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Abstract

The problem of fluorescence diffuse optical tomography consists in localizing

fluorescent markers from near-infrared light measurements. Among the

different available acquisition modalities, the time-resolved modality is

expected to provide measurements of richer information content. To extract

this information, the moments of the time-resolved measurements are often

considered. In this paper, a theoretical analysis of the moments of the forward

problem in fluorescence diffuse optical tomography is proposed for the infinite

medium geometry. The moments are expressed as a function of the source,

detector and markers positions as well as the optical properties of the medium

and markers. Here, for the first time, an analytical expression holding for any

moments order is mathematically derived. In addition, analytical expressions

of the mean, variance and covariance of the moments in the presence of

noise are given. These expressions are used to demonstrate the increasing

sensitivity of moments to noise. Finally, the newly derived expressions

are illustrated by means of sensitivity maps. The physical interpretation of

the analytical formulae in conjunction with their map representations could

provide new insights into the analysis of the information content provided by

moments.

(Some figures in this article are in colour only in the electronic version)
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Nomenclature

Symbol Meaning Units/Definition

μa Absorption coefficient cm−1

μ′
s Reduced scattering coefficient cm−1

D = 1/(3μ′
s) Diffusion constant cm

γ ⋆ = (μa/D)1/2 Wave number cm−1

ν Speed of light within the medium cm ns−1

v⋆ = 2ν(μaD)1/2 Mean speed of the detected photons cm ns−1

τ Fluorescence lifetime ns

η Fluorescence quantum yield [-]

G Green’s function for the diffusion equation W cm−2

G Green’s function for the diffusion W cm−2

equation in infinite media

uF FDOT signal W cm−2

u DOT-like signal W cm−2

e Fluorescence pulse response ns−1

f ∗ g Convolution of f and g
∫ +∞

−∞
f (t ′)g(t − t ′) dt ′

f̂ Fourier transform of f
∫ +∞

−∞
f (t) exp(−jωt) dt

mk[f ] kth order moment of f
∫ ∞

0
f (t)tk dt

s Source position

d Detector position

rn nth marker position

N Set of integers

N
∗ Set of strictly positive integers

1. Introduction

Near-infrared (NIR) imaging techniques mainly benefit from low tissue absorption. Since

photons can propagate over several centimetres within biological tissues at NIR wavelengths,

they can be used to explore the inner tissue structure (Yodh and Chance 1995). Diffuse optical

tomography (DOT) makes use of this ability and provides three-dimensional (3D) maps of the

optical properties (Boas et al 2001, Gibson et al 2005). By employing a set-up including a

set of external light sources and light detectors, the local absorption and diffusion coefficients

can be estimated by solving an inverse problem (Arridge 1999). The development of new NIR

fluorescent markers has led to a novel imaging technique called fluorescence DOT (FDOT) or

fluorescence molecular tomography (FMT) (Paithankar et al 1997, Soubret and Ntziachristos

2006, Hervé et al 2007). This technique is capable of determining the 3D local concentrations

of fluorescent markers.

Classically, DOT and FDOT approaches can be broadly classified into three modalities:

• Continuous wave (CW). The excitation light is steady, and the attenuation of the detected

intensity is considered as the measurement (Schmitz et al 2002).

• Frequency domain (FD). The amplitude of the excitation light is modulated at radio-

frequencies, typically around 100 MHz. The phase and demodulation between the

excitation and detection intensities are recorded as the two measurements (Yu et al 2003).
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• Time domain (TD). Ultrashort excitation pulses with time width in the picosecond or

femtosecond range are used. At the detection point, the whole time course of the distorted

pulse response is recorded over a range of about 10 ns with a time step varying from few

picoseconds to few hundreds of picoseconds (Schmidt et al 2000).

CW measurements contain in nature less information than FD and TD since only the continuous

component of the signals is exploited. In the context of DOT, Arridge and Lionheart (1998)

have demonstrated that simultaneous recovery of absorption and diffusion coefficients maps

cannot be achieved using the CW approach, contrary to FD and TD approaches. Using the

latter approaches also enables one to limit the number of necessary detection points compared

to CW. For instance, in the context of FDOT, Hall et al (2004) have shown that a unique

fluorescent inclusion can be resolved with a single measurement point in the TD. Moreover,

FD and TD offer the potential of fluorescence reconstruction with lifetime discrimination

(Kumar et al 2008). FD and TD approaches are theoretically equivalent since FD and TD

measurements are related by a Fourier transform. Practically speaking, the FD measurements

are performed for a few modulation frequencies limiting the information content. As a result,

the TD approach a priori maximizes the amount of information that can be acquired from a

single TD measurement point.

