), ei(Li)}. When Li = ∞, denote
{gi, di} = {ei(0),∞} when Ji = [0,∞) and {gi, di} = {∞, ei(0)} when
Ji = (−∞, 0]. For all v ∈ V , denote I+v = {i ∈ I; gi = v}, I−v = {i ∈
I; di = v} and Iv = I+v ∪ I−v . To each v ∈ V and i ∈ Iv, we associate
a transmission parameter piv such that

∑

i∈Iv p
i
v = 1. Let G∗ = G \ V .

We denote by C2
b (G

∗) the set of all continuous functions f : G → R

such that for all i ∈ I, f ◦ ei is C2 on the interior of Ji with bounded
first and second derivatives both extendable by continuity to Ji and
such that for all v ∈ V

∑

i∈I+v

piv lim
r→0+

(f ◦ ei)′(r)
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=
∑

i∈I−v

piv
(

lim
r→Li−

(f ◦ ei)′(r)1{Li<∞} + lim
r→0−

(f ◦ ei)′(r)1{Li=∞}
)

.

For f ∈ C2
b (G

∗) and x = ei(r) ∈ G\V , set f ′(x) = (f ◦ ei)′(r), f ′′(x) =
(f ◦ ei)′′(r) and take the following conventions for all v ∈ V ,

f ′(v) =
∑

i∈I+v

piv(f ◦ ei)′(0+)

−
∑

i∈I−v

piv
(

lim
r→Li−

(f ◦ ei)′(r)1{Li<∞} + lim
r→0−

(f ◦ ei)′(r)1{Li=∞}
)

.

Define the analogous convention for f ′′(v) by only replacing the first
derivatives with the second ones. Finally set

D = {f ∈ C2
b (G

∗) : f ′(v) = 0 for all v ∈ V }.

Definition 1.9. (Equation (E)) On a probability space (Ω,A,P), let
W = (W i)i∈I be a real white noise and K be a stochastic flow of kernels
on G. We say that (K,W) solves (E) if for all s ≤ t, f ∈ D and x ∈ G,
a.s.

Ks,tf(x) = f(x) +
∑

i∈I

∫ t

s

Ks,u(1Ei
f ′)(x)W i(du) +

1

2

∫ t

s

Ks,uf
′′(x)du.

Suppose there exists a SFM solution of (E) on G, then before hitting
two distinct vertices, the motion of any point under ϕ is well described
by Theorem 1.4 : it is governed by a SFM on a star graph. Then the
problem reduces to well concatenate flows on star graphs to get a flow
on G. Technically, this is not so easy and has been the subject of our
previous work [7]. There, a general result is established and applies
well here. We state now

Theorem 1.10. (1) There exists a SFM on G solution of (E).
(2) There exists a unique Wiener SFK KW solution of (E).

Proof. The proof of the existence of these flows is immediate from The-
orem 3.2 in [7]. The unicity of the Wiener solution is a consequence of
Theorem 4.1 in [7]. �

From Theorem 4.1 in [7], we can also deduce

Corollary 1.11. KW = δϕ if and only if each vertex point on G has
at most two adjacent edges. This is also the only case when (E) has a
unique solution.
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1.5. Outline of contents. Let us describe the content of this paper.
In section 2, we study a variation of the obliquely reflected Brownian
motion in Q, where the angles of reflections depend on time and which
is absorbed when it hits the corner. In section 3, we prove Theorem
1.2. In section 4, we prove Theorem 1.4 (i) and (ii), using in particular
the results of section 2.

2. Brownian motion in the quadrant with time dependent

angles of reflection

In this section, we study a variation of the obliquely reflected Brow-
nian motion in Q where the angles of reflections depend on time and
which is absorbed when it hits the corner. This process is defined in
section 2.2. We will be interested in the following two questions:

(I) Is the hitting time σ0 of (0, 0) finite a.s.?
(II) Is Lσ0

, the local time accumulated at ∂Q at time σ0, finite a.s.?

In sections 2.3 and 2.4, we prove that, under some assumptions on the
sequence of the angles of reflections, the answer to these two questions
is positive. The tools used are a scaling property and a precise study,
done in section 2.1, of an obliquely reflected Brownian motion on the
quadrant started at (x, 0), with x > 0, and stopped when it hits {y =
0}. Finally in section 2.5, we calculate E[Lσ0

].

2.1. Brownian motion on the half-plane with oblique reflec-
tion. We fix θ ∈]0, π/2[. Let Z = (X, Y ) be the process started from
(x, y) in R×R+ obliquely reflected at {y = 0}, with angle of reflection
given by θ. More precisely,

dXt = dB1
t − tan(θ)dLt, X0 = x

dYt = dB2
t + dLt, Y0 = y

where B1 and B2 are two independent Brownian motions and Lt is the
local time at 0 of Y . Set S = inf{s : Xs = 0}. Denote by Pθ

x the law
of (Zt; t ≤ S) when y = 0 and x > 0. Note that for all t ≤ S, Zt ∈ Q.
Observe that we have the following scaling property:

Proposition 2.1. For all x > 0, if the law of (Zt; t ≤ S) is Pθ
1, then

the law of (xZx−2t; t ≤ x2S) is Pθ
x.

For z ∈ C, arg(z), R(z) and I(z) will denote respectively the ar-
gument, the real part and the imaginary part of z. Following [16], if
f is holomorphic on an open set U containing Q∗ such that f(z) ∈ R

for all z ∈]0,∞[, then φ(x, y) := R
(

f(x + iy)e−iθ
)

is harmonic on U .
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Moreover,

(6) v1(θ).∇φ(x, 0) = 0 for x > 0, where v1(θ) = (−tan(θ), 1).

Indeed, the fact that f is holomorphic with the condition f(z) ∈ R for
all z ∈]0,∞[ implies that f ′(z) ∈ R for all z ∈]0,∞[. Thus

∇φ(x, 0) =
(

R
(

f ′(x)e−iθ
)

,R
(

if ′(x)e−iθ
))

= f ′(x)(cos(θ), sin(θ))

and (6) follows. These properties imply in particular that (φ(Zt∧S))t
is a local martingale. For b ∈ R and f(z) = zb the function φ defined
above will be denoted φb.

Lemma 2.2. Let (Zt; t ≤ S) be a process of law Pθ
x.

(i) If 0 < b < 1 + 2θ/π, then for all a > x,

P

(

sup
s≤S

|Zs| > a

)

≤ cb

(x

a

)b

,

where cb = 1 if bπ/2 ≤ θ and cb = cos(θ)/ cos(bπ/2 − θ) other-
wise.

(ii) If 0 < b < 1− 2θ/π, then for all a < x,

P

(

inf
s≤S

|Zs| < a

)

≤ cb

(a

x

)b

,

where cb = cos(θ)/ cos(bπ/2 + θ).

Proof. Using the scaling property we may take x = 1. For a ≥ 0, set
σa = inf{t : |Zt| = a}. Recall that for all b ∈ R, (φb(Zt∧S))t is a local
martingale.

Proof of (i): Fix a > 1 and 0 < b < 1+2θ/π. For c0b = inf{cos(θ), cos(bπ/2−
θ)} and t ≤ S, we have

c0b |Zt|b ≤ φb(Zt) ≤ |Zt|b.
Moreover

P(sup
s≤S

|Zs| > a) = P(σa < S).

By the martingale property, for all t ≥ 0,

cos(θ) = φb(1) = E[φb(Zt∧σa∧S)]

which is larger than
E[φb(Zt∧σa

)1{σa<S}].

