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Abstract. In this note, a classification of Homogenization-Based Numerical Methods and (in
particular) of Numerical Methods that are based on the Two-Scale Convergence is done. In this
classification stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Nu-
merical Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving
Schemes.

1. Introduction. A Homogenization-Based Numerical Method is a numerical method that incor-
porates in its conception concepts coming from Homogenization Theory. Doing this gives to the
built method the capability to tackle efficiently heterogeneities or oscillations. This approach can be
applied to problems occurring in a heterogeneous medium, that have oscillating boundary conditions
or that are constrained to oscillate by an external action (for instance a magnetic field on a charged
particle cloud).
This topic is currently active. The goal of this special issue is to emphasis recent advances in this
topic in a wide variety of application fields.

This introductory paper introduces a classification of Homogenization-Based Numerical Methods,
in which stand: Direct Homogenization-Based Numerical Methods; H-Measure-Based Numerical
Methods; Two-Scale Numerical Methods and TSAPS: Two-Scale Asymptotic Preserving Schemes.

2. Direct Homogenization-Based Numerical Methods. The context of Direct Homogeniza-
tion-Based Numerical Methods is depicted in the next diagram:

u
ε solution to

Oε uε = 0 ε→ 0
//

u solution to

Ou = 0

u∆z solution to

O∆z u∆z = 0

∆z→ 0

OO

∆z→ 0

OO

∆z→ 0

OO

∆z→ 0

OO

(2.1)
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It is when we face with an operatorOε that generates in solution uε of equationOε uε = 0 oscillations
or heterogeneities of characteristic size ε - which is small - and when it is known that, in some sense,
for small ε, uε(z) is close to u(z) for which is known a well-posed problem Ou = 0.
In this context, it is possible, in place of building a numerical approximation of operator Oε, to
build a numerical operator O∆z approximating O. Then solving O∆z u∆z gives a solution u∆z(z)
which is close to u and consequently to uε(z), when ε is small. This approach permits to obtain an
approximation of uε(z) without resolving the oscillations the model to compute it contains.

In the case when a corrector result is known, i.e, if in association with u(z), a function u1(z),
solution to well-posed equation O1 u1 = 0, is such that uε(z) is close to u(z) + εu1(z) for small ε, it
is possible build two numerical operators O∆z and O1

∆z that are discretizations of O and O1. Using
them, we can compute approximated solutions u∆z(z) and u1

∆z(z) of u(z) and u1(z) and obtain a
good approximation of uε(z) computing u∆z(z) + εu1

∆z(z). Such a method is called order-1 Direct
Homogenization-Based Numerical Methods and is illutrated by the following diagram.

u
ε solution to

Oε uε = 0 ε→ 0
//

u, u1 solutions to

Ou = 0

O1 u1 = 0

u∆z, u∆z solution to

O∆z u∆z = 0

O1
∆z

u1∆z
= 0

∆z→ 0

OO

∆z→ 0

OO

∆z→ 0

OO

∆z→ 0

OO

(2.2)

The paper by Legoll & Minvielle [10], by Laptev [9], by Bernard, Frénod & Rousseau [3], and by Xu
& Yue [13] of this special issue may enter this framework

3. H-Measure-Based Numerical Methods. The context of those kind of methods is when the
transition from a microscopic scale (of size ε) to a macroscopic one (of size 1) -with quantities of
interest at the microscopic scale that are not the same as the quantities of interest at the macroscopic
scale - needs to be described. This occurs for instance in the simulation of phenomena some parts
of which call upon quantum description or in the simulation of turbulence. This context can be
represented by the following diagram:

u
ε solution to

Oε uε = 0
eε = E(uε)