Classically the TD measurements are not used directly but reduced to few features resulting

from the application of a transformation along the time axis. This treatment is twofold:

(i) reducing the redundancy in the measurements and (ii) reducing the computation cost of

the forward model to a more tractable level. The optimal choice of the measurement features,

initiated by Schweiger and Arridge (1999), is still a matter of debate. Global features such

as the Laplace transform of the TD signals (Gao et al 2006) or the temporal moments of the

TD signals (Hillman et al 2001, Liebert et al 2003, 2004, Lam et al 2005, Bloch et al 2005,

Laidevant et al 2007, Marjono et al 2008) have been investigated. Recently, local features

have received much attention. Riley et al (2007) have found that the photon peak value and

time offer some advantages over the temporal moments. The selection of photons in early

time windows has been increasingly investigated. It has allowed for reconstructions with

better resolutions than with the CW approach or with the selection of photons in later time

windows (Niedre et al 2008, Leblond et al 2009). However, the moments approach is still

widely used due to specific advantages. First, the moments of the Green’s light propagation

functions can be calculated iteratively with a computation cost several order lower than that

of the TD functions (Arridge and Schweiger 1995). Second, the moments allow for a physical

interpretation of the features in terms of the numbers of photons and mean time of flights,

which is of high interest in the understanding of the problem. Third, in practical problems

the instrument response function implies to perform a convolution/deconvolution operation

that is greatly simplified when moments are considered (Liebert et al 2003). Fourth and last,

a noise model on the moments can be derived analytically from the TD measurement noise

model (Liebert et al 2003, Arridge et al 1995).

A large number of studies based on the temporal moments have been undertaken.

However, to our knowledge, there has been no clear evaluation of the benefit of using higher

order moments. Generally, the use of the moments is limited to the orders from 0 to 2 (Liebert

et al 2003, 2004, Lam et al 2005). In some cases only the first order is considered (Hillman

et al 2001, Laidevant et al 2007, Marjono et al 2008). In a preliminary work, we observed that

the benefits of higher order moments were related to the optical and fluorescence properties

(Ducros et al 2008b). However, the underlying physical explanation for this situation is not

fully established yet. In this context, the determination and understanding of the situations for

which higher order moments are of interest is highly desirable.
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The purpose of this two-part paper is to establish the domain of interest of the higher

orders by analysing the information content they provide. In particular, the benefit of using

higher orders will be evaluated against several parameters of interest. Under the scope of this

study is the influence of: (i) the optical properties of the medium, (ii) the fluorescence lifetime

of the marker and (iii) the noise level. It is believed that this moment-based study may provide

new insights into the understanding of the more general time-resolved measurements.

This paper deals with the theoretical aspects of the use of moments in FDOT. Note

that if the diffusion constant changes are small enough, then the problem of absorption

perturbation reconstruction in DOT can be seen as a particular case of FDOT. As detailed in

section 2, the present study is restricted to media where the diffusion approximation holds. We

consider an infinite and homogeneous medium injected with a distribution of local fluorescent

markers. Although this is a simple geometry, it has been previously used in practical situations

(Thompson et al 2005). Moreover, the infinite medium expressions being developed here can

easily be extended to expressions holding for more complex geometries (semi infinite, slab or

parallelepiped) by means of the method of images (Kienle 2005). In section 3, we provide, as

exhaustively as possible, the theoretical material that is required to build the moment-based

FDOT forward model. To the best of our knowledge, this is the first time that an analytical

expression of the moments of the FDOT forward model holding for any order is derived.

Our expression generalizes the three expressions of moments at orders 0, 1 and 2 previously

published by Lam et al (2005). In section 4, we analyse how the noise present on the TD

measurement corrupts the moments. This novel derivation arises from the single assumption

that the TD measurement noise follows a Poisson statistic.

The theoretical material developed in this paper will be exploited to address the inverse

problem in a companion paper.

2. Theoretical background

2.1. Light propagation

The propagation of light in a turbid medium has been extensively discussed (e.g. see Ishimaru

(1977)). In the context of FDOT, the diffusion approximation is often considered to be accurate

enough to model the propagation of light. Within this framework, the photon density φ (in

W m−2) satisfies the following partial derivative equation:

−∇ [D(r)∇φ(r, s, t)] +
1

ν

∂

∂t
φ(r, s, t) + μa(r)φ(r, s, t) = S(r, s, t). (1)

Here, D (in cm) is the diffusion constant defined by D = 1/(3μ′
s) as recommended by Pierrat

et al (2006); μ′
s (in cm) is the reduced scattering coefficient; μa (in cm) is the absorption

coefficient; and ν (in cm ns−1) is the speed of light within the medium. In the following,

Gr,s(t) denotes the Green’s function of the propagation operator, i.e. the solutions of (1)

for S(r, s, t) = δ(r − s)δ(t) considering appropriate boundary conditions. An overview of

the boundary conditions classically associated with (1), namely the extrapolated boundary

conditions and the partial current boundary conditions, can be found in the work of Haskell

et al (1994).