As t → ∞, this last term converges using dominated convergence to

E[φb(Zσa
)1{σa<S}] ≥ c0ba

bP(σa < S).

This easily implies (i).



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 10

The proof of (ii) is similar: Fix a < 1 and 0 < b < 1 − 2θ/π. For
c1b = cos(bπ/2 + θ) and t ≤ S,

c1b |Zt|−b ≤ φ−b(Zt) ≤ |Zt|−b.

We also have that

P(inf
s≤S

|Zs| < a) = P(σa < S).

By the martingale property, for all t ≥ 0,

cos(θ) = φ−b(1) = E[φ−b(Zt∧σa∧S)]

which is larger than
E[φ−b(Zt∧σa

)1{σa<S}]

and this converges as t → ∞ to

E[φ−b(Zσa
)1{σa<S}] ≥ c1ba

−bP(σa < S).

This easily implies (ii). �

Corollary 2.3. Let (Zs; s ≤ S) be distributed as Pθ
x. If −1 + 2θ/π <

b < 1 + 2θ/π, then

E(sup
s≤S

|Zs|b) < ∞.

Proof. To simplify, assume x = 1. For b ∈]0, 1 + 2θ/π[, let b′ ∈]b, 1 +
2θ/π[. Then

E(sup
s≤S

|Zs|b) =

∫ ∞

0

P[sup
s≤S

|Zs| > a1/b]da

≤ 1 + cb

∫ ∞

1

a−b′/bda < ∞.

For b ∈]− 1 + 2θ/π, 0[, let b′ ∈]− 1 + 2θ/π, b[. Then

E(sup
s≤S

|Zs|b) =

∫ ∞

0

P[inf
s≤S

|Zs| < a1/b]da

≤ 1 + cb

∫ ∞

1

a−b′/bda < ∞.

�

Corollary 2.4. Let (Zs; s ≤ S) be distributed as Pθ
x. Let f be an

holomorphic function on an open set containing Q∗ such that f(z) ∈ R

for all z ∈]0,∞[. Assume there exists C > 0, b+ ∈]0, 1 + 2θ/π[ and
b− ∈]0, 1− 2θ/π[ with

|f(z)| ≤ C
(

|z|−b− + |z|b+
)

for all z ∈ Q∗.
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then setting φ(x, y) = R
(

f(x+ iy)e−iθ
)

, we have

E[φ(iYS)] = cos(θ)f(x).

Proof. Recall that (φ(Zt∧S))t is a local martingale (stopped at time S).
Using Corollary 2.3, it is a uniformly integrable martingale. And we
conclude using the martingale property. �

Note that the functions f(z) = zb, for b ∈] − 1 + 2θ/π, 1 + 2θ/π[,
f(z) = log(z)ℓ for ℓ > 0 satisfy the assumptions of Corollary 2.4.

Corollary 2.5. Let (Zs; s ≤ S) be distributed as Pθ
x. Then

• E[Y b
S ] = xb cos(θ)

cos(θ − bπ/2)
for b ∈]− 1 + 2θ/π, 1 + 2θ/π[,

• E[log(YS)] = log(x)− π

2
tan(θ),

• E[(log(x−1YS))
2] =

π2

4

(

1 + 2 tan2(θ)
)

.

Proof. The calculation of E[Y b
S ] is immediate. Using the scaling prop-

erty one only needs to do the next calculations when x = 1. Now, for
all ℓ > 0 and x = 1,

E
[

R
(

(log(YS) + iπ/2)ℓe−iθ
)]

= 0.

Applying this identity for ℓ = 1, we get the value of E[log(YS)]. For
ℓ = 2, we get

E
[(

(log(YS))
2 − (π/2)2

)

cos(θ) + π log(YS) sin(θ)
]

= 0.

Thus

E[(log(YS))
2] = (π/2)2 − πE[log(YS)] tan(θ)

= (π/2)2 + 2(π/2)2(tan(θ))2.

�

2.2. Brownian motion on the quadrant with time dependent
reflections. In all this section, we fix z = (x, 0) with x > 0, and
θmin ∈]0, π

2
[. Suppose we are given on some probability space (Ω,A,P)

a sequence of random variables (Θn)n≥0 and a sequence of processes
(Zn)n≥1, with Zn =

(

Zn
t = (Xn

t , Y
n
t ); t ≤ Sn

)

, such that :

(i) With probability 1, for all n ≥ 0, Θn ∈]θmin,
π
2
[.

(ii) Set U0 = x and for n ≥ 1, Un = Y n
Sn

. Set also for n ≥ 0,

Gn = σ
(

(Θk, Z
k); 1 ≤ k ≤ n

)

∨ σ(Θ0).

Then given Gn, Zn+1 is distributed as PΘn

Un
.
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Define for θ ∈]0, π/2[,
v1(θ) = (− tan(θ), 1) and v2(θ) = (1,− tan(θ)).

Our purpose in this section and in section 2.3 is to construct a process
Z = (X, Y ), a reflected Brownian motion in Q stopped at time σ0, the
first hitting time of (0, 0) by Z.

Set T0 = 0 and Tn =
∑n

k=1 Sk for n ≥ 1. For n ≥ 0, set

Zt = (X2n+1
t−T2n

, Y 2n+1
t−T2n

) for all t ∈ [T2n, T2n+1[,

Zt = (Y 2n+2
t−T2n+1

, X2n+2
t−T2n+1

) for all t ∈ [T2n+1, T2n+2[.

Using this procedure, we have defined a process (Zt; t < T∞), where
T∞ = limn→∞ Tn. Set for t ≥ T∞, Zt = (0, 0). Then, by construction,
T∞ = σ0. It will be checked in section 2.3 (see Corollary 2.7) that Z is
a continuous process.

Note that there exists B a two-dimensional Brownian motion such
that for n ≥ 0,

dZt = dBt + v1(Θ2n)dL
1
t for all t ∈ [T2n, T2n+1[,

dZt = dBt + v2(Θ2n+1)dL
2
t for all t ∈ [T2n+1, T2n+2[,

with L1 and L2 being the local times processes of X and Y . Define
(vt; t < σ0) by : for n ≥ 0

vt = v1(Θ2n) for all t ∈ [T2n, T2n+1[,

vt = v2(Θ2n+1) for all t ∈ [T2n+1, T2n+2[.

Then for all t < σ0,

(7) Zt = Z0 +Bt +

∫ t

0

vsdLs

where Z0 = (x, 0) and L = L1 + L2 is the accumulated local time at
∂Q until t.

The purpose of the following sections is to answer the questions (I)
and (II) addressed in the beginning of section 2.

2.3. The corner is reached. For a ≥ 0, denote σa := inf{t; |Zt| =
a}. Following [16], we will first prove that P(σ0 ∧ σK < ∞) = 1 for all
K > x. This is the major difficulty we encountered here although the
proof when the angles of reflections remain constant on each boundary
is quite easy (Lemma 2.1 [16]). The main idea is inspired from [2].
Define for n ≥ 1, Vn = Un

Un−1
. Then using the scaling property (Propo-

sition 2.1) and the strong Markov property, we have that for all n ≥ 0,
given Gn, Vn+1 is distributed as ỸS̃, where

(

(X̃t, Ỹt); t ≤ S̃
)

has law
PΘn

1 .



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 13

Lemma 2.6. With probability 1,
∑

n≥0Un is finite.

Proof. For all n ≥ 1, we have that

Un = x exp

( n
∑

k=1

log(Vk)

)

.