ε→ 0
//

e solution to

M e = 0

u
ε

∆z solution to

M ε

∆z
eε∆z

= 0

∆z→ 0

OO

ε→ 0
//

u∆z solution to

M∆z e∆z = 0

∆z→ 0

OO

∆z→ 0

OO

∆z→ 0

OO

∆z→ 0

OO

(3.1)

and explained as follows. The part in the top left of diagram (3.1) symbolizes a problem which is
set at the microscopic level. This problem writes Oε uε = 0 and generates oscillations in its solution
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uε. Besides, the quantity that makes sense at the macroscopic level is eε; it is related to uε by a
non-linear relation eε = E(uε) and it is, in some sense, close to e solution to M e = 0 (see the top
right of the diagram) which represents the model at the macroscopic level.
Then, the goal of a H-Measure-Based Numerical Method consists in building a numerical operator
M ε

∆z, giving a numerical solution eε∆z close to eε, for any ε as soon as ∆z is small (see the bottom
left of the diagram), which behaves as a numerical approximation of M when ε is small (see the
bottom right of the diagram).

The paper by Tartar [12] of this special issue lays the foundation of the theory for those kinds of
methods.

4. Two-Scale Numerical Methods. The papers by Assyr, Bai & Vilmar [1], Back & Frénod [2],
Faye, Frénod & Seck [5], Frénod, Hirtoaga & Sonnendrücker [6], Lutz [11] and Henning & Ohlberger
[7] of this special issue are related to this framework of Two-Scale Numerical Methods.

An order-0 Two-Scale Numerical Method may be explained using the following diagram:

u
ε solution to

Oε uε = 0 ε→ 0
//

ε→ 0 , two-scale ))RR
RR

RR
RR

u solution to

Ou = 0

U solution to

OU = 0

∫
Z

dζ

66nnnnnn

u∆z solution to

O∆z u∆z = 0

∆z→ 0

OO

U∆z solution to

O∆z U∆z = 0

∆z→ 0

OO

∫ Num

Z

dζ

66nnnnnn

(4.1)

The context includes the one of Direct Homogenization-Based Numerical Methods and diagram (4.1)
has to be regarded as a prism. Its deepest layer is nothing but diagram (2.1). Yet, if more is known
about the asymptotic behavior of uε, i.e. if it is known that uε(z) is close to U(z, z

ε
), with U(z, ζ)

periodic in ζ, when ε is small (which can be translated as uε(z) Two-Scale Converges to U(z, ζ)) and
if it is known a well posed problem OU = 0 for U (see the middle of the diagram), that gives the
equation for u (see the top right of the diagram) when integrated with respect to periodic variable
ζ, it is possible to build a specific numerical method.
This method consists in building a numerical approximation O∆z of operator O. Using this operator
can give a numerical solution U∆z (see the bottom of the diagram) and U∆z(z,

z
ε
) is an approxima-

tion of uε(z) for small ε. To be consistent with the continuous level, a numerical integration of the
O∆z U∆z = 0 needs to yield a numerical approximation of the equation for u (see the bottom right
of the diagram).

When a little more is known concerning the asymptotic behavior of uε when ε is small, i.e. if uε is
close to U(z, z

ε
)+ εU1(z, z

ε
) with U1(z, ζ) also periodic in ζ and if a well-posed problem is known for

U1, we can enrich diagram (4.1) and obtain the following diagram of order-1 Two-Scale Numerical
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Methods:

u
ε solution to

Oε uε = 0 ε→ 0
//

ε→ 0 , two-scale ((Q
QQ

QQ
QQ

QQ
Q

u, u1 solutions to

Ou = 0
O1u1 = 0

U , U1 solutions to

OU = 0
O1U1 = 0

∫
Z

dζ

66nnnnnn

u∆z, u
1
∆z solutions to

O∆z u∆z = 0
O1

∆z
u1∆z

= 0

∆z→ 0

OO

U∆z, U
1
∆z solutions to

O∆z U∆z = 0
O1

∆z
U1
∆z

= 0

∆z→ 0

OO

∫ Num

Z

dζ

66nnnnnn

(4.2)

5. TSAPS: Two-Scale Asymptotic Preserving Schemes. To describe Two-Scale Asymptotic
Preserving Schemes, it is first needed to describe what is an Asymptotic Preserving Scheme (or
AP-Scheme in short).