2.2. FDOT forward model

Classically, FDOT is simplified to a three-step process that involves (i) the propagation of light

at the excitation wavelength λx from the source to the fluorescent marker; (ii) fluorescence,

which stands for the absorption of some excitation light and its conversion to light at a higher
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Figure 1. Basic schematic of the FDOT principle. (a) Excitation: the light emitted by the source at

point s propagates through the medium. (b) Fluorescence: the fluorescent marker absorbs a part of

the excitation light and re-emits a part of the absorbed light at a higher wavelength. (c) Emission:

the light emitted by the fluorescent marker at point rn propagates through the medium.

wavelength λf > λx ; and (iii) the propagation of light at the fluorescence wavelength λf from

the marker to the detector. This process, which neglects the re-absorption of fluorescence light

by the fluorescent marker, is illustrated in figure 1.

Let us consider a fluorescent marker distribution {cn}n=1...N , representing the local

fluorescent marker concentrations at positions {rn}n=1...N . The fluorescence signal us,d(t)

measured at detector position d after excitation at source position s is given by Patterson and

Pogue (1994), Lam et al (2005):

uF
s,d(t) =

N
∑

n=1

cn

∫ ∞

−∞

∫ ∞

−∞

Gs,rn
(t ′′)e(t ′ − t ′′)Grn,d(t − t ′) dt ′ dt ′′. (2)

To obtain a more concise expression, (2) is rewritten using the convolution operator ∗ defined

in the nomenclature table. We obtain

uF
s,d(t) =

N
∑

n=1

cn

(

Gs,rn
∗ e ∗ Grn,d

)

(t), (3)

where e(t) = η exp(−t/τ )/τ is the pulse response of the fluorescent marker that is

parametrized by its fluorescence lifetime τ and quantum yield η. The functions Gs,rn
and

Grn,d denote the Green’s functions of the propagation operator as defined in section 2.1. In

(3), we use the classical assumption that the light acquisition set-up measures directly photon

density. A more detailed discussion about this model can be found in Ducros et al (2008a).

It can be noted that exp(−t/τ )/τ tends to the Dirac’s function when τ goes to 0. As a

result, the special case (η = 1, τ = 0) leads to

us,d(t) =

N
∑

n=1

cn

[

Gs,rn
∗ Grn,d

]

(t). (4)

One can recognize the right-hand side of (4) as the absorption kernel of the DOT problem

(see equation (14) of Arridge (1995)). Thus, one can reinterpret us,d(t) as the light measured

in the presence of the local absorption coefficient perturbation {δμa,n} = {cn} neglecting the

diffusion constant perturbation {δDn}. This particular case of FDOT, for which the lifetime is

set to 0 and the quantum yield to 1, will be referred to as the DOT-like case.
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3. Derivation of the analytical expression of the higher order moments in an infinite

medium

In this section, we consider an infinite medium that is classically associated with the vanishing

boundary conditions: φ(r, s, t) → 0 when ‖r − s‖ → ∞. In this context, our goal is to

provide analytical formulae of the moments of the measured signals given in (3). Different

definitions for the temporal moments have been employed in the past. Here, the following

definition is adopted:

mk[f ] =

∫ ∞

0

f (t)tk dt, ∀ k ∈ N. (5)

This definition has been chosen since it defines the moments as a linear transformation of

the signal. Hence, this is the definition that allows for dealing with a linear inverse problem,

which is done in the majority of FDOT cases. Moreover, such a definition allows for easily

deriving the moments of a convolution (refer to appendix A).

The main results and starting point of this section is the novel derivation of (10) that gives

the moments of a Green’s function in an infinite medium for any order. All the succeeding

formulations derive from this equation.

3.1. Moments of a Greenís function for the diffusion equation

Let us introduce the two following parameters: v⋆ = 2ν(μaD)1/2 and γ ⋆ = (μa/D)1/2; v⋆ (in

cm ns−1) is referred to as the mean speed of the detected photons and γ ⋆ (in cm) is referred to

as the wave number. These two quantities appear naturally in the derivation of the moments.

As will be discussed in section 5, these two parameters play a major role in the problem of

FDOT.

The moments of a function can be advantageously expressed in the Fourier domain.