We denote by EGk
the conditional expectation with respect to Gk.

By Corollary 2.5, for all k ≥ 1, EGk−1
[log(Vk)] = −π

2
tan(Θk−1) and

EGk−1
[(log(Vk))

2] = π2

4
(1 + 2 tan2(Θk−1)). Note now that

n
∑

k=1

log(Vk) = Mn +

n
∑

k=1

EGk−1
[log(Vk)]

where Mn :=
∑n

k=1

(

log(Vk)− EGk−1
[log(Vk)]

)

is a martingale. Denote
by 〈M〉n its quadratic variation given by

n
∑

k=1

EGk−1

[(

log(Vk)− EGk−1
[log(Vk)]

)2]
=

n
∑

k=1

π2

4

(

1 + tan2(Θk−1)
)

.

Thus 〈M〉∞ = ∞ and a.s. limn→∞Mn/n = 0. Since infk≥0Θk ≥
θmin > 0, this easily implies the lemma. �

A first consequence of Lemma 2.6 is

Corollary 2.7. With probability 1, limt↑σ0
Zt = 0.

Proof. For ǫ > 0 and n ≥ 0, set

Aǫ
n =

{

sup
s∈[Tn,Tn+1]

|Zs| > ǫ
}

.

By Lemma 2.2 (i), with b = 1, for all n ≥ 0,

P(Aǫ
n|Gn) ≤ sup

θ∈]θmin,
π
2
[

cotan(θ) Un = cotan(θmin) Un.

Thus by Lemma 2.6
∑

n P(A
ǫ
n|Gn) < ∞ and the corollary follows by

applying the conditional Borel-Cantelli lemma. �

Lemma 2.6 will be also used to prove

Lemma 2.8. For all K > x, P(σ0 ∧ σK < ∞) = 1.

Proof. For all n ≥ 0 and t ∈ [0, Sn+1], set

W n+1
t = cos(Θn)(X

n+1
t − Un) + sin(Θn)Y

n+1
t

Recall σ0 = limn→∞ Tn. Define the continuous process (Wt; t ≤ σ0)
such that W0 = 0 and for n ≥ 0 and t ∈]Tn, Tn+1], Wt = W n+1

t−Tn
+WTn

.
Then, it is straightforward to check that (Wt; t ≤ σ0) is a Brownian
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motion stopped at σ0. Since for all n ≥ 0, Un ≥ 0 and Θn ∈]0, π/2[,
we get that on the event {σK ≥ Tn+1},

sup
t∈[Tn,Tn+1]

Wt ≤ 2K +WTn
.

Thus, on {σK = ∞}, supt≤σ0
Wt ≤ 2K + supn≥0WTn

. Now for all
n ≥ 0, W n+1

Sn+1
= sin(Θn)Un+1 − cos(Θn)Un ≤ Un+1. Note that for all

n ≥ 0,
WTn+1

−WTn
= W n+1

Sn+1
.

This implies that on the event {σK = ∞}, supt≤σ0
Wt ≤ 2K+

∑

n≥0 Un,
which is a.s. finite using Lemma 2.6. This shows that a.s. {σK = ∞} ⊂
{σ0 < ∞} and finishes the proof. �

And following [16], we can prove

Theorem 2.9. With probability 1, we have σ0 < ∞.

Proof. Set b = 4θmin

π
. Let φ(x, y) = R

(

(x + iy)be−iθmin
)

, then φ is
harmonic on some open set U containing Q∗. Using b = 4θmin

π
, we have

that

∇φ(x, 0) = bxb−1(cos(θmin), sin(θmin)),

∇φ(0, y) = byb−1(sin(θmin), cos(θmin)).

Thus for all t < σ0 with Zt ∈ ∂Q, we have vt.∇φ(Zt) ≤ 0. It follows
by (7) and Itô’s formula that for all 0 < ǫ < x < K and t ≥ 0,

E[φ(Zt∧σǫ∧σK)] ≤ φ(x, 0).

Letting t → ∞ and using dominated convergence, we deduce

E[φ(Zσǫ∧σK)] ≤ φ(x, 0).

Obviously φ(z) ≥ cos(θmin)|z|b for all z ∈ Q. Setting pǫ,K = P(σǫ <
σK), we get

cos(θmin)
(

ǫbpǫ,K +Kb(1− pǫ,K)
)

≤ xb.

From this, we deduce

pǫ,K ≥ (Kb − xb/ cos(θmin))

Kb − ǫb
.

As in [16], since σ0 ∧ σK < ∞, limǫ→0 pǫ,K = P(σ0 < σK), this yields

(8) P(σ0 < σK) ≥ 1− xb

Kb cos(θmin)
.

Letting K → ∞, it comes that P(σ0 < ∞) = 1. �
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Remark 2.10. Using the inclusion {supt<σ0
|Zt| > ǫ} ⊂ {σǫ < σ0}

and (8), we deduce that for all ǫ > 0,

(9) lim
x→0+

P(sup
t<σ0

|Zt| > ǫ) = 0

This fact will be used in section 3.

2.4. The local time process. Following Williams [17], we prove in
this section that

Theorem 2.11. With probability 1, Lσ0
:= limt↑σ0

Lt is finite.

Proof. In what follows, we refer to the proof of Theorem 1 in [17] for
more details. Let θ̃ ∈]0, θmin ∧ π/4[ and set b̃ = 4θ̃

π
. Le φ̃ be defined

as the function φ in the proof of Theorem 2.9, with the parameters
(b, θmin) replaced by (b̃, θ̃). Then there exists c > 0 such that for all t
for which Zt ∈ ∂Q, we have vt.∇φ(Zt) ≤ −c|Zt|b̃−1. For each γ > 0,
define fγ = e−γφ. Then fγ is twice continuously differentiable in Q∗

and
∆fγ(z) = γ2fγ(z)(b̃|z|b̃−1)2 for z ∈ Q∗.

Moreover for all t such that Zt ∈ ∂Q,

vt.∇fγ(Zt) = −γfγ(Zt)
(

vt.∇φ(Zt)
)

.

For t < σ0, set

At = −γ

∫ t

0

(vs.∇φ(Zs))dLs +
γ2

2

∫ t

0

(b̃|Zs|b̃−1)2ds.

and Aσ0
= limt↑σ0

At. Then

Aσ0
≥ cγ

∫ σ0

0

|Zs|b̃−1dLs +
γ2

2

∫ σ0

0

(b̃|Zs|b̃−1)2ds.

Itô’s formula implies that for t < σ0,

fγ(Zt)e
−At = fγ(Z0) +

∫ t

0

e−As(∇fγ(Zs).dBs).

Taking the expectation, we get

E

[

exp

(

− cγ

∫ σ0

0

|Zs|b̃−1dLs

)]

≥ fγ(Z0).

This easily implies that for all r > 0,

E

[

exp

(

− γcrb̃−1

∫ σ0

0

1{|Zs|≤r}dLs

)]

≥ fγ(Z0).



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 16

Letting γ ↓ 0, we get a.s.

(10)
∫ σ0

0

1{|Zs|≤r}dLs < ∞.

Let Sr = sup{t ≥ 0 : |Zt| > r}, then by the continuity of Z, Sr < σ0

and thus LSr
< ∞. By combining this with (10), we get Lσ0

< ∞. �

2.5. On the integrability of Lσ0
. In this section, Proposition 1.8 is

proved. We use the notation of section 2.2 in which the process Z is
constructed. Note that Lσ0

=
∑∞

n=1 L
n
Sn

, where Ln is the local time at
0 of Y n and where Zn = (Xn, Y n). Recall that for n ≥ 0, given Gn,
the law of Zn+1 is PΘn

Un
, where U0 = x and Un = Y n

Sn
for n ≥ 1.