u
ε solution to

Oε uε = 0 ε→ 0
//

u solution to

Ou = 0

u
ε

∆z solution to

Oε

∆z
uε∆z

= 0

∆z→ 0

OO

ε→ 0
//

u∆z solution to

O∆z u∆z = 0

∆z→ 0

OO

∆z→ 0

OO

∆z→ 0

OO

∆z→ 0

OO

(5.1)

For this, we comment on diagram (5.1). The context is when we are face-to-face with an operator
Oε which is approached, when ε is small, by another operator O which has not the same nature as
Oε. An Asymptotic Preserving Scheme to approximate problem Oε uε = 0 (see the top left of the
diagram) is a numerical operator Oε

∆z that gives, when solving Oε
∆z u

ε
∆z = 0 (see the bottom right

of the diagram) a numerical solution uε
∆z which is close to u, with an accuracy depending on step

∆z and not on ε. Besides, this operator needs to mimic the behavior of an numerical approximation
(see the bottom right of the diagram) of limit problem O u = 0 (see the top right of the diagram)
as ε is small.
For an introduction to this kind of method the reader is referred to Jin [8].
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The explanation of TSAPS, will be based on the following diagram:

u
ε solution to

Oε uε = 0 ε→ 0
//

ε→ 0 , two-scale
++WW

WWW
WW

WWW
WWW

WWW
WWW

WWW
WWW

W

u, u1 solutions to

Ou = 0, O
1
u
1 = 0

U , U
1 solutions to

O U = 0

O
1
U

1 = 0

∫
Z

dζ

66mmmmmmmmm

U
ε solution to

OεU ε = 0

ζ =
z

ε

^^>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> ε→ 0

77ooooooo

u
ε

∆z solution to

Oε

∆z
uε∆z

= 0

∆z→ 0

OO

ε→ 0 //
u∆z

, u
1

∆z
solutions to

O∆z
u∆z

= 0, O
1

∆z
u
1

∆z
= 0

∆z→ 0

OO

U∆z
, U

1

∆z
solutions to

O∆z
U∆z

= 0

O
1

∆z
U

1

∆z
= 0

∆z→ 0

OO

∫ Num

Z

dζ

66mmmmmmmm

U
ε

∆z solution to

Oε

∆z
U ε

∆z
= 0

ζ =
z

ε

^^>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

∆z→ 0

OO

ε→ 0

77oooooo

(5.2)
This diagram has to be regarded as a prism with three layers. The deepest one is the diagram of
the AP-schemes. At the top left of this layer is found the equation that generates in its solution
oscillations of size ε. At the top right stands the limit problem, as ε is small. (This limit problem
is assumed to be an order-1 problem, i.e. uε ∼ u0 + εu1 for ε small and equations are known for u0

and u1.) At the bottom left stands the AP-Scheme that approximate equation Oε uε = 0 for any ε
and that mimics an approximation of the limit problem when ε is small (see the bottom right of the
layer).
The middle layer is exactly the diagram of the order-1 Two-Scale Numerical Methods.
The top layer is the new part. at the bottom, stands the TSAPS. This is a numerical method that
gives a solution Uε

∆z which depends on two variables z and ζ. When taken in ζ = z/ε, Uε
∆z gives

a numerical approximation of the solution to the problem given at the top right of the diagram,
with an accuracy that only depends on the discretization step ∆z, and not on ε. Moreover, as ε is
small, the TSAPS Oε

∆z needs to mimic the behavior of the order-1 Two-Scale Numerical Operator
(the couple (O, O1)). To builtd a TSAPS, a reformulation of problem Oε uε = 0 calling upon a
Two-Scale Macro-Micro Decomposition (that reads Oε Uε = 0, see the middle of the diagram) is
used. A first step towards TSAPS is led in Crouseilles, Frénod, Hirstoaga & Mouton [4].
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