Indeed, the kth-order moment of a function f is related to its Fourier transform f̂ by (see

equation (12) of Arridge and Schweiger (1995) for example)

mk[f ] = jk
dkf̂

dωk
(ω = 0). (6)

For a homogeneous infinite medium, this approach is particularly suited to our problem since

the Fourier transform of the Green’s function for (1) is available. Interestingly, it only spatially

depends on the propagation distance l = ‖r − rs‖ and is noted Ĝl(ω). Explicitly, Ĝl(ω) is

given—after adaptation of equation (23) of Arridge et al (1992) to our notations—by

Ĝl(ω) =
1

4πDl
exp[−x(ω)1/2], with x(ω) = 2jω

γ ⋆

v⋆
l2 + (γ ⋆l)2. (7)

Taking the kth derivatives of (7) leads to

dkĜl

dωk
=

1

4πDl

(

jl2

νD

)k
dk

dxk
exp(−x1/2). (8)

To go further, we use the lemma that is established below.

Lemma 1. If h(x) = exp(−x1/2), then

dkh

dxk
=

(−1)k

(2x)k
exp(−x1/2)

k
∑

p=1

βk
pxp/2, ∀ k ∈ N

∗ (9a)

where: βk
p =

2p

2k

(2k − p − 1)!

(k − p)! (p − 1)!
(9b)
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The use of lemma 1 in (8) and multiplication by jk leads, after some algebra, to the following

general formula:

mk[Gl] =
1

4πD

1

l
exp(−γ ⋆l)

(

1

γ ⋆v⋆

)k

Pk(γ
⋆l), ∀ k ∈ N, (10)

where Pk is a polynomial of order k, referred to as the reverse Bessel polynomial (Carlitz

1957) and defined by

Pk(x) =

{

1, if k = 0
∑k

p=1 βk
p xp, ∀ k ∈ N

∗.
(11)

To illustrate the previous formula, the first four order moments are given as

m0[Gl] =
1

4πD

1

l
exp(−γ ⋆l), m2[Gl] = m0[Gl]

(

1

γ ⋆v⋆

)2

[γ ⋆l + (γ ⋆l)2],

m1[Gl] = m0[Gl]

(

1

γ ⋆v⋆

)

γ ⋆l, m3[Gl] = m0[Gl]

(

1

γ ⋆v⋆

)3

[3γ ⋆l + 3(γ ⋆l)2 + (γ ⋆l)3].

(12)

It is well known that the ratio m1[Gl]/m0[Gl] represents the mean time of flight of the detected

photons (Arridge et al 1992). It can be observed that the mean time of flight is linearly related

to the propagation distance l by m1[G]/m0[G] = l/v⋆. From this observation, it is natural to

interpret v⋆ as the mean speed of the detected photons.

3.2. Moments of the convolution of two Green’s functions

In an infinite homogeneous medium, the time convolution of two Green’s functions can be

expressed in terms of one single weighted Green’s function. Denoting lsn = ‖s − rn‖ and

lnd = ‖rn − d‖, we have

[Glsn ∗ Glnd
](t) =

1

4πD

lsn + lnd

lsnlnd

Glsn+lnd
(t). (13)

This formula has been previously published in Hall et al (2004) and is demonstrated in

appendix C for completeness. The moments of the convolution of two Green’s functions

readily derive from (10) and (13) and are given by

mk[Glsn ∗ Glnd
] =

1

16π2D2

1

lsn lnd

exp[−γ ⋆(lsn + lnd)]

(

1

γ ⋆v⋆

)k

Pk[γ ⋆(lsn + lnd)], ∀ k ∈ N.

(14)

3.3. Moments of the DOT-like forward model

To obtain the moments of the DOT-like measurement, the weighted sum of all contribution

has to be considered as described by (4). Thanks to the linearity property of the moments

(see (A.1)), the following general expression is derived:

mk[us,d] =
1

16π2D2

(

1

γ ⋆v⋆

)k N
∑

n=1

cn

1

lsn lnd

exp[−γ ⋆(lsn + lnd)]Pk[γ ⋆(lsn + lnd)], ∀ k ∈ N.

(15)
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3.4. Moments of the fluorescence pulse response

Let e(t) be the exponential decay of the fluorescence pulse response: e(t) = η exp(−t/τ )/τ .

It can be shown that the moments of e(t) are given by

mk[e] = η k!τ k, ∀ k ∈ N. (16)

The demonstration of this formula is provided in appendix D.