Let Z0 = (X0
t , Y

0
t )t≤S0 be a process of law Pθ

x. Then, if L0
t = Lt(X

0),
for all t ≥ 0,

Y 0
t∧S0 = B2

t∧S0 + L0
t∧S0

where (B2
t∧S0)t is a Brownian motion stopped at time S0. Thus

E[Y 0
t∧S0 ] = E[L0

t∧S0 ].

Taking the limit as t → ∞ and using Corollary 2.3 leads to E[L0
S0 ] =

E[Y 0
S0]. But E[Y 0

S0 ] = x cotan(θ) by Corollary 2.5. This implies that

E[Ln+1
Sn+1

|Gn] = Un cotan(Θn).

Consequently

E[Lσ0
] =

∑

n≥0

E[Un cotan(Θn)].

Assume that for all n, Un and Θn are independent, then

E[Un cotan(Θn)] = E[cotan(Θn)]E[Un] = · · · = x
n
∏

k=0

E[cotan(Θk)].

Therefore

E[Lσ0
] = x

∑

n≥0

n
∏

k=0

E[cotan(Θk)].

This gives a necessary and sufficient condition to get E[Lσ0
] < ∞.

Assume that Θn = θ ∈]0, π/2[ for all n, we get

E[Lσ0
] = x

∑

n≥0

(

cotan(θ)
)n+1

which is finite if and only if θ ∈]π/4, π/2[. In this case

E[Lσ0
] =

x cotan(θ)
1− cotan(θ)

=
x

tan(θ)− 1
.
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Assume that Θ2n = θ1 and Θ2n+1 = θ2. Set c1 = cotan(θ1) and
c2 = cotan(θ2). Then

E[Lσ0
] = x(c1 + c1c2 + c21c2 + c21c

2
2 + · · · )

= c1
(

1 + c2 + c1c2 + c1c
2
2 + · · ·

)

= c1
(

(1 + c2) + (1 + c2)c1c2 + · · ·
)

which is finite if and only if c1c2 < 1. In this case, we have

E[Lσ0
] =

xc1(1 + c2)

1− c1c2
.

Proposition 1.8 is proved.

3. Proof of Theorem 1.2

Theorem 1.2 (i) is proved in section 3.1. For the construction of a
solution, we will use Freidlin-Sheu formula for the Walsh’s Brownian
motion (see Theorem 3.1 below). The uniqueness in law of the solution
of the SDE (E) will follow from the fact that the Walsh’s Brownian
motion is the unique solution of a martingale problem.

Theorem 1.2 (ii) is proved in section 3.2. To prove pathwise unique-
ness for (E) when N = 2, we proceed as in [4] using the local times
techniques introduced in [8, 13]. The fact that the solution of (E) is
not a strong solution when N ≥ 3 is a consequence of a Theorem by
Tsirelson (see Theorem 3.6 below).

We prove Theorem 1.2 only for x = 0, the case x 6= 0 following easily.

3.1. Proof of Theorem 1.2 (i). Let us recall Freidlin-Sheu formula
(see [5] and also Theorem 3 in [6]).

Theorem 3.1. [5] Let (Xt)t≥0 be a Walsh’s Brownian motion on G
started from X0 and BX

t = |X|t − |X0| − Lt(|X|). Then BX is a
Brownian motion and for all f ∈ C2

b (G
∗), we have

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dB
X
s +

1

2

∫ t

0

f ′′(Xs)ds+ f ′(0)Lt(|X|).

We call BX the Brownian motion associated to X.

Remark that in this formula the local martingale part of f(Xt) is
always a stochastic integral with respect to BX . This is an expected
fact since BX has the martingale representation property for (FX

t )t
(Theorem 4.1 [1]). This martingale representation property will be
used to prove the uniqueness in law of the solutions to (E). Theorem
1.2 (i) is proved in sections 3.1.1 and 3.1.2. Theorem 1.2 (ii) is proved
in sections 3.2.1 and 3.2.2.
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3.1.1. Construction of a solution to (E). Let X be a Walsh’s Brownian
motion with X0 = 0 and let BX be the Brownian motion associated
to X. Take a N -dimensional Brownian motion V = (V 1, · · · , V N)
independent of X. Let (Ft) denote the filtration generated by X and
V . For i ∈ [1, N ], define

W i
t =

∫ t

0

1{Xs∈Ei}dB
X
s +

∫ t

0

1{Xs /∈Ei}dV
i
s .

Then W := (W 1, · · · ,WN) is a N -dimensional (Ft)-Brownian motion
by Lévy’s theorem and

BX
t =

N
∑

i=1

∫ t

0

1{Xs∈Ei}dW
i
s .

Then, using Theorem 3.1, (X,W ) solves (E). Denote by µ the law of
(X,W ).

3.1.2. Uniqueness in law. To prove the uniqueness in law, we will apply
the two following lemmas. The first Lemma states that the Walsh’s
Brownian motion is the unique solution of a martingale problem. The
second Lemma gives conditions that ensure that a Walsh’s Brownian
motion is independent of a given family of Brownian motions.

Lemma 3.2. Let (Ft) be a filtration and let X be a G-valued (Ft)-
adapted and continuous process such that for all f ∈ D,

(11) Mf
t := f(Xt)− f(x)− 1

2

∫ t

0

f ′′(Xs)ds.

is a martingale with respect to (Ft), then X is a (Ft)-Walsh’s Brownian
motion.

Proof. We exactly follow the proof of Theorem 3.2 of [1] and only check
that with our conventions for f ′(0) and f ′′(0) when f ∈ D, we avoid
all trivial solutions to the previous martingale problem (with the hy-
pothesis of Theorem 3.2 of [1], the trivial process Xt = 0 is a possible
solution of the martingale problem (3.3) in [1]). For i ∈ [1, N ], set
qi = 1− pi and let fi and gi be defined by

fi(x) = qi|x|1{x∈Ei} − pi|x|1{x 6∈Ei}

gi(x) =
(

fi(x)
)2

= q2i |x|21{x∈Ei} + p2i |x|21{x 6∈Ei}.

Then fi and gi are C2 on G∗. We have f ′
i(x) = qi for x ∈ E∗

i , f
′
i(x) =

−pi for x 6∈ Ei and f ′
i(0) = 0. Moreover, for all x ∈ G, f ′′

i (x) = 0.
We also have g′i(x) = 2q2i |x| for x ∈ E∗

i , g
′
i(x) = 2p2i |x| for x 6∈ Ei and

g′i(0) = 0. Moreover, g′′i (x) = 2q2i for x ∈ E∗
i , g

′′
i (x) = 2p2i for x 6∈ Ei
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and g′′i (0) = 2piqi. Set Y i
t := fi(Zt). Although fi is not bounded, by a

localization argument, we have that Y i
t is a local martingale. Using the

function gi, we also have that (Y i
t )

2− 1
2

∫ t

0
g′′i (Zs)ds is a local martingale.

Thus

〈Y i〉t =
∫ t

0

(

q2i 1{Zs∈E∗
i } + p2i 1{Zs 6∈Ei} + piqi1{Zs=0}

)

ds.

Set

U i
t =

∫ t

0

(

q−1
i 1{Y i

s>0} + p−1
i 1{Y i

s<0} +
(

piqi
)−1/2

1{Y i
s=0}

)

dY i
s .