3.5. Moments of the FDOT forward model

The FDOT moments mk

[

uF
s,d

]

can be obtained as a function of the DOT-like moments of order

0 to k. Indeed, using the commutativity property of the convolution, it can be seen from (3)

and (4) that

uF
s,d(t) = [us,d ∗ e](t). (17)

Then, the convolution property of the moments given in (A.2) is applied onto the previous

equation. We obtain

mk

[

uF
s,d

]

=

k
∑

p=0

(

k

p

)

η(k − p)!τ k−p mp[us,d]. (18)

It can be verified that the case τ = 0 simplifies to mk

[

uF
s,d

]

= mk[us,d] as expected.

4. Derivation of the moment-based noise model

In this section, we restrict ourselves to the photonic noise that unavoidably corrupts light

measurements. Indeed, this inherent Poisson noise arises from the stochastic nature of photon

detection and is independent from the acquisition set-up. Here, the variance and covariance

of the moments of TD measurements corrupted by a photonic noise are derived. Note that no

hypothesis is made concerning the light propagation model or concerning the geometry of the

media.

Let us start with the definition of the moments in which the integral is discretized. In

practice, the TD signals are recorded over a finite time range t ∈ [0, T ] and sampled with a

given time step �T . Let us consider the acquisition of Q samples and let Nq be the number of

photons detected in the qth detection channel. Therefore, the kth-order moment is given by

mk[f ] =

∫

f (t)tkdt =

Q
∑

q=1

Nq(q�t)k. (19)

In real scenarios, the noiseless number of detected photons Nq is being perturbed by the

presence of noise. To quantify the perturbation resulting on the moments, we adopt a statistical

formalism. Let Ñq be some random variables describing the measured numbers of detected

photons and m̃k be a random variable describing the measured kth-order moment. According

to the Poisson noise assumption, we have E(Ñq) = Nq and var(Ñq) = E(Ñq). Moreover, the

noise is supposed to be uncorrelated in time, i.e. the covariance between two distinct detection

channels is zero. Under these assumptions, the mean and variance of the moments simplify to

E(m̃k) =

Q
∑

q=1

E(Ñq)(q�t)k = mk (20)



Theory of moments in time-resolved diffuse optical tomography 7097

and

var(m̃k) =

Q
∑

q=1

var(Ñq)(q�t)2k =

Q
∑

q=1

E(Ñq)(q�t)2k = E(m̃2k) = m2k, (21)

where mk stands for the noiseless kth-order moment.

Note that if the noiseless number of detected photons Nq is larger enough, then the Poisson

distributed random variable Ñq can be modelled to a good approximation by a Gaussian

distribution. In this case, the random variable m̃k is a weighted sum of independent Gaussian

distributions. Thus, m̃k is itself a Gaussian-distributed random variable whose mean and

variance are given by (20) and (21).

The covariance between two different order moments can also be expressed through a

simple expression. The expression generalizing the previous formula is

cov(m̃i, m̃j ) = E(m̃i+j ) = mi+j . (22)

The demonstration of (22) is provided in appendix E. It can be mentioned that (21) and (22)

are in agreement with the statistical properties derived by Arridge et al (refer more specifically

to equation (46) of Arridge and Schweiger (1995)).

It has often been observed that moments of increasing order are increasingly sensitive to

noise. To state it mathematically, let us define the signal-to-noise ratio (SNR) of a moment of

order k by Rk = 10 log[E(m̃k)
2/var(m̃k)] = 10 log

(

m2
k

/

m2k

)

. In this definition the SNR is

expressed in dB. Originally, we show that the SNR of the moments satisfies the often-observed

inequality:

Rk > Rk+1, ∀ k ∈ N. (23)

The demonstration for this formula is given in appendix F.

5. Analysis of the information content of the higher order moments

This section aims at discussing the information content provided by the higher order moments.

Our purpose is to bring out some general intuitions about the benefits of using higher order

moments. Therefore, the present discussion is limited to the direct observation of the moments

resulting from the presence of a single fluorescent marker. A more rigorous reconstruction-

based analysis is provided in a companion paper.

5.1. Zero lifetime case

Figure 2 illustrates the so-called sensitivity maps for moments of order 0 to 3, the fluorescence

lifetime being set to 0. On a sensitivity map the source and detector positions s and d are

fixed. Here ‖s − d‖ = 5 cm. A sensitivity map represents the moment measured for a given

source and detector positions, with respect to the marker position rn. More specifically, a

sensitivity map is a representation of (15) for different marker positions rn around the source

and detector positions. Moments corresponding to marker positions closer that 0.5 cm to the

source or to the detector are not represented since the diffusion approximation fails when such

small distances are reached. In the forthcoming discussion, the information content of the

moments is examined from the patterns of the sensitivity maps. Hence, the latter have been

normalized to the same maximum value.

Regardless of the order, it can be seen that the further to the source the marker is—or to

the detector due to the symmetry of the problem—the smaller the moments are. This exhibits

the dramatic lack of FDOT sensitivity to the deeply embedded marker. However, a deeply

embedded marker leads to relatively higher moments when higher orders are considered.



7098 N Ducros et al

4

3

2

1

0

–1

–2

–3

Z
 (

in
 c

m
)

3

4

3.5

3

2.5

2

1

0

–1

–2

–3

–2 0 2
Y (in cm)

–2

m2 m3

Profiles

m0 m1

0 2
Y (in cm)

–2 0 2
Y (in cm)

–2 0 2
Y (in cm)

–2 0 2
Y (in cm)

increasing

moments order

Z
 (

in
 c

m
)

3

2

1

0

–1

–2

–3

Z
 (

in
 c

m
)

3

2

1

0

–1

–2

–3

Z
 (

in
 c

m
)

3.5

3

2.5

4.9°° 3.9°°

5.6°°

Figure 2. Sensitivity to the presence of a point-like fluorescent marker for different moment orders.

The sensitivity is plotted with a log scale. On the right-hand side is plotted the sensitivity of the

moments along the dash line of the left-hand side maps, for moment order from 0 to 6. The red

cross indicates the source position and the blue circle the detector position. Optical properties:

μa = 0.01 cm−1, μ′
s = 10 cm−1 and τ = 0 ns.

To understand the physical origin of the sensitivity patterns, let us inspect (15). Although

this equation can seem complex, it takes the following simple form:

mk(rn) = Ak m0(rn)Pk(rn), (24)

where Ak is some constant depending on the optical properties of the medium and Pk is a

polynomial of order k. To be more precise, Pk is a polynomial with respect to the propagation

distance l(rn) = ‖s − rn‖ + ‖rn − d‖. Note that the pattern of a mk map does depend on the

optical properties of the medium since both m0 and Pk are functions of γ ⋆ whereas it is not

modified by v⋆ that only affects the multiplicative constant Ak. As a result, the information

content of the moments are related to the optical properties of the medium through γ ⋆. In terms

of sensitivity maps, the simplified expression of mk allows for interpreting a mk sensitivity map

as the results of a multiplication between a m0 sensitivity map and a polynomial of order k

map.

For the purpose of localizing a fluorescent marker, the more dissimilar at different moment

orders the sensitivity maps are, the better it is. Indeed, two similarly patterned maps provide

redundant information whereas maps with very different patterns indicate that complementary

information is available. To quantify the similarity of the sensitivity maps—thus the amount
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Figure 3. Signal-to-noise ratio maps. The red cross indicates the source position and the blue

circle the detector position. Optical properties: μa = 0.01 cm−1, μ′
s = 10 cm−1 and τ = 0 ns.

Figure 2.

of available information—the correlation between maps at different order has been evaluated.

On the bottom left-hand corner of every mk map (for k � 1), we report the corresponding

correlation angle θk , which is the arccosine of the uncentred correlation between the current

map mk and the lower order map mk−1. Specifically

θk = arccos

(

mk · mk−1

‖mk‖‖mk−1‖

)

, where mk = [mk(r1), . . . , mk(rn), . . . , mk(rN )]. (25)

Within this geometrical framework, two fully correlated—equivalently proportional—maps

satisfy θ = 0◦, while two uncorrelated maps satisfy θ = 90◦.

In our problem, the correlation between two moments of consecutive order is observed

to be very strong since θ < 6◦ whatever the order. Moreover, the larger the order, the

stronger the correlation. This suggests that the information content of the moments is getting

poorer and poorer when the moments order is increased. This behaviour, in agreement with

the increasingly close sensitivity profiles of figure 2, may be understood from the simplified

expression of mk given in (24). Indeed, this expression shows that the differences between

two sensitivity patterns only originate from the Pk polynomials. Inspecting the coefficient

of these polynomials, it can be seen that (i) they are all positive and (ii) they give relatively

less and less weight to the monomial of order k than to the monomials of smaller orders for

increasing k.

The two penalizing effects—the increase in the correlation of the moments and the increase

in the noise sensitivity—should dramatically limit the practical use of higher order moments.

Figure 3 represents the SNR of moments for orders from 0 to 3. This representation

showing the degradation of the SNR for higher orders is in agreement with (23). Moreover,

it underlines the fact that the degradation of the SNR gets larger and larger when higher and

higher orders are considered. This increasing sensitivity to noise is not linear with the moment

order. While the SNRs of zeroth and first moments remain quite close, the SNRs of higher

order moments experience stronger drops.

5.2. Non-zero lifetime case

In figure 4, the sensitivity maps for a fluorescent marker lifetime τ of 5 ns are represented.