Then U i
t is a local martingale with 〈U i〉t = t; that is U i

t is a Brownian
motion. Let φ(y) = qi1{y>0} + pi1{y<0} +

√
piqi1{y=0}. Then Y i

t is a
solution of the stochastic differential equation

Y i
t = Y i

0 +

∫ t

0

φ(Y i
s )dU

i
s.

As in [1], the solution of this SDE is pathwise unique and following the
end of the proof of Theorem 3.2 of [1], we arrive at

E[f(Zt)|Fs] = Pt−sf(Zs)

for all s ≤ t and f : G → R a bounded measurable where Pt is the
semigroup of Walsh’s Brownian motion. �

Lemma 3.3. Let (Gt) be a filtration. Let X be a (Gt)-Walsh’s Brownian
motion, BX its associated Brownian motion and B = (B1, · · · , Bd) be a
(Gt)-Brownian motion in Rd, with d ≥ 1. If B and BX are independent,
then X and B are independent.

Proof. Let U be a bounded σ(B)-measurable random variable. Then

U = E[U ] +
d

∑

i=1

∫ ∞

0

H i
sdB

i
s

where H i predictable for the filtration FB
· and E[

∫∞
0
(H i

s)
2ds] < ∞.

Let U ′ be a bounded σ(X)-measurable random variable. Since BX has
the martingale representation property for FX

· (Theorem 4.1 [1]), we
deduce that

U ′ = E[U ′] +

∫ ∞

0

HsdB
X
s

with H predictable for FX
· and E[

∫∞
0
(Hs)

2ds] < ∞. Then H and
(H i)1≤i≤d are also predictable for (Gt). It is also easy to check that BX
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is a (Gt)-Brownian motion. Now

E[UU ′] = E[U ]E[U ′] + E

[

d
∑

i=1

∫ ∞

0

H i
sdB

i
s

∫ ∞

0

HsdB
X
s

]

= E[U ]E[U ′] +

d
∑

i=1

E

[
∫ ∞

0

H i
sHsd〈Bi, BX〉s

]

= E[U ]E[U ′].

�

Let (X,W ) be a solution of (E), defined on a filtered probability
space (Ω, (Ft),P), and such that X0 = 0. Without loss of generality, we
can assume that Ft = FX

t ∨FW
t . For all f ∈ D,

∑N
i=1

∫ t

0
f ′(Xs)1{Xs∈Ei}dW

i
s

is a martingale, and therefore X is a solution to the martingale prob-
lem of Lemma 3.2. Thus X is a Walsh’s Brownian motion. Let B be a
Brownian motion independent of (X,W ), denote by BX the Brownian
motion associated to X and set Gt = Ft ∨ FB

t . Note that BX is a
(Gt)-Brownian motion. For i ∈ [1, N ], define

V i
t =

∫ t

0

1{Xs∈Ei}dBs +

∫ t

0

1{Xs /∈Ei}dW
i
s .

Then V := (V 1, · · · , V N) is a N -dimensional (Gt)-Brownian motion
independent of BX . By the previous Lemma V is also independent of
X. It is easy to check that for all i ∈ [1, N ],

W i
t =

∫ t

0

1{Xs∈Ei}dB
X
s +

∫ t

0

1{Xs /∈Ei}dV
i
s .

This proves that the law of (X,W ) is µ.

3.2. Proof of Theorem 1.2 (ii).

3.2.1. The case N = 2. To prove that the solution is a strong one, it
suffices to prove that pathwise uniqueness holds for (E). Fix p ∈]0, 1[,
and set β = 1−p

p
.

Lemma 3.4. Let B+ and B− be two independent Brownian motions.
Let also X and Y be two continuous processes, with Yt = βXt1{X≥0} +
Xt1{Xt<0}. Then (X,B+, B−) is a solution to (E) or equivalently of

(12) dXt = 1{Xt>0}dB
+
t + 1{Xt≤0}dB

−
t + (2p− 1)dLt(X)

if and only if (Y,B+, B−) is a solution of the following SDE

(13) dYt = β1{Yt>0}dB
+
t + 1{Yt≤0}dB

−
t .
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Proof. Suppose (X,B+, B−) solves (12). Set Bt =
∫ t

0
1{Xs>0}dB

+
s +

1{Xs≤0}dB
−
s . Then Bt is a Brownian motion, and (X,B) is a solution

of the SDE Xt = Bt + (2p− 1)Lt(X). It well known (see for example
section 5.2 in the survey [11]) that (Y,B) solves

dYt = β1{Yt>0}dBt + 1{Yt≤0}dBt

and thus that (Y,B+, B−) solves (13). The converse can be proved in
the same way. �

Proposition 3.5. Pathwise uniqueness holds for (E).

Proof. Lemma 3.4 implies that the proposition holds if pathwise unique-
ness holds for (13). Let (X,B+, B−) and (Y,B+, B−) be two solutions
of (13) with X0 = Y0 = 0. Set sgn(x) = 1{x>0} − 1{x<0}. We shall use
the same techniques as in [4] (see also [8] and [13]) and first prove that
a.s.

(14)
∫

]0,+∞]

La
t (X − Y )

a
da < ∞.

By the occupation times formula
∫

]0,+∞]

La
t (X − Y )

a
da =

∫ t

0

1{Xs−Ys>0}
d〈X − Y 〉s
Xs − Ys

.

It is easily verified that

d〈X − Y 〉s ≤ C
∣

∣sgn(Xs)− sgn(Ys)
∣

∣ds

where C = (1+β2)/2. Let (fn)n ⊂ C1(R) such that fn → sgn pointwise
and (fn)n is uniformly bounded in total variation. By Fatou’s Lemma,
we get
∫

]0,+∞]

La
t (X − Y )

a
da ≤ C lim inf

n

∫ t

0

1{Xs−Ys>0}
|fn(Xs)− fn(Ys)|

Xs − Ys

ds

≤ C lim inf
n

∫ t

0

1{Xs−Ys>0}

∣

∣

∣

∣

∫ 1

0

f ′
n(Z

u
s )du

∣

∣

∣

∣

ds

where
Zu

s = (1− u)Xs + uYs.

It is easy to check the existence of a constant A > 0 such that for all
s ≥ 0 and u ∈ [0, 1], d

du
〈Zu〉s ≥ A−1. Hence, setting C ′ = A × C, we

have
∫

]0,+∞]

La
t (X − Y )

a
da ≤ C ′ lim inf

n

∫ 1

0

∫ t

0

∣

∣f ′
n(Z

u
s )
∣

∣d〈Zu〉sdu.

≤ C ′ lim inf
n

∫ 1

0

∫

R

∣

∣f ′
n(a)

∣

∣La
t (Z

u)dadu.
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Now taking the expectation and using Fatou’s Lemma, we get

E

[
∫

]0,+∞]

La
t (X − Y )

a
da

]

≤ C ′ lim inf
n

∫

R

∣

∣f ′
n(a)

∣

∣da sup
a∈R,u∈[0,1]

E
[

La
t (Z

u)
]

.

It remains to prove that supa∈R,u∈[0,1] E
[

La
t (Z

u)
]

< ∞. By Tanaka’s
formula, we have

E
[

La
t (Z

u)
]

= E
[
∣

∣Zu
t − a

∣

∣

]

− E
[
∣

∣Zu
0 − a

∣

∣

]

− E

[
∫ t

0

sgn(Zu
s − a)dZu

s

]

≤ E[
∣

∣Zu
t − Zu

0

∣

∣]

It is easy to check that the right-hand side is uniformly bounded with
respect to (a, u) which permits to deduce (14). Consequently La

t (X −
Y ) = 0 and thus by Tanaka’s formula, |X − Y | is a local martingale
which is also a nonnegative supermartingale, with |X0 − Y0| = 0 and
finally X and Y are indistinguishable. �

3.2.2. The case N ≥ 3. Let (X,W ) be a solution to (E). Then X is
a (Ft)-Walsh’s Brownian motion, where Ft = FX

t ∨ FW
t . If (X,W )

is a strong solution we thus have that X is a (FW
t )-Walsh’s Brownian

motion, which is impossible when N ≥ 3 because of the following
Tsirelson’s theorem :

Theorem 3.6. [6] There does not exist any (Gt)t-Walsh’s Brownian
motion on a star graph with three or more rays with (Gt)t a Brownian
filtration.

4. Proof of Theorem 1.4

In this section, we prove assertions (i) and (ii) of Theorem 1.4. We
first construct a coalescing SFM solution of (E). To construct this
SFM, we will use the following

Theorem 4.1. [10] Let (P (n), n ≥ 1) be a consistent family of Feller
semigroups acting respectively on C0(M

n) where M is a locally compact
metric space such that

(15) P
(2)
t f⊗2(x, x) = P

(1)
t f 2(x) for all f ∈ C0(M), x ∈ M, t ≥ 0.

Then there exists a (unique in law) SFM ϕ = (ϕs,t)s≤t defined on some
probability space (Ω,A,P) such that

P
(n)
t f(x) = E[f(ϕ0,t(x1), · · · , ϕ0,t(xn))]

for all n ≥ 1, t ≥ 0, f ∈ C0(M
n) and x ∈ Mn.
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To apply this Theorem, we construct a consistent family of n-point
motions (i.e. the Markov process associated to P (n)) up to their first
coalescing times in section 4.1. After associating to the two-point mo-
tion an obliquely reflected Brownian motion in Q in section 4.2, we
prove the coalescing property in section 4.3 and the Feller property in
section 4.4. It is then possible to apply Theorem 4.1 and as a result we
get a flow ϕ. In section 4.4, we also show that ϕ solves (E). Finally,
we prove in section 4.5 that ϕ is the unique SFM solving (E).

Note finaly that in the case of Le Jan and Raimond [9], all the angles
of reflection of the obliquely reflected Brownian motion associated to
the two-point motion are equal to π/4. This simplifies greatly the study
of section 2.

4.1. Construction of the n-point motion up to the first coa-
lescing time. Fix x1, · · · , xn ∈ G such that |x1| < · · · < |xn| and let
(X,W ) be a solution of the SDE (E), with X0 = x1.

Set, for t ≥ 0, X1,0
t = Xt and for all j ∈ [2, n], if xj ∈ Ei, define

Xj,0
t = ei(|xj |+W i

t ).

Set
τ1 = inf{t ≥ 0 : ∃j 6= 1 : Xj,0

t = 0}.
For t ≤ τ1, set X

(n)
t = (X1,0

t , · · · , Xn,0
t ).

Assume now that (τk)k≤ℓ and (X
(n)
t )t≤τl have been defined such that

a.s.

• (τk)1≤k≤ℓ is an increasing sequence of stopping times with re-
spect to the filtration associated to (X

(n)
t )t≤τl ;

• for all k, there exists an integer jk such that Xjk
τk

= 0.

Now introduce an independent solution (X,W ) of the SDE (E), with
X0 = 0. Define (X

(n)
t )t∈[τℓ,τℓ+1] by analogy with the construction of

(X
(n)
t )t∈[0,τ1] by replacing (x1, · · · , xn) with (X

jℓ
1

τl , · · · , Xjℓn
τl ), where (jℓ1, . . . , j

ℓ
n)

are such that
0 = |Xjℓ1

τl
| < · · · < |Xjℓn

τl
|.

Thus, we have defined X
(n)
t for all t < τ∞, where τ∞ := liml→∞ τl.

We denote by P
(n),0
x the law of (X(n)

t )t<τ∞ . Notice that if we denote
X(n) = (X1, . . . , Xn), then for all i, (X i

t , t ≤ τ∞) is a Walsh’s Brownian
motion stopped at time τ∞. Note also that a.s. on the event {τ∞ < ∞},
there exist i 6= j such that X i

τn = Xj
τn+1

= 0 for infinitely many n’s.
This implies that a.s. on the event {τ∞ < ∞}, there exist i 6= j such
that limt↑τ∞ X i

t = limt↑τ∞ Xj
t = 0, and thus that limt↑τ∞ X

(n)
t ∈ ∆n,
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with ∆n := {(x1, · · · , xn) ∈ Gn : ∃i 6= j, xi = xj}. Therefore, if we
denote by X

(n)
τ∞ this limit, then, by construction, τ∞ coincides with

(16) T∆n
= inf{t ≥ 0 : X

(n)
t ∈ ∆n}.

Note that in the particular case n = 2, on the event {τ∞ < ∞}, a.s.
X

(2)
τ∞ = (0, 0). We will prove in section 4.3 that τ∞ < ∞ a.s.

4.2. An obliquely reflected Brownian motion associated to the
2-point motion. Fix x ∈ G, and let i such that x ∈ Ei. Recall the
construction of (X, Y ) of law P

(2)
(x,0). We have τ0 = 0 and for k ≥ 0,

τ2k+1 = inf{t ≥ τ2k : Xt = 0},
τ2k+2 = inf{t ≥ τ2k+1 : Yt = 0}.

For n ≥ 0, let i2n and i2n+1 be in {1, . . . , N} such that Xτ2n ∈ Ei2n and
Yτ2n+1

∈ Ei2n+1
. Then for n ≥ 0,

Xt = ei2n

(

|Xτ2n |+W i2n
t −W i2n

τ2n

)

for t ∈ [τ2n, τ2n+1[,

Yt = ei2n+1

(

|Yτ2n+1
|+W

i2n+1

t −W i2n+1

τ2n+1

)

for t ∈ [τ2n+1, τ2n+2[.

Define, for i ∈ [1, N ], f i : G → R by

f i(x) = −|x| if x ∈ Ei and f i(x) = |x| if not.

Define now (Ut, Vt)t<τ∞ such that for n ≥ 0

(Ut, Vt) =

{

(|Xt|, f i2n(Yt)) for t ∈ [τ2n, τ2n+1[
(f i2n+1(Xt), |Yt|) for t ∈ [τ2n+1, τ2n+2[

Remark that (Ut, Vt)t<τ∞ is a continuous process with values in {(u, v) ∈
R2 : u + v > 0} and such that for all n ≥ 0, Uτ2n > 0, Vτ2n = 0,
Uτ2n+1

= 0 and Vτ2n+1
> 0. Note that the excursions of this process

outside of Q occur on straight lines parallel to {y = −x}.
Let, for n ≥ 0,

Θn = arctan

(

pin
1− pin

)

.

Define for t < τ∞,

A(t) =

∫ t

0

1{(Us,Vs)∈Q}ds =

∫ t

0

1{Xs 6∼Ys}ds.

Set γ(t) = inf{s ≥ 0 : A(s) > t}. Set for n ≥ 0, Tn = A(τn) and
Sn+1 = Tn+1 − Tn. Define for t < T∞ := limn→∞ Tn,

(U r
t , V

r
t ) = (Uγ(t), Vγ(t))
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and for t ≥ T∞, (U r
t , V

r
t ) = (0, 0). Note that T2n+1 = inf{t ≥ T2n :

V r
t = 0} and T2n+2 = inf{t ≥ T2n+1 : U

r
t = 0} and that γ(Tn) = τn.