Comparing these maps to the maps depicted in figure 2 for which τ = 0 ns, it can be seen that
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Figure 4. Sensitivity maps (log scale). The same conditions as in figure 2 but τ = 5 ns.

increasing the marker lifetime from 0 to 5 ns results in a stronger correlation. To understand

this phenomenon, let us inspect the effect of the fluorescence decay convolution as described

by (18). For the first-order moment, it gives mF
1 (rn) = ητm0(rn) + ηm1(rn), which can be

rewritten as mF
1 (rn) = ηm0(rn)[τ + AP1(rn)]. Therefore, the first-order moment mF

1 (rn)

originates from two components: the first one related to the fluorescence itself, irrespective

of the marker position, and the second one related to the marker position. If the lifetime τ

is larger than AP1(rn), then desirable part of the signal—the one depending on the marker

position—is overwhelmed by the undesirable one—the one not depending on the marker

position. As a result, it can be reasonably expected that the ability to determine the position

of a fluorescent marker degrades for increasing τ . Furthermore, it can be readily noted that

AP1(rn) = l(rn)/v
⋆. Therefore, the amount of the desirable signal is smaller within a medium

of high v⋆ than that within a medium of low v⋆. Hence, for a given τ , the ability to determine

the position of a fluorescent marker should be improved with decreasing v⋆.

6. Conclusion

A theoretical study concerning the use of moments in TD FDOT has been proposed. Analytical

expressions of the moments of the forward model of FDOT have been derived. Originally, these

expressions for an infinite medium geometry hold whatever the moment order. The corruption

of the moments due to the presence of noise on the time-resolved measurement has also been
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studied, and simple expressions of the variance and covariance of the noise of the moments

noise were derived. It was also proven that the SNR decreases with increasing moment orders.

Then an analysis of the information content of the moments has been proposed. This analysis,

based on the pattern of the sensitivity maps, has led to identify the following points:

(i) the moments are strongly correlated,

(ii) the moments of increasing order are increasingly correlated,

(iii) the moments of increasing order are increasingly more corrupted by noise,

(iv) the information content of the moments is related to the optical properties of the medium

through parameter γ ⋆ when the lifetime is zero,

(v) the information content of the moments degrades when increasing lifetimes are considered,

(vi) for a given lifetime, the degradation of the information content of the moments depends

on the optical properties of the medium through parameter v⋆.

In part II, the expressions derived here will be used in the resolution of the inverse problem

allowing for recovering the 3D reconstructions of the markers concentrations. The influence

of the SNR of the measurements as well as the optical properties of the medium and the

fluorescence lifetime will be particularly investigated.
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Appendix A. Properties of the moments

Assuming the moments are defined by mk[f ] =
∫

f (t)tk dt , the two following properties

derive.

Property 1. Linearity of the moments. Let the function f be the sum of the functions fi. Thus,

f (t) =
∑

i fi(t). The moments of f are related to the moments of fi by the following formula:

mk[f ] =
∑

i

mk[fi], ∀ n ∈ N. (A.1)

Property 2. Moments of a convolution. The moments of f ∗ h can be expressed in terms of

the moments of f and h. Explicitly, it can be stated that

mk[f ∗ h] =

k
∑

p=0

(

k

p

)

mp[f ]mk−p[h], ∀ k ∈ N. (A.2)

Appendix B. Proof of lemma 1

We write h(x) = exp(−x1/2) and want to show that the kth derivative of h satisfies (9).
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First Step: By inspection of the first derivatives of h, it is observed that the general form of

the kth derivative of h follows (9a). We assume that this formula holds up to order k, which

is easily verified for k = 1.

Second Step: The k + 1th derivative of h is calculated by differentiation of (9a). After some

algebra, this leads to

dk+1h

dxk+1
=

d

dx

dkh

dxk
=

(−1)k+1

(2x)k+1
exp(−x1/2)

k+1
∑

p=1

[

βk
p−1 + (2k − p)βk

p

]

xp/2. (B.1)

This proves that the equality defined (9a) holds for any k ∈ N
∗. Moreover, the following

relation between βk
p is established: βk+1

p = βk
p−1 + (2k − p)βk

p. This relation generates the

coefficients of the reverse Bessel polynomials whose explicit formula given in Sloane (2009)

allows us to derive (9b) after some algebra. This concludes the proof of this lemma.