Lemma 4.2. Given Θ0, the law of (U r
t , V

r
t )t≤S1

is P
Θ0

|x| .

The proof of this lemma is given at the end of this section.

Notice that since a.s. |Yτ1 | = V r
T1

6= 0, then the sequence (τk)k defined
above is a.s. strictly increasing. It is also a sequence of stopping times
with respect to the filtration Ft = σ

(

(Xs, Ys); s ≤ t
)

, t ≥ 0.
Define the sequence of processes (Zn)n≥1 such that for n ≥ 0,

Z2n+1 = (U r
t+T2n

, V r
t+T2n

)t≤S2n+1
,

Z2n+2 = (V r
t+T2n+1

, U r
t+T2n+1

)t≤S2n+2
.

Set also for n ≥ 0, U2n = U r
T2n

and U2n+1 = V r
T2n+1

.
Applying Lemma 4.2 and using the strong Markov property at the

stopping times τn, with the fact that if (X, Y ) is distributed as P
(2),0
(x,y),

then (Y,X) is distributed as P(2),0
(y,x), one has the following

Lemma 4.3. For all n ≥ 0, given Fτn, the law of Zn+1 is PΘn

Un
.

This lemma shows that the sequences (Θn)n≥0 and (Zn)n≥1 satisfy
(i) and (ii) in the beginning of Section 2.2 since for all n ≥ 0,

Gn = σ
(

(Θk, Z
k); 1 ≤ k ≤ n

)

∨ σ(Θ0) ⊂ Fτn.

Thus (U r
t , V

r
t )t<T∞ is a Brownian motion in Q∗ started from (|x|, 0),

with time dependent angle of reflections at the boundaries given by
(Θn)n≥0 and stopped when it hits (0, 0), as defined in section 2. In par-
ticular, (U r, V r) is a continuous process and limt↑T∞(U r

t , V
r
t ) = (0, 0).

We will now denote the process (U r, V r) by Z .

Remark 4.4. Note that (in)n≥0 is an homogeneous Makov chain started
from i0 = 1 with transition matrix (Pi,j) given by : for (i, j) ∈ [1, N ]2,
Pi,j =

pj∑
k 6=i pk

. Remark also that given Gn, Z
n+1 and in+1 are indepen-

dent and a fortiori Zn+1 and Θn+1 are also independent.

Proof of Lemma 4.2. Let i be such that x ∈ Ei. Let (Y,W ) be a
solution of (E) with Y0 = 0 and define Xt = ei(|x|+W i

t ) for 0 ≤ t ≤ τ1
where τ1 = inf{s ≥ 0 : |x| + W i

s = 0}. Set for t ≥ 0, (Ut, Vt) :=
(|x| + W i

t , f
i(Yt)) where f i(y) = |y|1y 6∈Ei

− |y|1y∈Ei
. Note that for

t ≤ τ1, Ut = |Xt|.
Since Y is a Walsh’s Brownian motion started at 0, it is well known

that V is a skew Brownian motion with parameter 1− pi. This can be
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seen using Freidlin-Sheu formula, which shows that

(17) Vt =

∫ t

0

(

1{Vs>0} − 1{Vs≤0}
)

dBY
s + (1− 2pi)Lt(V ).

Define A(t) =
∫ t

0
1{Vs≥0}ds =

∫ t

0
1{Ys 6∈Ei}ds and γ(t) = inf{s ≥ 0 :

A(s) > t}. It is also well known that V r
t := Vγ(t) is a reflecting Brownian

motion on R+. Set Mt =
∫ t

0
1{Vs>0}dVs =

∫ t

0
1{Ys 6∈Ei}dB

Y
s . Then B2

t :=
Mγ(t) is a Brownian motion. We also have that Vt ∨ 0 = Mt + (1 −
pi)Lt(V ), which implies that V r

t = B2
t + (1− pi)Lγ(t)(V ) and therefore

that Lt(V
r) = (1− pi)Lγ(t)(V ). Note finally that L(V ) = L(|Y |).

Set for t ≥ 0, B1
t =

∫ γ(t)

0
1{Vs>0}dW

i
s . By Lévy’s theorem B1 and B2

are two independent Brownian motions. Finally, set U r
t = Uγ(t). Then

(U r
t , V

r
t )t≤γ(τ1) is equal in law to the process (U r

t , V
r
t )t≤S1

given in the
statement of Lemma 4.2.

Lemma 4.2 is a direct consequence of the following.

Lemma 4.5. For all t ≥ 0,

U r
t = |x|+B1

t −
pi

1− pi
Lt(V

r)

V r
t = B2

t + Lt(V
r).

Proof. We closely follow the proof of Lemma 4.3 in [9]. Let ǫ > 0 and
define the sequences of stopping times σǫ

k and τ ǫk such that τ ǫ0 = 0 and
for k ≥ 0,

σǫ
k = inf{t ≥ τ ǫk; Vt = −ǫ},

τ ǫk+1 = inf{t ≥ σǫ
k; Vt = 0}.

Note first that (17) implies that
∑

k≥0

(

Vσǫ
k
∧γ(t) − Vτǫ

k
∧γ(t)

)

converges in probability as ǫ → 0 towards B2
t +(1−2pi)Lγ(t)(V ). Since

V r
t = B2

t + (1− pi)Lγ(t)(V ), if we set

Lǫ,r
t =

∑

k≥0

(

Vτǫ
k+1

∧γ(t) − Vσǫ
k
∧γ(t)

)

,

as ǫ → 0, Lǫ,r
t converges towards piLγ(t)(V ) in probability. Now for

t > 0,

U r
t = |x|+

∑

k≥0

(

Uτǫ
k+1

∧γ(t) − Uτǫ
k
∧γ(t)

)

.



STOCHASTIC FLOWS AND AN INTERFACE SDE ON METRIC GRAPHS 27

Set for t ≥ 0,

Bǫ,1
t =

∑

k≥0

(

W i
σǫ
k
∧γ(t) −W i

τǫ
k
∧γ(t)

)

.

Note that d(Us + Vs) =
∑

j 6=i 1{Ys∈Ej}dW
j
s and thus when Ys ∈ E∗

i (i.e.
when Vs is negative), Us + Vs remains constant, and we have

U r
t = |x|+

∑

k≥0

(

Uτǫ
k+1

∧γ(t) − Uσǫ
k
∧γ(t)

)

+
∑

k≥0

(

Uσǫ
k
∧γ(t) − Uτǫ

k
∧γ(t)

)

= |x| − Lǫ,r
t +Bǫ,1

t .

Since Bǫ,1
t converges in probability towards B1

t , we get

U r
t = |x|+B1

t − piLγ(t)(V ).

And we conclude using that Lt(V
r) = (1− pi)Lγ(t)(V ). �

4.3. Coalescing property. Our purpose in this section is to prove
that τ∞ defined above is finite a.s. By symmetry and the strong Markov
property, it suffices to prove this for n = 2 and (X0, Y0) = (x, 0) for
some x ∈ G∗. We use the notations of section 4.2.

Proposition 4.6. With probability 1, τ∞ < ∞.

Proof. In order to show that τ∞ < ∞ a.s., we prove that a.s. Lτ∞(|X|) <
∞. Since (|Xt|, t < τ∞) is a reflected Brownian motion stopped at time
τ∞, this implies that τ∞ < ∞ a.s.

Denote by L1
t and L2

t the local times accumulated by Z respectively
on {u = 0} and {v = 0} up to t and Lt = L1

t + L2
t . First, note

that for t ≤ S1, Lt(V
r) = (1 − pi)Lγ(t)(V ) = (1 − pi)Lγ(t)(|Y |). Thus

Lτ1(|Y |) = LS1
(V r)

1−pi
. Note also that Lτ1(|X|) = 0. Thus

Lτ1(|X|) + Lτ1(|Y |) = LS1

1− pi
.

By induction, we get that

Lτ∞(|X|) + Lτ∞(|Y |) =
∑

n≥0

LTn+1
− LTn

1− pin
≤ C LT∞

with C = sup{1≤i≤N}(1 − pi)
−1. By Theorem 2.11 a.s. LT∞ < ∞, and

so Lτ∞(|X|) + Lτ∞(|Y |) < ∞. �

The fact that when n ≥ 3, τ∞ < ∞ a.s., with τ∞ defined in section
4.1, is an immediate consequence of Proposition 4.6.
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4.4. Construction of ϕ. Let (P (n), n ≥ 1) be the unique consistent
family of Markovian semigroups such that

(i) P (1) is the semigroup of the Walsh’s Brownian motion on G.
(ii) The n-point motion of P (n) started from x ∈ Gn up to its

entrance time in ∆n is distributed as P(n),0
x .

(iii) The n-point motion (X1, . . . , Xn) of P (n) is such that if X i
s = Xj

s

then X i
t = Xj

t for all t ≥ s.

We will prove that all P (n) are Feller and that (15) holds. By Lemma
1.11 [10], this amounts to check the following condition.

Lemma 4.7. Let (X, Y ) be the two point motion associated to P (2),
then for all positive ǫ > 0

lim
d(x,y)→0

P
(2),0
(x,y)[d(Xt, Yt) > ǫ] = 0.

Proof. As in the proof of Proposition 4.6, we take y = 0. Then using the
same notations, for all positive ǫ, {d(Xt, Yt) > ǫ} ⊂ {supt<σ0

|Zt| > ǫ}.
Now the result of the lemma follows from Remark 2.10. �

By Theorem 4.1, a SFM ϕ can be associated to (P (n))n.

Proposition 4.8. Let ϕ be a SFM associated to (P (n))n. Then there
exists a family of independent white noises W = (W i, 1 ≤ i ≤ N) such
that

(i) FW
s,t ⊂ Fϕ

s,t for all s ≤ t and
(ii) (ϕ,W) solves (E).

Proof. Let Vs,·(x) be the Brownian motion associated to ϕs,·(x). For
all i ∈ [1, N ] and s ≤ t, set

W i
s,t = lim

|x|→∞,x∈Ei,|x|∈Q
Vs,t(x).

For all i ∈ [1, N ] and s ≤ t, with probability 1, this limit exists. Indeed
if x, y ∈ Ei are such that |x| ≤ |y|, then a.s. Vs,t(x) = Vs,t(y) for all
s ≤ t ≤ τxs = inf{u ≥ s; ϕs,u(x) = 0}. Moreover W i = (W i

s,t, s < t)

is a real white noise. Indeed, W i is centered and Gaussian, and by the
flow property of ϕ and using ϕs,u(x) = ei(|x| + W i

s,u) if s ≤ u ≤ τxs
and x ∈ Ei, we have W i

s,u = W i
s,t +W i

t,u. It is also clear that W i has
independent increments with respect to (s, t). Thus, W i is a real white
noise. The fact that W = (W i, 1 ≤ i ≤ N) is a family of independent
real white noises easily holds.

For x ∈ G and t ≥ 0,

〈W i
s,·, Vs,·(x)〉t = lim

|y|→∞,y∈Ei,|y|∈Q
〈Vs,·(y), Vs,·(x)〉t =

∫ t

s

1{ϕs,u(x)∈Ei}du.
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This yields

Vs,t(x) =

N
∑

i=1

∫ t

s

1{ϕs,u(x)∈Ei}dW
i
u.

By Theorem 3.1, we deduce that (ϕ,W) solves (E). �

Denote by PE the law of (ϕ,W).

4.5. Uniqueness in law of a SFM solution of (E). In this section,
we show that the SFM ϕ constructed in section 4.4 is the only SFM
solution of (E). More precisely, we show

Proposition 4.9. Let (ϕ,W) be a solution of (E), with ϕ a SFM.
Then the law of (ϕ,W) is PE.

Proof. We start by showing

Lemma 4.10. For all x = ei(r) ∈ G, we have ϕs,t(x) = ei(r + W i
s,t)

for all s ≤ t ≤ τxs = inf{t ≥ s : ϕs,t(x) = 0}. In particular for all

1 ≤ i ≤ N , s ≤ t, we have FW i

s,t ⊂ Fϕ
s,t.

Proof. Let f ∈ D such that f(x) = |x| for all x ∈ Ei. By applying f in
(E), we deduce the first claim. The second claim is then an immediate
consequence by taking a sequence (xk)k ⊂ Ei converging to ∞. �

With this Lemma and Theorem 1.2 we prove the following

Lemma 4.11. Let x = (x1, · · · , xn) ∈ Gn. Let S = inf{t ≥ 0 :
(ϕ0,t(x1), · · · , ϕ0,t(xn)) ∈ ∆n}. Then (ϕ0,t(x1), · · · , ϕ0,t(xn))t≤S is dis-

tributed like P
(n),0
x .

Proof. Suppose |x1| < · · · < |xn|. For k ∈ [1, n], set Y k
t = ϕ0,t(xk)

and Y
(n)
t = (Y 1

t , . . . , Y
n
t ). Set for i ∈ [1, N ], W i

t = W i
0,t and Wt =

(W 1
t , . . . ,W

n
t ). Note that for all k ∈ [1, n], (Y k,W ) is a solution of

(E). Set
σ1 = inf{t ≥ 0 : ∃k 6= 1 : Y k

t = 0}
and for ℓ ≥ 1, set

σℓ+1 = inf{t ≥ σℓ : ∃k ∈ [1, n] : Y k
t = 0, Y k

σℓ
6= 0}.

Let Sn = limℓ→∞ σℓ, then Sn = S = inf{t : Y (n)
t ∈ ∆n}. From Theorem

1.2, the law of (Y 1,W ) is uniquely determined. Now, for k ∈ [2, n]
with xk ∈ Ei, we have that for t ≤ σ1, Y k

t = ei(|xk|+W i
t ). This shows

that (Y
(n)
t )t≤σ1

is distributed as (X
(n)
t )t≤τ1 , constructed in Subsection

4.1. Adapting the previous argument on the time interval [σℓ, σℓ+1], we
show that for all ℓ ≥ 1, (Y (n)

t )t≤σℓ
is distributed as (X

(n)
t )t≤τℓ . This

thus shows the Lemma. �
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Lemma 4.11 permits to conclude the proof of Proposition 4.9. In-
deed, the law of a SFM is uniquely determined by its family of n-point
motions X(n). Using the fact that ∆n is an absorbing set for X(n),
the strong Markov property at time T n = inf{t; X

(n)
t ∈ ∆n} and the

consistency of the family of n-point motions, we see that the law of a
SFM is uniquely determined by its family of n-point motions stopped
at its first entrance time in ∆n. �

Acknowledgement. We are grateful to Michel Émery for very use-
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