Appendix C. Moments of the convolution of two Green’s functions of the diffusion

equation

According to the convolution theorem, the Fourier transform of a convolution is the point-wise

product of Fourier transforms. Thus, we consider the product Ĝl1(ω)Ĝl2(ω). After substitution

of the two Fourier transforms as given in (7), we have that

Ĝl1(ω)Ĝl2(ω) =
1

4πDl1
exp [−y(ω)l1]

1

4πDl2
exp [−y(ω)l2] , (C.1)

where y(ω) = γ ⋆[2jω/(γ ⋆v⋆) + 1]1/2 . The terms are then rearranged to prove that

Ĝl1(ω)Ĝl2(ω) =
1

16π2D2l1l2
exp [−y(ω)(l1 + l2)] =

1

4πD

l1 + l2

l1l2
Ĝl1+l2(ω). (C.2)

Appendix D. Moments of the fluorescence decay

We search for an analytic expression of the following integral:

mk[e] =
η

τ

∫ ∞

0

exp

(

−
t

τ

)

tk dt. (D.1)

Integrating (D.1) by parts, it can easily be shown that

mk[e] = kτ mk−1[e], ∀ n ∈ N
∗. (D.2)

By recursive use of the previous equality and with m0[e] = η, we get that mk[e] = ηk!τ k .

Appendix E. Covariance of the noisy moments

Starting from the definition of the covariance of the two variables mi and mj we have to calculate

cov(m̃i, m̃j ) = E(m̃im̃j ) − E(m̃i)E(m̃j ). (E.1)

First, we focus on the first term on the right-hand side of (E.1), replacing the moments by their

discrete definition given in (19) and rearranging the different terms in order to obtain

E(m̃im̃j ) = E

⎡

⎣

⎛

⎝

Q
∑

q=1

Ñq(q�t)i

⎞

⎠

⎛

⎝

Q
∑

q ′=1

Ñq ′(q ′�t)j

⎞

⎠

⎤

⎦

= E

⎡

⎣

Q
∑

q=1

Q
∑

q ′=1

Ñq ′Ñq(q�t)i(q ′�t)j

⎤

⎦ . (E.2)
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Then, due to the linearity of expectation, we have that

E(m̃im̃j ) =

Q
∑

q=1

Q
∑

q ′=1

E(Ñq ′Ñq)(q�t)i(q ′�t)j . (E.3)

Since the noise is assumed to be uncorrelated in time, Ñq and Ñq ′ are independent variables

for all q �= q ′. Thus E(ÑqÑq ′) = E(Ñq)E(Ñq ′), ∀q �= q ′. However, the case q = q ′ leads to

E(Ñq , Ñq) = E2(Ñq) + var(Ñq) since Ñq is obviously correlated to itself. Upon substitution

of these two relations in (E.3), we have

E(m̃im̃j ) =

Q
∑

q=1

var(Ñq)(q�t)i+j +

Q
∑

q=1

Q
∑

q ′=1

E[Ñq]E[Ñq ′ ](q�t)i(q ′�t)j (E.4)

=

Q
∑

q=1

var(Ñq)(q�t)i+j + E(m̃i)E(m̃j ). (E.5)

With the Poisson statistic assumption stating that var(Ñq) = Ñq we finally obtain

cov(m̃i, m̃j ) = E(mi+j ).

Appendix F. The signal-to-noise ratio of the moments

To demonstrate (23), we generalize the problem and show that R(κ) = m2
κ

/

m2κ =

(
∫

f (t)tκ dt)2/
∫

f (t)t2κ dt is a decreasing function of the continuously defined variable κ .

Therefore, we are to show that the derivative of R is negative for all κ .

First, the derivative R is derived and factorized as

dR

dκ
(κ) = 2A

(∫

f (t) ln(t)tκ dt

∫

f (t)t2κ dt −

∫

f (t) ln(t)t2κ dt

∫

f (t)tκ dt

)

, (F.1)

where A =
∫

f (t)tκ dt/(
∫

f (t)t2κ dt)2 is positive since f is assumed to be positive.

Second, the two products of integrals are transformed into two double integrals, allowing

for a new factorization. The integral transformation can be done in two equivalent manners:

dR

dκ
(κ) = 2A

∫∫

f (u)f (v)[ln(u)uκv2κ − ln(u)u2κvκ ] du dv (F.2a)

= 2A

∫∫

f (u)f (v)[ln(v)vκu2κ − ln(v)v2κuκ ] du dv. (F.2b)

Third, dR/dκ(κ) is written as the half-sum of (F.2a) and (F.2b), which permits a last

factorization:

dR

dκ
(κ) = A

∫∫

f (u)f (v)u3κ/2v3κ/2 ln
(u

v

)

[

(u

v

)−κ/2

−
(u

v

)κ/2
]

du dv. (F.3)

Noting that ln(x)(x−ǫ − xǫ) < 0, ∀x > 0 and ǫ > 0 as well as ln(x)(x−ǫ − xǫ) = 0 if ǫ = 0

concludes this demonstration.
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